MATRIČNA ANALIZA KONSTRUKCIJA -Informacije o predmetuškolska
|
|
- Βάαλ Καραβίας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 MATRIČNA ANALIZA KONSTRUKCIJA -Informacije o predmetuškolska godina 2017/2018. Prof. Dr Mira Petronijević 1 MATRIČNA ANALIZA KONSTRUKCIJA 2017/2018 FOND ČASOVA: 4+2 PREDAVANJA SREDA 12:15-14 h SALA 225 ČETVRTAK 10:15-12 h SALA 113 PROFESOR Dr Mira Petronijević KABINET 145 DOCENTI Dr Marija Nefovska-Danilović KABINET 145 Dr Miroslav Marjanović KABINET
2 MATRIČNA ANALIZA KONSTRUKCIJA VEŽBE UTORAK 8:15-10 h SALA 316 (I GRUPA) * 10:15-12 h SALA 319 (II GRUPA) 12:15-14 h SALA 316 (III GRUPA) * PODELA NA GRUPE ĆE BITI ISTAKNUTA NA TABLI ISPRED KABINETA 145 ASISTENTI Miloš Jočković KABINET 333 Emilija Damnjanović KABINET 333 Marko Marinković KABINET USLOV ZA POHAĐANJE NASTAVE Studentimogu pohađati nastavu ako su ostvarili potpis iz STATIKE KONSTRUKCIJA. 4 2
3 Obaveze studenata - Prisustvovanje predavanjima - Prisustvovanje vežbama - Overen elaborat Uslov za potpis Prisustvo na 48/56 časova predavana Prisustvo na 24/28 časova vežbanja Ocenavećaod 6na elaboratuitestovima 5 Elaborat Studenti rade ukupno 3 GRAFIČKA RADA i 3 TESTA. Svaki od grafičkih radova se u zakazanom terminu predaje asistentu na pregled i ocenu. Stečeno znanje se proverava na testu. Ocena na jednom grafičkom radu je jednaka prosečnoj oceni iz zadatka i testa. Ocena na elaboratu je jednaka prosečnoj oceni za sva 3 grafička rada. Ocena na elaboratu se dodaje broju bodova koje student ostvari na pismenom ispitu. Ova olakšica važi jednu školsku godinu, tj. od juna do oktobra
4 Oslobađanje usmenog dela ispita Student se može osloboditi usmenog dela ispita ako položi 2 kolokvijuma (više od 55% poena). Kolokvijumi se polažu prema sledećem rasporedu: I kolokvijum 8. nedelja nastave II kolokvijum Kolokvijumska nedelja Kolokvijum je u vidu testa, koji se sastoji od 25 kombinovanih pitanja (izvođenje, zaokruživanje, dopunjavanje...). Radi se 2 časa. Pogrešni odgovori donose 2 negativna poena. Oslobađanje od usmenog dela ispita važi jednu godinu (od juna tekuće godine do oktobra naredne godine). Nakontogrokapolažeseceoispit. 7 Literatura M. Sekulović: Teorija linijskih nosača, GK M.Petronijević, M. Nefovska-Danilović: Statika konstrukcija 2. Zbirka zadataka sa izvodima iz teorije, GF, M. Sekulović, M. Petronijević: Statika konstrukcija 2: Zbirka rešenih ispitnih zadataka, GF R. Salatić, S. Živanović: Zbirka zadataka iz stabilnosti i dinamike konstrukcija, GF Web site fakulteta/predmeta 8 4
5 1. UVOD MAK- istorijat i osnove Rekapitulacija osnovnih jednačina linearne teorije štapa 9 Statika ravnih i prostornih linijskih nosača Stabilnost ravnih linijskih nosača 10 5
