Prvi razred, A kategorija
|
|
- ῬαΧάβ Καλλιγάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 UQENIKA SREDƫIH XKOLA, Prvi razred, A kategorija Neka je E sredixte stranice CD kvadrata ABCD. Ako normala u taqki D na dijagonalu BD seqe pravu AE u taqki F, dokazati da su taqke B, C i F kolinearne. U vestima je data slede a vremenska prognoza za sutra: 1) bi e oblaqno ili e padati sneg ili e duvati vetar; 2) ako bude oblaqno sa snegom, duva e vetar; 3) ako ne bude vetrovito, bi e oblaqno bez snega. Da li se odatle moжe zakʃuqiti da e, ako bude padao sneg, duvati vetar? Odrediti sve prirodne brojeve n takve da je broj pozitivnih delilaca broja n 3 za 2011 ve i od broja pozitivnih delilaca broja n. Dat je trougao ABC. Ako je ABC > 90 i 2 AB = AC, dokazati da je 2 ACB > BAC. Dokazati da se na standardnu xahovsku tablu ne moжe postaviti 7, a moжe postaviti 8 lovaca tako da napadaju sva poʃa table.
2 UQENIKA SREDƫIH XKOLA, Drugi razred, A kategorija U skupu realnih brojeva rexiti sistem jednaqina x 2 +3xy = 54 xy +4y 2 = 11 Neka su a,b,c realni brojevi takvi da vaжi a 2 1+a 2 + b2 1+b 2 + c2 1+c 2 = Dokazati da je abc 1 2. Kada vaжi znak jednakosti? 2 Ako nijedan od uglova α,β,γ,δ konveksnog qetvorougla ABCD nije prav, dokazati da vaжi tgα+tgβ +tgγ +tgδ tgα tgβ tgγ tgδ = ctgα+ctgβ +ctgγ +ctgδ. Taqka S je centar upisanog kruga trougla ABC, a D sredixte stranice AB. Ako je ASD = 90, dokazati da je AB +BC = 3AC. Na stolu se nalaze dve gomile жetona, jedna od m, druga od n жetona. Dva igraqa igraju naizmeniqno, a u svakom potezu dozvoʃeno je jednu gomilu podeliti na proizvoʃno mnogo maƭih (u kojima ne mora biti jednak broj жetona). Gubi igraq koji ne moжe da povuqe potez, jer je na svakoj gomili ostao po jedan жeton. Koji od igraqa ima pobedniqku strategiju?
3 UQENIKA SREDƫIH XKOLA, Tre i razred, A kategorija Odrediti sve a R za koje koreni x 1,x 2,x 3 polinoma x 3 4x 2 ax+a zadovoʃavaju jednakost (x 1 2) 2 +(x 2 2) 2 +(x 3 2) 2 = 0. U skupu realnih brojeva rexiti jednaqinu 2 log 3 (ctgx) = log 2 (cosx). Neka je ϕ(n) vrednost Ojlerove funkcije broja n. Dokazati da postoji beskonaqno mnogo prirodnih brojeva n za koje je ϕ(n) = n 3. Konveksan xestougao je upisan u kruжnicu k. ƫegove uzastopne stranice su duжine 2,2,7,7,11 i 1 Odrediti polupreqnik kruжnice k. Za svako n N odrediti najmaƭi prirodan broj m takav da u svakom m-elementnom podskupu skupa N n = {1,2,...,n} postoje dva uzajamno prosta broja.
4 UQENIKA SREDƫIH XKOLA, Qetvrti razred, A kategorija Data je diferencijabilna funkcija f : R [0,1] za koju vaжi f (x) < 1 za svako x R. Dokazati da jednaqina f(x) = x ima jedinstveno rexeƭe u R. Da li postoji prirodan broj n i realni brojevi a 0, a 1,..., a n tako da je na slici prikazan grafik funkcije f : R R, za koju je f(x) = a n x n +a n 1 x n a 1 x+a 0 a 0 x n +a 1 x n a n 1 x+a n, za svako x R? x Neka je f : N N bijekcija takva da za sve m, n N iz m < n sledi m+f(m) < n+f(n). Odrediti f(2012). Neka je AM preqnik opisane kruжnice trougla ABC i neka taj preqnik seqe stranicu BC u taqki D. Ako su E i F podnoжja normala iz taqke D na stranice AB i AC, redom, dokazati da je EF BC. Prirodan broj zovemo zao ako se u Ƭegovom binarnom zapisu nalazi paran broj jedinica. Na primer, broj 18 = (10010) 2 je zao. Odrediti sumu prvih 2012 zlih brojeva.
