. Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama možemo koristiti Bezuovu teoremu ( pogledaj fajl iz. godine) ili da pokušamo sklapanje po. + + + ( ) ( )( + ) ( ) izvučemo zajednički ( )[ ( + ) ] + ( )[ ] Kako je za +, a znamo formulicu a + b + c a( )( ) to je ( )( )( + ) ( ) ( + ) Nule funkcije su dakle i - Na skici to su mesta gde grafik funkcije seče osu - - 5 Znak funkcije Posmatrajmo sklopljeni oblik funkcije + ( ) ( ) Odavde možemo zaključiti da je > za + > to jest za > - < za + < to jest za < - ( ) pa ne utiče na znak funkcije. Dakle znak zavisi samo od izraza + : Na grafiku bi to značilo :
5 - - 5 - - Grafik se nalazi samo u ovim obeleženim oblastima. Parnost i neparnost f ( ) ( ) ( ) + + + A ovo je f() i -f() Dakle funkcija nije ni parna ni neparna pa ne postoji simetričnost grafika ni u odnosu na osu ni u odnosu na koordinatni početak. Ekstremne vrednosti (ma i min) i monotonost ( rašćenje i opadanje) + ` ` ( )( + ) Za + + + ( ) ( ) Dobili smo tačku M (, ) Za + Dobili smo tačku M (,) - 5 M (,) - M (,) 5 - - Za rašćenje i opadanje znamo da kada je `> tu funkcija raste, a za `< funkcija opada. Kako je nula... ` upotrebićemo znanje iz II godine da kvadratni trinom ima znak broja a svuda osim izmedju
+ - + pa je onda + - + Funkcija raste za (, ) (, ) Funkcija opada za (,) Prevojne tačke i konveksnost i konkavnost Tražimo drugi izvod... ` `` 6 `` 6 Ovu vrednost menjamo u početnu funkciju za + Dobili smo tačku prevoja P(, ) Znamo da je za ``> funkcija konveksna ( smeje se ) a za ``< konkavna ( mršti se ) ``> za 6 >, to jest > ``< za 6 <, to jest < Asimptote funkcije ( ponašanje funkcije na krajevima oblasti definisanosti) Vertikalna asimptota Ne postoji jer funkcija nema nigde prekid, odnosno definisana je svuda... Horizontalna asimptota lim( ) lim( ) ( ) + + lim( ) lim( ) ( ) ( ) + + Dakle, nemamo horizontalnu asimptotu.
Kosa asimptota k+ n f( ) + k lim lim ± ± Dakle, nema ni kose asimptote... Skica grafika Kao što smo videli svaka tačka u ispitivanju toka funkcije nam kaže po nešto o tome kako funkcija izgleda. Da nacrtamo sada celu funkciju... M (,) 5 P(,) - - M (,) 5 - - Predlažemo vam da za početak ispod grafika nanesete paralelno dve prave na kojima ćete najpre uneti rezultate za monotonost i konveksnost. To bi trebalo da pomogne...