6 Metode analize linijskih nosača prema pristupu Metode klasične statike konstrukcija Matrična analiza konstrukcija 11 Klasična statika konstrukcija (od Isaac Newton-a 1666.) Analizira se nosač u celini, kao sistem povezanih štapova, Utvrđuje se statička odnosno deformacijska neodređenost nosača, Usvaja se metoda za rešavanje, Formiraju se jednačine za određivanje nepoznatih (uslovne jednačine), određuju nepoznate veličine i sile u presecima nosača. 12 6
7 1.1. Štap je osnovni element nosača, Nosač se posmatra kao skup međusobno povezanih štapova, Za nepoznate veličine biraju se parametri (pomeranja ili sile) u čvorovima nosača, Na osnovu teorije štapa uspostavljaju se veze između vektora sila i vektora pomeranja krajevima štapa u matričnom obliku, Formiraju se jednačine za određivanje nepoznatih (uslovne jednačine), određuju nepoznate veličine i sile u presecima nosača. 13 Istorijski razvoj 1930 Matrična analiza je prvi put primenjena u rešavanju problema aeroelastičnosti, Collar i Duncan,avio-industrija, GB 1934 Prva knjiga Collar, Duncan i Frazer 1955 Argyris, Metoda sila i metoda deformacije 1959 Tyrner, Direct Stiffness Method 1964 Wilson, Metoda konačnih elemenata (MKE) 14 7
8 Od Gallagher, Irons, Martin, Clough, Zienkiewicz Sekulović 15 Matrična analiza - Metoda deformacije Od 1960-te godine sa ekspanzijom računara, MATRIČNA ANALIZA KONSTRUKCIJA(metoda deformacije) se sve više primenjuje u analizi linijskih nosača. Metoda je u literaturi poznata i kao DIRECT STIFFNESS METHOD(Direktna metoda krutosti). Ime potiče od matrice krutosti koja daje vezu između sila i pomeranja krajeva štapa. Iz ove metode se praktično razvila METODA KONAČNIH ELEMENATA, mnogo opštija metoda, koja se primenjuje u statičkoj i dinamičkoj analizi složenih konstrukcija. 16 8
9 1.2 Osnove matrične analize 1.2 Osnove matrične analize Konstrukcija IDEALIZACIJA Matematički model DISKRETIZACIJA Diskretan model REŠENJE Rešenje diskretnog modela 17 Idealizacija krovna rešetka element oslonac čvor Konstrukcija IDEALIZACIJA DISKRETIZACIJA Matematički model Slika je preuzeta i prilagođena iz on line book, Carlos Felippa: Introduction to FEM, /Felippa_C.A._Introduction_to_finite_element_methods_(2001)(en)(489s).pdf 9
10 Primer čelična hala 19 2D idealizacija 20 10
11 Diskretizacija Nosač sa posmatra kao sistem sastavljen od diskretnih elemenata štapova koji su povezani u čvorovima nosača Y ČVOROVI Broj čvorova 10 Broj štapova ŠTAPOVI X 11 DISKRETIZACIJA Izbor nepoznatih Nepoznate veličine su parametri u čvorovima nosača. U zavisnosti od izbora parametara u čvorovima, postoje 2 metode analize: Metoda sila Metoda deformacije 22 11
12 Matrična analiza - Metoda sila: Parametri: sile u čvorovima nosača u pravcu osa globalnog koordinatnog sistema: H, V, M y H i M i Vi M k x N k V k Metoda sila se pokazala inferiornom u odnosu na metodu deformacije i praktično se ne koristi u matričnoj analizi konstrukcija. 23 Matrična analiza - Metoda deformacije Parametri: komponente pomeranja čvorova nosača u, v i obrtanje ϕ. y ϕ i ϕ k u i k i x v i v k u k 24 12