5 UQENIKA SREDƫIH XKOLA, Prvi razred, B kategorija Neka su CD i CE visina i teжixna duж trougla ABC, redom, a PQ i PR visina i teжixna duж trougla MNP, redom. Ako je CD = PQ, CE = PR i AB = MN, dokazati da su trouglovi ABC i MNP podudarni. Na ispitu je 21 uqenik rexavao tri zadatka. Prvi i drugi zadatak rexilo je 6 uqenika, drugi i tre i zadatak 7 uqenika, a prvi i tre i zadatak 11 uqenika. Pokazati da postoje bar dva uqenika koji su rexili sva tri zadatka i da postoji bar jedan uqenik koji je rexio najvixe jedan zadatak. Jelena je rekla Ƭenom tati da je danas rexila vixe zadataka nego juqe (kada je takođe rexila neki zadatak). Jox je dodala da je juqe rexila X zadataka, a danas Y i da vaжi X Y +(X+Y) = 59. Koliko razliqitih rexeƭa ove Jelenine mozgalice moжe da nađe Ƭen tata? Neka je f : R R funkcija takva da za svako x R vaжi f(3x 1) = 6x 8. a) Odrediti f(5). b) Odrediti f(x) za svako x R. v) Dokazati da je f 1 1 funkcija. g) Skicirati grafike funkcija y = f(x) i y = f 1 (x). U kvadratnu xemu postavʃeno je 100 Ʃudi razliqite visine. Za svaku kolonu odredimo najvixeg od Ʃudi koji se u Ƭoj nalazi, a zatim najniжeg od tih 10 Ʃudi neka je to Pera. Zatim, za svaku vrstu odredimo najniжeg od Ʃudi koji se u Ƭoj nalazi, a zatim najvixeg od tih 10 Ʃudi neka je to Жika. Da li se moжe utvrditi ko je vixi Pera ili Жika?
6 UQENIKA SREDƫIH XKOLA, Drugi razred, B kategorija Odrediti sve kompleksne brojeve z za koje vaжi z = z 2i i z 1 = Na listu je sa tri boje nacrtano 36 kengura. Od toga Ƭih 25 ima жute delove, 28 ima braon delove, a 20 ima delove obojene crnom bojom. Ako samo 5 kengura ima delove sve tri boje, koliko ima jednobojnih kengura? Funkcija f : R R, zadata je sa f(x) = 3x 2 + 4x + 1, za svako x R. Rexiti nejednaqinu f(f(x)) 0. Neka je AE teжixna duж trougla ABC. Prava p paralelna sa AE seqe stranicu BC u taqki D, stranicu AB u taqki F i produжetak stranice AC u taqki G. Dokazati da DF +DG ne zavisi od poloжaja prave p. Dokazati da je broj prirodan ( 2 1)
7 UQENIKA SREDƫIH XKOLA, Tre i razred, B kategorija Osnova prave prizme je trougao qije su dve stranice duжina 3cm i 5 cm, a ugao između Ƭih jednak 120. Povrxina boqne strane najve e povrxine je 35cm 2. Izraqunati povrxinu omotaqa prizme. Neka je a R. U skupu realnih brojeva rexiti sistem jednaqina 3x+ay z = a 1 x+y +az = 1 x+4y +3z = U skupu realnih brojeva rexiti jednaqinu arcsin3x = arctg5x. ZarubƩena kupa podeʃena je jednom ravni paralelnoj osnovama na dva dela jednakih zapremina. Izraziti polupreqnik ρ preseqnog kruga preko polupreqnika osnova R i r. Da li se kvadrat K moжe u potpunosti prekriti sa a) 2011 b) 2012 kvadrata koji nemaju zajedniqkih unutraxƭih taqaka i koji su sadrжani u K?
