Metalne konstrukcije II
|
|
- Αναστασούλα Λαμέρας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 etlne konstrukcije II Prof. dr. sc. Drko Dujmović Grđevinski fkultet Sveučilište u Zgrebu Sveučilište u Zgrebu/Grđevinski fkultet/ /
2 3. IŠEDJELI TLAČI ELEETI Sveučilište u Zgrebu/Grđevinski fkultet/ /
3 Svrh/područje dnšnjeg predvnj: Projektirnje višedjelnih tlčnih element rlikuje se od onih jednodjelnih. U teoretske postvke te rlike, studenti se uponju s numeričkim primjerim koji se rješvju prem Eurocode 3. Litertur: Seprt: etlne konstrukcije,, Grđevinski fkultet, k. god. 1./11. Androić,B.;Dujmović,D.;Džeb,I.:Čelične konstrukcije 1, IA Projektirnje, Zgreb,
4 Sdržj dnšnjeg predvnj: 1. Definicij višedijelnog tlčnog element. Temeljni principi 3. Podjel višedijelnih element 4. Pojm mjenskog element 5. Pojm posmično krutog i posmično meknog element kod problem ivijnj 6. Eulerov kritičn sil ivijnj s i be utjecj posmičnih deformcij 7. Posmičn krutost 8. Dimenionirnje višedijelnih tlčnih element 9. išedijelni elementi s dijgonlnim elementim ispune 1. išedijelni elementi s prlelnim elementim ispune 11. išedijelni elementi međusobno približeni tko d su direktno međusobno spojeni 1. Elementi od dv kutnik Prof.dr.sc. spojeni Drko Dujmović nimjeničnim veicm 13. Preporuke konstrukcijsku ivedbu 4
5 1. Definicij višedjelnog tlčnog element sstoje se od dv ili više jednodjelnih element međusobno spojenih elementim ispune Jednodjelni elementi Elementi ispune išedjelni element y y mterijln os nemterijln os Element ispune y y Jednodjelni element 5
6 išedjelni tlčni konstrukcijski element tipičn primjer stup 6
7 išedjelni tlčni konstrukcijski element tipičn primjer stup n koji se oslnj nosč krnske ste 7
8 Problem ivijnj JEDODJELI ELEET y y l Poprečni presjek tlčnog element IŠEDJELI ELEET y y Ivijnje okomito n nemterijlnu os (u smjeru osi y - y) Ivijnje okomito n mterijlnu os y y (u smjeru osi - ) 8
9 Problem ivijnj y y Ivijnje okomito n os y - y - postoji ktivn površin presjek koj može preueti posmične npone y Ivijnje okomito n os y - y - ko jednodjelne elemente y Ivijnje okomito n os - - ne postoji presjek koji u potpunosti može preueti posmične npone UZETI U OBZIR DEFORACIJE OD POSIČIH APOA!!! 9
10 . Temeljni principi Sl. b) 1 vijk ispun nedjelotvorn Sl. c) vijk djelotvorn ispun, deformcije uslijed i Sl. d) nprenje u elementim ispune Sl. e) f) i g) rspodjel i 1
11 . Temeljni principi Pretpostvk d ivijeni oblik element vrijedi: w( x) e o sin x l e inicijln deformcij u sredini element EIw EI sin x EI 3 3 x cos 11
12 3. Podjel višedjelnih element dijgonlni elementi ispune prlelni elementi ispune 1
13 3. Podjel višedjelnih element međusobno približeni tko d su direktno međusobno spojeni elementi od dv kutnik spojeni nimjeničnim veicm 13
14 4. Pojm mjenskog element x omenti Poprečne sile os x l/ 1 1 l y Presjek 1-1 x y Rčunski mjenski element e l/ x x (x) (x) 14
15 Prorčun nosivosti višedjelnog element (TE) svodi se n prorčun punostijenog element uimjući u obir deformcije od posmičnih npon dimenionirnje TE se provodi n posmično meknom punostijenom elementu koji se niv rčunski mjenski element 15