13 Analize Postoje 2 nivoa analize: analiza štapa i analiza sistema štapova, Analiza štapa: uspostavljaju se veze između sila i pomeranja na krajevima štapa- osnovna jednačina štapa. Analiza strukture (sistema) štapova: formiraju se jednačine sistema za određivanje nepoznatih pomeranja (uslovne jednačine) nosača. One predstavljaju uslove ravnoteže čvorova sistema. 25 Analiza štapa 1 3 x,y, z lokalni koordinatni sistem Vektor pomeranja q1 ui q2 vi q3 ϕi q = = q4 uk q v 5 k q6 ϕ k y 2 p(x) E, A, I, l Vektor sila R1 Ni R T 2 i R 3 M i R = = R4 Nk R 5 T k R M 6 k 5 6 x k 4 P: Važi linearna teorija štapa Osnovna jednačina štapa j j j j j R = K q Q Matrica krutosti štapa Vektor ekvivalentnog opterećenja 13
14 Analiza sistema štapova Nepoznate veličine u metodideformacije: -Komponente pomeranja čvorova: u i, v i broj nepoznatih komponenata pomeranja: 2K-z o K broj čvorova, z o broj oslonaca u nosaču -Uglovi obrtanja čvorova: φ i broj nepoznatih uglova obrtanja čvorova: m m broj čvorova u kojima postoji bar jedan krut ugao Ukupan broj deformacijski nepoznatih veličina nosača: 27 2K-z o +m Analiza sistema štapova Y X Z 9 10 X,Y, Z - globalni koordinatni sistem 28 Deformacijske nepoznate su pomeranja i obrtanja u slobodnim (neoslonjenim) čvorovima. poznata pomeranja nepoznata pomeranja 2K=2x10=20 m=6 Broj mogućih pomeranja N=20+6=26 Broj nepoznatih zo=9 n=26-9=17 14
15 Jednačineiz kojih određujemo nepoznata pomeranja: uslovi ravnoteže čvorova nosača M i P i,x i Y P i,y R * j 2 * j 1 R R * j 3 α ik k X X = 0 }2K-z o Y = 0 M = 0 } m R = K q Q * j * j * j * j * * * K q = S 29 Matrica krutosti sistema Uslovne jednačine SISTEM ALGEBARSKIH JEDNAČINA K q = S * * * REŠENJE 30 VEKTOR POMERANJA * q R j VEKTOR SILA NA KRAJEVIMA ŠTAPOVA 15
16 Postupak analize: formiranje matrica krutosti pojedinih elemenata u lokalnom sistemu transformacija matrica krutosti pojedinih elemenata u globalni sistem formiranje matrice krutosti sistema štapova, formiranje vektora slobodnih članova, određivanje pomeranja čvorova rešavanjem sistema uslovnih jednačina, sračunavanje sila u štapovima nosača. 31 Vektor ekvivalentnog sistema Primena principa superpozicije = + Q e dati nosač deformacijski određen sistem datog nosača ekvivalentni nosač Q e - ekvivalentno opterećenje 32 16
17 Metode za formiranje uslovnih jednačina: Direktno, iz uslova ravnoteže čvorova Iz principa o min potencijalne energije Π sistema Linearna teorija štapa - rekapitulacija NEPOZNATE: sileu presecima: M, N i T pomeranjaiobrtanja: u, v iφ deformacijske veličine: ε, κ iφ t 34 17