8 UQENIKA SREDƫIH XKOLA, Qetvrti razred, B kategorija Ako je {a n } n 1 aritmetiqki niz, dokazati da za sve m,n,p N vaжi a m (n p)+a n (p m)+a p (m n) = 0. Dat je polinom p(z) = z 3 +(3 4i)z 2 (3+8i)z Ako je jedan koren ovog polinoma oblika λi (λ R), na i sve Ƭegove korene. Neka je n prirodan broj i f n : R R funkcija definisana sa f n (x) = sin n x cos n x, za svako x R. Odrediti (ako postoji) najmaƭu i najve u vrednost funkcije f n. Izraqunati povrxinu trougla koji obrazuju simetrale prvog i drugog kvadranta i tangenta na hiperbolu x 2 y 2 = 5 u taqki M(3,2). Među svim 10-cifrenim brojevima koji imaju sve cifre razliqite i deʃivi su sa 11 odrediti najmaƭi i najve i.
Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija
18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi
Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija
18.02006. Prvi razred A kategorija Dokazati da kruжnica koja sadrжi dva temena i ortocentar trougla ima isti polupreqnik kao i kruжnica opisana oko tog trougla. Na i najve i prirodan broj koji je maƭi
OKRUЖNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA, Prvi razred, A kategorija
UQENIKA SREDNjIH XKOLA, 19.0201 Prvi razred, A kategorija Da li postoje prirodni brojevi a, b, c takvi da je 2010 = (a + b) (b + c) (c + a)? U ravni su date kruжnice k 1 i k 2 i prava p koja seqe k 1 u
Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1.
09.0200 Prvi razred A kategorija Ako je n prirodan broj, dokazati da 3n 2 + 3n + 7 nije kub nijednog prirodnog broja. U trouglu ABC je ABC = 60. Neka su D i E redom preseqne taqke simetrala uglova CAB
Prvi razred, A kategorija
UQENIKA SREDƫIH XKOLA, 10201 Prvi razred, A kategorija Neka je K taqka simetriqna ortocentru H trougla ABC u odnosu na sredixte stranice BC. Dokazati da je AK preqnik opisane kruжnice trougla ABC. Dati
Prvi razred A kategorija
20201 Prvi razred A kategorija Na krakovima AC i BC jednakokrakog trougla ABC date su taqke M i N, redom, tako da je CM + CN = AC. Dokazati da sredixte duжi M N pripada sredƭoj liniji tog trougla koja
Prvi razred A kategorija
Prvi razred A kategorija 1. Neka su A, B i C konaqni skupovi za koje vaжi Dokazati da tada vaжi A C + B C = A B. A B C A B. (Za skupove X i Y oznaqili smo X Y = (X \Y ) (Y \X), xto se naziva simetriqna
Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. imaju istu vrednost.
00200 Prvi razred A kategorija Neka su a 1 < a 2 < < a n dati realni brojevi. Na i sve realne brojeve x za koje je izraz x a 1 + x a 2 + + x a n najmanji. Na i sve trojke međusobno razliqitih dekadnih cifara
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 5. mart 2016.
Prvi razred A kategorija 1. Neka je operacija,, na skupu G = {1, 2, 3,..., 2016} zadata donjom tablicom. 1 2 3 4 2016 1 5 5 5 5 5 2 1 2 5 5 5 3 4 3 5 5 5 4 5 5 5 5 5......... 2016 5 5 5 5 5 (Unutar tablice
Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije OKRUЖNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA
8.201 Prvi razred A kategorija Aca, Branka, Vera i Goran su od nastavnika matematike dobili zadatak da izraqunaju koliqnik dva pozitivna realna broja, i to: Aca da izraquna a 1 : a 2, Branka da izraquna
DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQEƫA SREDƫOXKOLACA 2011/2012. Beograd, 2012.
DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQEƫA SREDƫOXKOLACA 2011/2012. Beograd, 2012. ORGANIZACIONI ODBOR 54. DRЖAVNOG TAKMIQEƫA IZ MATEMATIKE 1. Dr Radivoje Stojkovi 2. Jelena Popovi 3. ƨubica Popovi
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQEƫA SREDƫOXKOLACA 2005/2006.
DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQEƫA SREDƫOXKOLACA 005/006. Beograd VrƬaqka BaƬa 006 Organizaciju takmiqeƭa su pomogli: ORGANIZACIONI ODBOR 48. REPUBLIQKOG TAKMIQEƫA IZ MATEMATIKE.. 3. 4.