16 4. Pojm mjenskog element Oblik ivijene linije rčunskog mjenskog element: x w( x) x sin 5 l w x e 5 Početn imperfekcij u sredini element: e geometrijsk imperfekcij strukturln imperfekcij 16
17 4. Pojm mjenskog element oment svijnj i unutrnje sile prem teoriji I red: I x e x sin x I x mx e I x e x x cos I x mx e I x mx 17
18 4. Pojm mjenskog element oment svijnj i unutrnje sile prem teoriji II red: II x mx e 1 1 cr 1 1 cr cr - fktor povećnj moment rdi teorije II red - Eulerov ideln kritičn sil ivijnj uimjući u obir krkteristike posmično meknog element (onk cr,v ). II II x x mx mx e II x mx I x mx 18
19 A) Posmično krut element pri ivijnju jednodjelni element Ivijnje okomito n os - l y y cr, E I Ivijnje okomito n os y - y cr, E I y cr, - Eulerov kritičn sil be utjecj posmičnih deformcij pri ivijnju Prof.dr.sc. element Drko Dujmović 19
20 B) Posmično mekn element pri ivijnju višedjelni element Ivijnje okomito n os - y y cr,? l Ivijnje okomito n os y y (isto ko jednodjelne elemente) cr, E I y cr, - Eulerov kritičn sil be utjecj posmičnih deformcij pri ivijnju element
21 5. Pojm posmično krutog i posmično meknog element kod problem ivijnj cr, cr, cr cr, cr cr, cr cr, 1 cr cr, Interkcij cr, i cr, 1
22 Eulerov kritičn sil cr, ovisi o: E G l I A modulu elstičnosti modulu posmik - dužini element momentu tromosti oko osi - ktivnoj površini pri djelovnju posmik (poprečne sile) cr 1 cr, 1 1 cr, 1 1 cr, cr, cr,
23 Kko odrediti cr,? Posmičn krutost svk poprečn sil koj iiv kut okret element = 1 3
24 Kko odrediti cr,? Ukoliko n element dužine l djeluje poprečn sil vrijedi: G G A G A 1 S S G A G A - poprečn sil - modul posmik - ktivn površin pri djelovnju poprečne sile - kut okret element 4
25 Kko odrediti cr,? Pojsevi element kruti n iduženje EA ivijnje ovisi smo o trnsverlnom pomku = 1 C = S C G A i uvjet rvnoteže (slik) C 1 cr, G A cr, v cr, v v C cr cr, cr, 1 1 cr, cr, cr, EI G A cr EI EI 1 GA 5
26 itkost posmično meknog element l i EI 1 GA id I i i EA GA EA S 6
27 6. Eulerov kritičn sil ivijnj s i be utjecj posmičnih deformcij 6.1. Element iložen svijnju i tlčnoj sili be utjecj posmičnih deformcij 1 Presjek 1-1 l 1 y y omentni dijgrm (teorij I. red) cijeli hrbt Stvrni progib (teorij II. red) w 7
28 6.1. Element iložen svijnju i tlčnoj sili be utjecj posmičnih deformcij Uvodimo: w EI w w EI w ( rvnotež) ( uvjet mterijl) w EI i (x) moment prem teoriji I red EI ( x) w EI Rješenje diferencijlne jedndžbe: w C II 1 I 1 sin x C cos x x x x 6 I x... C 1 i C - konstnte integrcije (i rubnih uvjet) 8
29 6.1. Element iložen svijnju i tlčnoj sili be utjecj posmičnih deformcij w w x l Diferencijln jedndžb (smo tlčn sil): w C 1 sin x C Rubni uvjeti Uvjet ivijnj w w C cos x w x w EI C x C sin sin 1 - trivijlno rješenje - netrivijlno rješenje 1 C 1 = sin n n 9
30 6.1. Element iložen svijnju i tlčnoj sili be utjecj posmičnih deformcij w w x EI n w w n cr, l EI EI 3