18 1.3 Linearna teorija štapa - rekapitulacija JEDNAČINE: uslovi ravnoteže elementa štapa veze između pomeranja i deformacije elementa štapa veze između sila u presecima i deformacije (Hooke-ov zakon) Linearna teorija štapa - rekapitulacija Osnovne pretpostavke: P1. Pretpostavka o malim pomeranjima (pretpostavka o statičkoj linearnosti) P2. Pretpostavka o malim deformacijama (pretpostavka o geometrijskoj linearnosti) P3. Hookov zakon (pretpostavka o fizičkoj linearnosti) 36 18
19 Uslovi ravnoteže štapa P1. Uslove ravnoteže posmatramo na nedeformisanom štapu. Posledica: Uslovi ravnoteže štapa su linearne jednačine. X Y N T M C p t ds ds p n ds C' M+dM T+dT N+dN dn + ptds = 0 dt + p ds = 0 n dm Tds = 0 (I) 37 Geometrijske veze Veze između pomeranja i deformacije štapa se izvode geometrijskim razmatranjem. Posledica P2 je da su te veze linearne. Y φ X v C u ds C' α dx (1+ε)ds C 1 α φ dx+du u+du v+dv C 1 ' dy dy+dv du = ε dx ϕdy dv = ε dy + ϕdx d κ = ( ϕ ϕ ) ds t (II) 38 19
20 Klizanje poprečnog preseka ϕ t φ X osa štapa y C u u(y) C(y) v Y ϕ t - klizanje poprečnog preseka Pomeranja ekvidistantnog elementa u(y)=u-y(φ-φ t ) v(y)=v φ O φ-φ t O' v(y) C' C'(y) φ t Timošenkov štap Tehnička teorija savijanja štapa 39 Promena krivine κ y C C 1 φ X Cy ds C 1y (1+ε)ds (1+ε y )ds Y ρ' y φ t 1 d( ϕ ϕt ) κ = = ρ ds ε ( y) = ε + κy φ-φ t φ dφ O' O'' φ t +dφ t ρ'' 40 20
21 Veze sila i deformacije Posledica P3: Veze između sila u preseku, temperature i deformacijskih veličina štapa su linearne. Raspodela temperature: t o t C x t o y t(y) t u h N o ε = + αtt EF M t κ = + α t EI h T ϕ t = k GF (III) 41 Jednačine štapa: Jednačine: 6 diferencijalnih (I i II) i 3 algebarske (III) dn + ptds = 0 dt + p ds = 0 dm Tds = 0 du = εdx ϕdy n dv = εdy + ϕdx d κ = ( ϕ ϕ ) ds t (I) (II) N ε = + αtt EF M t κ = + α t EI h T ϕ t = k GF o (III) 42 21
22 Nepoznate veličine štapa: Nepoznate: sileu presecima: M, N i T pomeranja i obrtanja ose: u, v i φ deformacije: ε, κ iφ t Ukupan broj nepoznatih je 9. Ako iz jednačina (III) ε, κiφ t iskažemou funkciji od M,N i T i zamenimo u jednačine (II) dobija se sistem od 6 dif. jednačina sa 6 nepoznatih. 43 Nepoznate i jednačine štapa: 6 nepoznatih veličina: M, N, T, u, v iφ 6 diferencijalnih jednačina I i II Sistem je moguće rešiti ako znamo još i 6 integracionih konstanti 6 graničnih uslova štapa
23 Granični uslovi štapa i k granični uslovi po silama M i M k N i N Ti T k k granični uslovi po pomeranjima φ i φ k u i u k v i v k Mogući granični uslovi: max3 po silama, min 3 po pomeranjima 45 6 graničnih uslova po pomeranjima Ako su svih 6 graničnih uslova štapa zadati po pomeranjima, reč je o metodi deformacije. y q 3 q 6 q 1 q 4 x q 2 q
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar
METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih
METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar
METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Rešavanje jednačina ravnoteže
PROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona.