. Ispitati tok i skicirati grafik funkcije Oblast definisanosti (domen) Funkcija je definisana za to jest ( )( + ) odnosno i Dakle (, ) (,) (, ) Ovo nam govori da funkcija ima prekide u i ( tu su nam asimptote) - - - - 5 Nule funkcije za ( )( + ) Dakle, grafik seče osu u dvema tačkama - i - - 5 Znak funkcije ( )( + ) ( )( + ) Najbolje je koristiti tablicu - - - + - + Šta nam tablica govori? 5
Ona nam kaže gde je grafik iznad ose ( gde su plusevi) i gde je ispod ose ( gde su minusi) Na slici bi to izgledalo ovako: - - 5 - - Funkcija postoji samo u osenčenim delovima. Parnost i neparnost ( ) f ( ) f( ) ( ) Dakle, funkcija je parna, pa će grafik biti simetričan u odnosu na osu. Ekstremne vrednosti (ma i min) i monotonost ( rašćenje i opadanje) ` ( ) ` ( )`( ) ( )`( ) ( ) ( )( ) ( ) ( ) ( ) + ` izvučemo kao zajednički ispred zagrade... ( ) ` ( ) + ( ) 6 ` ( ) ` za -6, pa je tačka ekstrema. Kad zamenimo u početnu funkciju, dobijamo: Dobili smo tačku ekstremne vrednosti M(,) Za monotonost nam treba znak prvog izvoda. Razmislimo malo... 6
Izraz u imeniocu je uvek pozitivan ( zbog kvadrata), tako da na znak prvog izvoda utiče samo izraz u brojiocu. Dakle `> 6> < `< 6< > Na skici to bi izgledalo : - Dobijena tačka M(,) je dakle tačka minimuma. Prevojne tačke i konveksnost i konkavnost 6 ` ( ) ( ) ( 6 )`( ) (( ) )`( 6 ) `` pazi, izraz (( ) )` mora kao izvod složene funkcije... `` ( ) 6( ) ( )( )( 6 ) 6( ) ( ) `` izvučemo ( ) ispred zagrade... ( ) `` ( ) ( )[ 6( ) ] 6+ 6 `` ( ) 6 `` ( ) + `` ( ) 6( ) `` za 6( + ), a ovo nema racionalna rešenja, što nam govori da funkcija nema prevojnih tačaka. Konveksnost i konkavnost ispitujemo iz znaka drugog izvoda. Razmislimo opet malo... + > pa on ne utiče na znak drugog izvoda. Radićemo tablično, ali vodimo računa da u tablici mora biti i -6. 7
-6 - - + `` Asimptote funkcije ( ponašanje funkcije na krajevima oblasti definisanosti) Vertikalna asimptota lim lim + ( )( + ) ( ( + ε ))( + + ε ) ( ε ) ( ε ) + ε, kadε + ε, kadε lim lim ( )( + ) ( ( ε ))( + ε ) ( + ε ) ε, kadε ε, kadε - ε ( ) lim lim ( )( + ) ( ( + ε ))( + ( + ε )) + ε, kadε + ε, kadε - ( ε )ε ε ( ) lim lim ( )( + ) ( ( ε ))( + ( ε )) ε, kadε ε, kadε + ( + ε )( ε ) ( ε ) Horizontalna asimptota lim pa je - horizontalna asimptota ± Znači da, pošto ima horizontalna asimptota, kose asimptote nema. Još da sklopimo konačan grafik:
5 - - 5 - - M(,). Ispitati tok i skicirati grafik funkcije Oblast definisanosti (domen) Funkcija je definisana za odnosno Dakle (,) (, ) Znači, u je vertikalna asimptota - - - - 5 9
Nule funkcije za ( )( + ) Dakle, grafik seče osu u dvema tačkama - i - - 5 Znak funkcije ( )( + ) - - - + - - 5 - - Funkcija je u žuto osenčenim oblastima. Parnost i neparnost ( ) f( ) Funkcija nije ni parna ni neparna. Ekstremne vrednosti (ma i min) i monotonost ( rašćenje i opadanje) ` ` ( )`( ) ( )`( ) ( ) ( ) ( ) ( ) + + ` ( ) ( )
` za + Kako je + > jer je a> D< (pogledaj fajl iz druge godine, kvadratna funkcija) zaključujemo da funkcija nema ekstremnih vednosti, i da je stalno rastuća. ( `> ) Prevojne tačke i konveksnost i konkavnost + ` ( ) `` + + ( ) ( )`( ) (( ) )`( ) ( )( ) ( )( + ) `` gore izvučemo ispred zagrade ( ) `` `` + ( ) ( )[( )( ) ( )] + + ( ) [ ] 6 `` ( ) Zaključujemo da funkcija nema prevojnih tačaka, jer je 6. Konveksnost i konkavnost ispitujemo : -6 - `` Asimptote funkcije ( ponašanje funkcije na krajevima oblasti definisanosti) Vertikalna asimptota lim - + ε + ε + + ε, kadε lim + ε ε ε, kadε
horizontalna asimptota: lim ± Ovo nam govori da nema horizontalne asimptote pa moramo tražiti kosu! ± kosa asimptota: Kosa asimptota je prava k + n k lim ± k lim ± lim ± f ( ) i n lim[ f ( ) k] ± n lim[ f ( ) k] ± ( ) + lim lim lim lim ± ± ± ± Sada k i n zamenimo u formulu: k + n i dobijamo da je + kosa asimptota + 5 - - 5 - -