31 6.. Element iložen svijnju i tlčnoj sili u utjecj posmičnih deformcij cr, l Presjek y 1 EI EI 1 GA y hrbt postoji smo djelomično Ivod vidi u seprtu 31
32 7. Posmičn krutost S v svk poprečn sil koj iiv kut okret element = 1 S G A S G A - posmičn krutost - modul posmik - ktivn površin kod djelovnj posmik Ir S ovisi o elementim ispune. 3
33 7. Posmičn krutost S v išedjelni element s Prof.dr.sc. prlelnim Drko Dujmovićelementim ispune 33
34 7. Posmičn krutost S v m i m Udio svijnj pojsev k ds 1 i k 1 4 ds 6 1 EI p EI p Udio svijnj element ispune 1 b 3 EI b 1 i EI i Udio poprečne sile b b b GA i, v b 3 GA i, v 3 4 EI p b 1 EI i b GA i, v 34
35 7. Posmičn krutost S v 1 4 EI 4 EI p S p b 1 EI b 1 EI i i b GA bga i, v 1 S S 1 i, v G 4 EI A 1 p b 1 EI i bga b S GA 4 EI p 1 EI i b GAi, v i, v 35
36 7. Posmičn krutost S v Ideln vitkost id EA G A EA 4 EI p b 1 EI i b GA i, v id 4 A I p 4 EI p b 1 EI i b GA i, v 36
37 7. Posmičn krutost S v Ukupni horiontlni pomk: SS ds EA 1 1 sin cos EA d sin cos EA d 1 S išedjelni element s rešetkstim elementim ispune 37
38 7. Posmičn krutost S v S 1 S sin cos EA 1 GA EA d d 1 1 sin cos 3 d EA b d id EA G A 3 Ad A b d A A p išedjelni element s rešetkstim elementim ispune 38
39 8. Dimenionirnje višedjelnih tlčnih element problem nosivosti industrijskih, tj. nesvršenih element EKIALETA GEOETRIJSKA IPERFEKCIJA A ZAJESKO ELEETU Ekvivlentn geometrijsk imperfekcij 1 e 5 l 1 - geometrijsk imperfekcij - strukturln imperfekcij 39
40 8. Dimenionirnje višedjelnih tlčnih element 1. POSTUPAK pri određivnju Eulerove kritične sile cr, uim se utjecj posmičnih deformcij pomoću vrijednosti posmične krutosti S nemterijlnu os - odredi se tv. ideln vitkost id. POSTUPAK grničn nosivost višedjelnog element dostignut je ond kd je dosegnut nosivost njopterećenijeg smostlnog element (jednodjelnog element ili element ispune). Usvojen EUROCODE 3 4
41 9. išedjelni element s dijgonlnim elementim ispune h y y Ed d h l e 5 ch.ed =? Ed 41
42 9. išedjelni element s dijgonlnim elementim ispune oment u sredini element prem teoriji II red, Ed 1 Ed e Ed cr S I Ed Ed v oment tromosti poprečnog presjek I,. eff 5 h A ch A ch - površin jednog profil h - rmk imeđu težišt profil Inicijln imperfekcij (geometrijsk + strukturln) u sredini element e 5 Eulerov kritičn sil cr EI. eff 4
43 43 Posmičn krutost S rličite sttičke sustve 3 d h A E n S d 3 d h A E n S d d A h A d h A E n S d d n - broj polj A d - površin poprečnog presjek element ispune (dijgonle)
44 9. išedjelni element s dijgonlnim elementim ispune Ukupn sil u sredini u jednom profilu x ch, Ed h Ed,5 Ed Ieff A ch Poprečn sil n krjevim (x =, x = l) Ed, Ed Sil u dijgonlnom elementu Ed n d Ed h 44
45 9. išedjelni element s dijgonlnim elementim ispune l f = 1,5 l f = 1,8 l f = Dužine ivijnj 45
46 1. išedjelni elementi s prlelnim elementim ispune 46
47 1. išedjelni elementi s prlelnim elementim ispune : ) b) Uvjet rvnoteže: Ed T T Ed h h T c) Sttički sustv i unutrnje sile oment u sredini element prem teoriji II red:, Ed 1 Ed e Ed cr S I Ed Ed v 47