Dimenzionisanje štapova izloženih uvijanju na osnovu dozvoljenog tangencijalnog napona Prema osnovnoj formuli za dimenzionisanje maksimalni tangencijalni napon τ max koji se javlja u štapu mora biti manji
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca
. Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić
OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti
Savijanje statički neodređeni nosači
Savijanje statički neodređeni nosači Statička neodređenost nosača Uslovi neprekidnosti elastične linije Prva jednačina savijanja Normalni napon u nekoj tački poprečnog preseka s M moment sprega s z M I
MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka
1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
PROSTA GREDA (PROSTO OSLONJENA GREDA)
ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
PP-talasi sa torzijom
PP-talasi sa torzijom u metrički-afinoj gravitaciji Vedad Pašić i Dmitri Vassiliev V.Pasic@bath.ac.uk D.Vassiliev@bath.ac.uk Department of Mathematics University of Bath PP-talasi sa torzijom p. 1/1 Matematički
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole
Izvođenje diferencijalne jednačine elastične linije Elastična linija, čija je jednačina y(z), je krivolinijski oblik ose nosača izazvan opterećenjem. Koordinatni sistem ćemo uvek uzimati tako da je koordinatni
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
MODELIRANJE KONSTRUKCIJA I NUMERIƒKE METODE Master akademske studije, I semestar
MODELIRANJE KONSTRUKCIJA I NUMERIƒKE METODE Master akademske studije, I semestar Prof dr email: stanko@np.ac.rs Departman za Tehni ke nauke Drºavni Univerzitet u Novom Pazaru 2015/16 Sadrºaj 1 MKE - Linijski
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Dimenzioniranje nosaa. 1. Uvjeti vrstoe
Dimenzioniranje nosaa 1. Uvjeti vrstoe 1 Otpornost materijala prouava probleme 1. vrstoe,. krutosti i 3. elastine stabilnosti konstrukcija i dijelova konstrukcija od vrstog deformabilnog materijala. Moraju
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
SILE U PRESEKU GREDNOG NOSAČA
SIE U PRESEKU GREDNOG NOSAČA DEFINICIJE SIA U PRESECIMA Projektovanje bilo kog konstruktivnog elemenata podrazumeva određivanje unutrašnjih sila u tom elementu da bi se obezbedilo da materijal od koga
Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.
Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd
Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f
Gauss, Stokes, Maxwell. Vektorski identiteti ( ),
Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i
BETONSKE KONSTRUKCIJE 2
BETONSE ONSTRUCIJE 2 vježbe, 31.10.2017. 31.10.2017. DATUM SATI TEMATSA CJELINA 10.- 11.10.2017. 2 17.-18.10.2017. 2 24.-25.10.2017. 2 31.10.- 1.11.2017. uvod ponljanje poznatih postupaka dimenzioniranja
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
1 RАVANSKE REŠETKE (1.2)
1 RАVNSKE REŠETKE Rešetkasti nosači predstavljaju sistem sačinjen od lakih krutih štapova međusobno zglobno vezanih svojim krajevima. Zglobne veze krajeva štapova se nazivaju čvorovi. Rešetke su opterećene
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
Sistemi linearnih jednačina
Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Zadatak 4b- Dimenzionisanje rožnjače
Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
Prostorni spojeni sistemi
Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
P z. =1.1MN/m _ =0.68MNm/m. k b =460.0MN/m 3 z. Dispozicija opterećenja grupe šipova preko krute naglavnice
BROJNI PRIMER - 9 Na slici 9.1 je orečni resek trakastog temelja obalnog zida. Temelj zida je kruta naglavnica na šiovima. Oterećenje otornog zida je redukovano u težište naglavnice. Podužno rastojanje
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.
5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
Metode pomakâ (1) V. S. & K. F.
1. O metodama pomakâ Metode pomakâ (1) V. S. & K. F. Metode pomakâ su metode proračuna štapnih sistema u kojima su nepoznanice vrijednosti translacijskih pomaka i kutovi zaokreta odabranih točaka sistema
TEHNIČKA MEHANIKA I 9. PREDAVANJE SILE U PRESEKU GREDNOG NOSAČA. Str knjiga Poglavlje 12 Unutrašnje sile
5.5.2016 1 TEHNIČKA MEHANIKA I 9. PREDAVANJE SILE U PRESEKU GREDNOG NOSAČA Str 267-290 knjiga Poglavlje 12 Unutrašnje sile 5.5.2016 2 ŠTA ĆEMO NAUČITI U OVOM POGLAVLJU? Određivanje unutrašnjih sila u presecima
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p