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
I Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i
PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA
20201 Prvi razred A kategorija Za realne brojeve a, b, c vaжe nejednakosti b c a, c a b, a b c. Dokazati da je jedan od brojeva a, b, c jednak zbiru preostala dva. U trougao ABC sa stranicama BC = a, CA
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Glava 1. Trigonometrija
Glava 1 Trigonometrija 1.1 Teorijski uvod Neka su u ravni Oxy dati krug k = {x, y) R R : x +y = 1} i prava p = {x, y) R R : x = 1}. Predstavimo skup realnih brojeva na pravoj p, kao brojevnoj pravoj, tako
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Zadaci iz Osnova matematike
Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F
Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića
Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti
POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a
Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj
Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki
Matematiqka gimnazija u Beogradu 30.01.2007. Vektori Milivoje Luki 1. Linearne kombinacije vektora Vektor v je linearna kombinacija vektora v 1, v 2,..., v n ako postoje skalari (odn. realni brojevi) λ
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
REXENjA ZADATAKA OKRUЖNOG TAKMIQENjENjA IZ MATEMATIKE UQENIKA SREDNjIH XKOLA, Prvi razred, A kategorija
REXENj ZDTK OKRUЖNOG TKIQENjENj IZ TETIKE UQENIK SREDNjIH XKOL, 8.0.009. Prvi razred, kategorija. naliza. Kakoje N 90, sledi da kruжnica nad kao preqnikom sadrжi i N. Konstrukcija. ko su i N simetriqne u odnosu
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE
Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak
Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Dvostruko prebrojavanje prva-4 verzija:
Dvostruko prebrojavanje prva- verzija: 0 Duxan uki Pod dvostrukim prebrojavanjem podrazumevamo prebrojavanje neke veliqine na dva naqina u cilju dobijanja neke relacije (ili kontradikcije) Evo jednog banalnog
Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije
Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Elementarna matematika Prvi domai zadatak 2017/18
Elementarna matematika Prvi domai zadatak 017/18 1 Na koliko naqina tri studenta studijskog programa matematika, tri studenta studijskog programa raqunarske nauke i tri studijskog programa fizika moemo
Potencija taqke. Duxan uki
Potencija taqke Duxan uki Neka su dati krug k i taqka u ravni. Posmatrajmo proizvoljnu pravu l kroz i njene preseqne taqke B i sa krugom k. Proizvod B ne zavisi od izbora prave l. Zaista, ako sa D oznaqimo
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Sli cnost trouglova i Talesova teorema
Sli cnost trouglova i Talesova teorema Denicija. Dva trougla ABC i A B C su sli cna ako su im sva tri ugla redom podudarna a i ako su im odgovaraju ce stranice proporcionalne tj. a = b b = c c. Stav 1.
DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 2015/2016
DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 015/016 Kraljevo, 016 Organizacioni odbor 58. Drжavnog takmiqenja iz matematike 1. Nenad Slavkovi, rukovodilac XU Kraljevo predsednik. Dr Dragoljub
Seminar Druxtva matematiqara Srbije, Beograd, Polinomi u nastavi matematike u osnovnoj i sredƭoj xkoli
Seminar Druxtva matematiqara Srbije, Beograd, 12.02.2017. Polinomi u nastavi matematike u osnovnoj i sredƭoj xkoli dr Vladimir Balti, Matematiqka gimnazija, baltic@matf.bg.ac.yu Polinomi su izuzetno bitna
1 Pojam funkcije. f(x)
Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Paskalova teorema, pol i polara verzija 2.0:
askalova teorema, pol i polara verzija 2.0: 10.2.2015. uxan uki Teoreme kojima se ovde bavimo su u stvari tvrđenja iz projektivne geometrije, tako da imaju i dokaze unutar projektivne geometrije. Ipak,
DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 2010/2011. Beograd, 2011.
DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 010/011. Beograd, 011. Organizacioni odbor 53. Drжavnog takmiqenja iz matematike 1. Profesor dr Zoran Kadelburg, predsednik DMS. Marko Radovanovi,
ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F
ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka
1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje
SREDNjOXKOLACA 2016/2017
DRUXTVO MATEMATIQARA SRBIJE MATEMATIQKA TAKMIQENjA SREDNjOXKOLACA 016/017 Beograd, 017 Organizacioni odbor 59. Drжavnog takmiqenja iz matematike 1. Dejan Josipovi, direktor Devete gimnazije,,mihailo Petrovi
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.
Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Kombinatorna geometrija verzija 1.7.1:
Kombinatorna geometrija verzija 1.7.1: 16.10.016. Duxan uki Granica između kombinatorne geometrije i geometrije, odnosno kombinatorike, qesto je zamrljana. Pod kombinatornom geometrijom obiqno podrazumevamo