48 1. išedjelni elementi s prlelnim elementim ispune oment tromosti poprečnog presjek: I. eff,5 h A ch I ch T i Sttički sustv i unutrnje sile A ch I ch h - površin poprečnog presjek jednog element - moment tromosti poprečnog presjek jednog element - rmk imeđu težišt element 48
49 1. išedjelni elementi s prlelnim elementim ispune U iru λ je I 1 i, 5 A ch T gdje je I 1 vrijednost I eff s 1 I. eff,5 h A I ch ch Sttički sustv i unutrnje sile 49
50 1. išedjelni elementi s prlelnim elementim ispune h ODREĐIAJE ch.ed I b ch, Ed,5 Ed Ed h A ch I 1, eff ch.ed I ch ch.ed Ed =.Ed (moment oko osi - u sredini element) e cr 5 E I 3 eff 5
51 1. išedjelni elementi s prlelnim elementim ispune ODREĐIAJE POSIČE KRUTOSTI S S 4 E I 1 I n I ch b ch h E I ch I b I ch h n - moment tromosti poprečnog presjek element ispune - moment tromosti poprečnog presjek jednodjelnog element - rmk imeđu težišt jednodjelnih element - vertiklni rmk imeđu element ispune - broj rvnin u kojim Prof.dr.sc. sudrko smješteni Dujmović elementi ispune 51
52 1. išedjelni elementi s prlelnim elementim ispune Dužin ivijnj jednodjelnog element f Dimenionirnje element ispune Ed Ed Ed - moment svijnj u sredini rspon 5
53 11. išedjelni elementi međusobno približeni tko d su direktno međusobno spojeni morju biti međusobno spojeni n rmcim 15 i min mjest spjnj Poprečni presjek Ed l Ed y y rmk mjest spjnj Rmk spojev približenih element 53
54 11. išedjelni elementi međusobno približeni tko d su direktno međusobno spojeni Spojn sredstv (vijci ili vrovi) morju biti dimenionirn tko d mogu preueti poprečnu silu Ed Ov se sil može ueti ko: Ed Ed 54
55 1. Elementi od dv kutnik spojeni nimjeničnim veicm DIEZIOIRAJE oko osi y-y ko jedn kutnik pod uvjetom d su dužine ivijnj u dvije okomite rvnine y-y i - jednke. pri tome rmk spojnih sredstv nije veći od 7 i min gdje je i min minimlni rdijus tromosti jednog kutnik. 55
56 1. Elementi od dv kutnik spojeni nimjeničnim veicm U slučju kutnik nejednolikih krkov može se usvojiti d je: i i y i - minimlni rdijus tromosti složenog element 1,15 7 i min ( iy i ) 7 i min - dimenionirnje ko jedn kutnik - dimenionirnje ko višedjelni element 56
57 13. Preporuke konstrukcijsku ivedbu Preporuč se e preporuč se 57
58 13. Preporuke konstrukcijsku ivedbu 58
59 13. Preporuke konstrukcijsku ivedbu Preporuč se e preporuč se 59
( ) p a. poklopac. Rješenje:
5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p
dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor
I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto
A MATEMATIKA Zadana je z = x 3 y + 1
A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte
Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f
Mte ijug: Rijeseni zdci iz vise mtemtike 8. ODREDJENI INTEGRALI 8. Opcenito o odredjenom integrlu Odredjeni integrl je grnicn vrijednost sume eskoncnog roj clnov svki cln tezi k nuli i ozncv se s : n n
2.6 Nepravi integrali
66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,
4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
Podužno ukrućenje na rebru nosača (na h/4 od vrha rebra) vruće valjani L profil: L100x100x MPa 1 E 210GPa ν 0.3 G 81GPa f y.
5. zdtk Izvrši sve potrebne kontrole nosivos i stbilnos z srednje polje krnskog nosč rspon L=6 m po kome se kreće točk dizlice s prorčunskom vrednošću mksimlne sile Q Ed =600 kn. Poprečni presek nosč čine
c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]
Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom
Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
Klasifikacija nosača Klasifikacija opterećenja Sile i momenti u poprečnom preseku. Pojam statičkog nosača
Rvni nosči Klsifikcij nosč Klsifikcij opterećenj Sile i momenti u poprečnom preseku Pojm sttičkog nosč Nosči su tel, u okviru konstrukcije ili mšine koj primju opterećenj i prenose ih n oslonce Svko kruto
Rijeseni neki zadaci iz poglavlja 4.5
Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote
Savijanje elastične linije
//00 Svijnje estične inije Anitičk metod odreďivnj estične inije Irčunvnje ugi i ngi u pomoć tic Prv jednčin svijnj Normni npon u nekoj tčki poprečnog presek s M moment spreg s M I x I x ksijni moment
OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA
OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi
MEHANKA FLUDA Pritisk tečnosti n rvne površi. zdtk. Tešk brn dimenzij:, b i α nprvljen je od beton gustine ρ b. Kosi zid brne smo s jedne strne kvsi vod, gustine ρ, do visine h. Odrediti ukupni obrtni
Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.
Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
STATIČKI ODREĐENI SUSTAVI
STTIČKI ODREĐENI SUSTVI STTIČKI ODREĐENI SUSTVI SVOJSTV SUSTV Kod statički određenih nosača rješenja za reakcije i unutrašnje sile su jednoznačna. F C 1. F x =0 C 2. M =0 3. F y =0 Jednoznačno rješenje
Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.
Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza
Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog
STATIČKI PRORAČUN HALE SA TRAPEZNIM NOSAČIMA
STATIČKI PRORAČUN HALE SA TRAPEZNI NOSAČIA Ator: Ivn Volrić, strč. spec. ing. edi. Zgreb, Siječnj 017. Sttički prorčn hle s trpeznim nosčim TEHNIČKI OPIS KONSTRUKCIJE OPIS PROJEKTNO ZADATKA Projektni zdtk
Prostorni spojeni sistemi
Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka
Geometrijske karakteristike poprenih presjeka nosaa. 9. dio
Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino
Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,
Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište
1 Ekstremi funkcija više varijabli
1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,
Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.
Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu
= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi
Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim
Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.
Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k
VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su
ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk
4. STATIČKI PRORAČUN STUBIŠTA
JBG 4. STTIČKI PRORČUN STUBIŠT PROGR IZ KOLEGIJ BETONSKE I ZIDNE KONSTRUKCIJE 9 6 5 5 SVEUČILIŠTE U ZGREBU JBG 4. Statiči proračun stubišta 4.. Stubišni ra 4... naliza opterećenja 5 5 4 6 8 0 Slia 4..
PRORAČUN GLAVNOG KROVNOG NOSAČA
PRORAČUN GLAVNOG KROVNOG NOSAČA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Statički sustav glavnog krovnog nosača je slobodno oslonjena greda raspona l11,0 m. 45 0 65 ZAŠTITNI SLOJ BETONA
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
KUPA I ZARUBLJENA KUPA
KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p
a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac
) Kosi hic Kriolinijsko ibnje merijlne oke Ssljeno ibnje 5. dio 3 4 Specijlni slujei koso hic: b) orizonlni hic c) Veriklni hic b) orizonlni hic c) Veriklni hic 5 6 7 ) Kosi hic 8 Kosi hic (bez opor zrk)
Zadatak 4b- Dimenzionisanje rožnjače
Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m
BETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.
J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e
Masa, Centar mase & Moment tromosti
FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F
SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost
PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču
PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu
PROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
povratnog napona 6 prekidača na slici 1.
Prktikum iz elektroenergetike Lortorij Elektro Mgneti Trnzient Progrm (EMTP) Zdtk Primjer prorčun prelznog povrtnog npon (prekidnje liskog krtkog spoj) Potreno je prorčunti prijelzni povrtni npon n kontktim
4. Relacije. Teorijski uvod
VI, VII i VIII dvoqs veжbi Vldimir Blti 4. Relije Teorijski uvod Podsetimo se n neke od pojmov veznih z skupove, koji su nm potrebni z uvođeƭe pojm relije. Dekrtov proizvod skup iniemo n slede i nqin:
4. Trigonometrija pravokutnog trokuta
4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Formule iz Matematike II. Mandi Orlić Tin Perkov
Formule iz Mtemtike II Mndi Orlić Tin Perkov INTEGRALI NEODREDENI INTEGRALI Svojstv 1. (f(x) ± g(x)) = ± g(x) 2. = Tblic integrl f(x) F(x) + C x + C x x +1 +1 + C 1 x ln x + C 1 x+b ln x + b + C e x e
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:
tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene
Zadatak 1
PISMENI ISPIT IZ KLASIČNE MEHANIKE I 3.. 9. Zdtk Čestic mse m izbčen je s površine Zemlje pod kutem α brzinom v. Ako je otpor zrk proporcionln trenutnoj brzini konstnt proporcionlnosti je ), izrčunjte
Proračun nosivosti elemenata
Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
PRIMJER 3. MATLAB filtdemo
PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,
Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
1. GRAFIČKI ZADACI MAŠINSKI FAKULTET ISTOČNO SARAJEVO 1.1 STEPENI SIGURNOSTI
1. GRAFIČKI ZADACI MAŠINKI FAKULTET ITOČNO ARAJEVO 1.1 TEPENI IGURNOTI 1. Z dijelove dte n slikm 1.1.1. i 1.1.. potrebno je odredit rdne npone, odvojeno z zteznje, svijnje i uvijnje. ve vrijednosti treb
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
MEHANIKA FLUIDA I Što valja zapamtiti 9 3. STATIKA FLUIDA. p (izražava ravnotežu masenih sila i sila tlaka).
MENIK FLUID I Što vlj zpmtiti 9. STTIK FLUID snovn jedndžb sttike (slučj i ) p fi ili f rdp (izržv rvnotežu mseni sil i sil tlk). i Iz osnovne jedndžbe sttike imjući n umu svojstv rdijent zključuje se:
TEORIJA BETONSKIH KONSTRUKCIJA 79
TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )
SPREGNUTE KONSTRUKCIJE
SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Metalne konstrukcije I Proračun otpornosti elementa s nesimetričnim poprečnim presjekom klase 4 izloženog savijanju i tlačnoj sili
Sadržaj 1. Uvod... 1 2. Potrebni dokazi nosivosti za elemente izložene tlaku i savijanju prema EN 1993 za poprečne presjeke klase 4... 2 2.1. Klasifikacija poprečnog presjeka... 2 2.2 Djelotvorna širina
II. ANALITIČKA GEOMETRIJA PROSTORA
II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim
Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a
Kinemik meijlne oke 3. dio ) Zdnje kiocnog gibnj b) Bzin i ubznje 1 Kiocno gibnje meijlne oke Položj meijlne oke u skom enuku emen možemo definii n slijedee nine: 1. Vekoski nin defininj gibnj (). Piodni
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA
SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo
GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
Aksijalno pritisnuti štapovi konstantnog višedelnog preseka
Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Metalne konstrukcije 1 P6-1 Osobenosti višedelnih štapova Poprečni presek se sastoji od više samostalnih elemenata koji su mestimično povezani;
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Specijalna vrsta nepravih integrala jesu oni koji sadrze potencije ili geometrijski red u podintegralnoj funkciji.
Mt Vijug: Rijsni zdci iz vis mtmti 9. NEPRAVI INTEGRALI 9. Opcnito o nprvim intgrlim Intgrl oli f d s nziv nprviln o: ) jdn ili oj grnic intgrcij nisu oncn vc soncn:, ) pod intgrln funcij f j prinut u
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD
SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD Osijek, 15. rujan 2017. Ivan Kovačević SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Rotacija krutog tijela
Rotacija krutog tijela 6. Rotacija krutog tijela Djelovanje sile na tijelo promjena oblika tijela (deformacija) promjena stanja gibanja tijela Kruto tijelo pod djelovanjem vanjskih sila ne mijenja svoj
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
STRUKTURA I SVOJSTVA MATERIJALA METALOGRAFIJA ŽELJEZNIH LEGURA. Prof. dr. sc. Ivica Kladarić
STRUKTURA I SVOJSTVA MATERIJALA METALOGRAFIJA ŽELJEZNIH LEGURA Prof. dr. sc. Ivic Kldrić Identifikcij i procjen mikrostrukture METALOGRAFIJA je istrživčk metod koj ouhvć optičko istrživnje mikrostrukture
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)