Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA

Σχετικά έγγραφα
12. PRIMJENE DERIVACIJA

18. listopada listopada / 13

Riješeni zadaci: Nizovi realnih brojeva

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

Dvanaesti praktikum iz Analize 1

ELEKTROTEHNIČKI ODJEL

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Funkcije dviju varjabli (zadaci za vježbu)

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

Osnovni teoremi diferencijalnog računa

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Granične vrednosti realnih nizova

Operacije s matricama

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

Elementi spektralne teorije matrica

3.1 Granična vrednost funkcije u tački

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

Niz i podniz. Definicija Svaku funkciju a : N S zovemo niz u S. Za n N pišemo a(n) = a n i nazivamo n-tim članom niza.

Riješeni zadaci: Limes funkcije. Neprekidnost

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Matematička analiza 1 dodatni zadaci

1.4 Tangenta i normala

radni nerecenzirani materijal za predavanja

Teorijske osnove informatike 1

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

7 Algebarske jednadžbe

Nizovi. Definicija. Niz je funkcija. a: R. Oznake: (a n ) ili a n } Zadatak 2.1 Napišite prvih nekoliko članova nizova zadanih općim članom:

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

II. ANALITIČKA GEOMETRIJA PROSTORA

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

TRIGONOMETRIJSKE FUNKCIJE I I.1.

MJERA I INTEGRAL završni ispit 4. srpnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

Zavrxni ispit iz Matematiqke analize 1

Centralni granični teorem i zakoni velikih brojeva

Teorem o prostim brojevima

IZVODI ZADACI (I deo)

Sadržaj: Diferencijalni račun (nastavak) Derivacije višeg reda Približno računanje pomoću diferencijala funkcije

Uvod u teoriju brojeva

( , 2. kolokvij)

( ) δ = δ ε ) tako da vrijedi ( ) Predavanja iz predmeta Matematika za ekonomiste: IV dio

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Definicija: Beskonačni niz realnih brojeva je funkcija a : N R. Umjesto zapisa a(1), a(2),,a(n), može se koristiti zapis a 1,

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

Linearna algebra 2 prvi kolokvij,

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

1 Neprekidne funkcije na kompaktima

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

SISTEMI NELINEARNIH JEDNAČINA

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

1 Promjena baze vektora

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

Osnovne teoreme diferencijalnog računa

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

MATEMATIČKA ANALIZA II

DIFERENCIJALNI RAČUN FUNKCIJA VIŠE VARIJABLI Skica rješenja 1. kolokvija (16. studenog 2015.)

METODA SEČICE I REGULA FALSI

Determinante. a11 a. a 21 a 22. Definicija 1. (Determinanta prvog reda) Determinanta matrice A = [a] je broj a.

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Četrnaesto predavanje iz Teorije skupova

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

Trigonometrijske funkcije

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

4. DERIVACIJA FUNKCIJE 1 / 115

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Dijagonalizacija operatora

INŽENJERSKA MATEMATIKA 1. P r e d a v a n j a z a d e s e t u s e d m i c u n a s t a v e (u akademskoj 2009/2010. godini) G L A V A 5

Teorem 1.8 Svaki prirodan broj n > 1 moºe se prikazati kao umnoºak prostih brojeva (s jednim ili vi²e faktora).

Ispitivanje toka i skiciranje grafika funkcija

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Kaskadna kompenzacija SAU

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

6. poglavlje (korigirano) PRIMJENA DERIVACIJA

Matematika 1 - vježbe. 11. prosinca 2015.

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,

Računarska grafika. Rasterizacija linije

APROKSIMACIJA FUNKCIJA

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

5 Ispitivanje funkcija

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

PRIMJER 3. MATLAB filtdemo

Transcript:

Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike OSNOVNI TEOREMI DIFERENCIJALNOG RAČUNA Teoremi koje ćemo avesti u ovom poglavlju su osovi teoremi koji osiguravaju ispravost primjea diereijalog račua Potreba je kao prvo sljedeća deiiija: Deiiija Fukija : [ ab] R ima lokali ekstrem (miimum ili maksimum u točki ( a b ako postoji eka okolia O točke tako da vrijedi: O lokali miimum u H L H L O lokali maksimum H L H L FERMATOV TEOREM Pierre de Fermat (6-665 rauski matematičar Neka ukija : [ ab] R ima ekstrem u točki ( ab Ako postoji ( ( = Dokaz Pretpostavimo da ukija ima maksimum u točki tj O ( ( Pretpostavili smo da u točki postoji derivaija tj postoji oda je ( + = lim

Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike Neka je + > Slijedi: > i ( + ( tj ( + ( lim Neka je + < Slijedi: < i ( + ( tj ( + ( lim ( + ( + Iz pretpostavke da je ukija derivabila u točki slijedi da su oba gorja limesa moraju biti jedaka a to je moguće samo ako su jedaka uli tj ako je ( = Aalogo za slučaj da ima miimum u točki Napomea Fermatov teorem am kazuje da ćemo točke ekstrema ukije alaziti među rješejima jedadžbe = koja azivamo staioarim ili kritičim točkama Napomea Pretpostavka ovog teorema jest da postoji derivaija u promatraoj točki Naime ukija = može imati ekstrem u ekoj točki a da u joj ema derivaiju Na primjer ukija u točki = ima miimum ali e i derivaiju ROLLEOV TEOREM Mihel Rolle (65-79 rauski matematičar Neka je ukija : [ ab] R eprekida a [ ] ( ab i eka je ( a = ( b Tada postoji točka ( b Dokaz ab eka ima derivaiju u svakoj točki a u kojoj je = Po pretpostavi je ukija eprekida a [ ] ukija ograičea a [ ab ] tj poprima ajveću i ajmaju vrijedost a [ ] ab Prema Bolzao-Weierstrassov teoremu je ab 4

Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike Kako je ( a ( b = barem jeda od tih vrijedosti eće biti a kraju itervala tj jeda od tih ekstrema pada uutar itervala = Fermatov teorem u točki ekstrema ( ab jest ( Ilustraije uz pretpostavke Rolleovog teorema: a b a b - ukija eprekida a [ a b] - prekida ukija a [ a b] a - eprekida ali e i derivabila ukija a ( a b b LAGRANGEOV TEOREM (Teorem sredje vrijedosti diereijalog račua Joseph Louis Lagrage (76-8 rauski matematičar Neka je ukija : [ ab] R eprekida a [ ] ( ab ( ab ( = ( b ( a Tada postoji točka tako da vrijedi b a ab i eka ima derivaiju u svakoj točki Geometrijski: t HbL s HaL a b 5

Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike Dokaz Jedadžba prava (sekate s točkama ( a ( a ( b ( b : ( b ( a ( b ( a a = a = ( a + (a Uvedimo ukiju F = Vrijedi: ( b ( a F = = ( a (a (* = a ( b ( a F a = a a = a ( a a ( a = = b ( b ( a F b = b b = b ( ( a = Fukija F je eprekida i derivabila kao razlika eprekidih i derivabilih ukija i F( a = F( b = ab tako da je ispujeo F ( = Rolleov teorem postoji točka Izračuajmo derivaiju ukije F: (* ( b ( a F = = ( ( ( b ( a = = F ( ( b ( a = Lagrageov teorem ćemo često zapisivati u sljedećem obliku: ( ( = ( ( = ( tj = + Neke posljedie Lagrageovog teorema: Posljedia = ima derivaiju ula Dokažimo obrat tj ako ukija ima derivaiju ula a otvoreom itervalu I oa je kostata ukija a tom itervalu ( Dokaz: ( = = I = ( I Pokazali smo da ukija R Posljedia Ako dvije ukije i g imaju jedake derivaije a otvoreom itervalu I oda se oe razlikuju ajviše za kostatu Dokaz Neka je ispujeo: = g I 6

Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike Promotrimo ukiju F = g i jeu derivaiju F = g = Posljedia F = tj g = g + = I CAUCHYJEV TEOREM Augusti Louis Cauh (789-857 rauski matematičar Ovaj teorem će am poslužiti kod izračuavaja limesa zadae ukije Naime eki limesi ukija su povezai s limesima jihovih derivaija Neka su ukije i g eprekide a [ ab ] eka postoje derivaije g za svaki ( ab Tada postoji točka ( ab ( b ( a ( = g( b g( a g ( Dokaz Kao prvo pokažimo da je g( b g( a Kad bi bilo tako da vrijedi g( b = g za svaki ( ab i g a ( ab i eka je g a = po Rolleovom teoremu bi slijedilo da postoji točka ( ab i g što je suproto pretpostavi da je Uvedimo ukiju F ( kao liearu kombiaiju ukija i g : = F b a g g b g a 4444 4444 α β (* = a F( a = ( b ( a g( a g( b g( a ( a = ( b g( a g( b ( a = b F( a = ( b ( a g( a g( b g( a ( a = ( b g( a g( b ( a Fukija F je eprekida i derivabila kao kombiaija eprekidih i derivabilih ukija i F a = F b Rolleov teorem postoji točka ( ab u kojoj je ( = Izračuajmo derivaiju ukije F: F (* ( F = b a g g b g a = F ( = ( b ( a g ( g( b g( a ( = b a = g b g a g 7

Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike Napomea Lagrageov teorem sredje vrijedosti je speijali slučaj Cauhjevog teorema koji se dobiva za g = TAYLOROV TEOREM (Talorova ormula Brook Talor (685-7 egleski matematičar Talorov teorem (ormula se koristi kada se iz ekih razloga (ajčešće radi pojedostavljeja daljjeg račua zadaa ukija želi aproksimirati poliomom Neka je zadaa ukija : I R gdje je I otvore iterval realih brojeva i eka ima derivaije do uključivo reda + u svakoj točki itervala I Odaberemo li eku točku I ukiju možemo u okolii te točke prikazati u obliku ( ( ( ( = ( + ( + ( + + ( + R gdje je LL!!! ( ( + ( + ( ξ ξ R = +! Dokaz vidi a prijer u: Javor Matematička aaliza str5 Izraz ( T = + + + LL +!!! azivamo Talorov poliom -tog stupja ukije u točki Izraz ( ( + ( + R = ξ ξ tj ξ = + ϑ < ϑ < +! azivamo ostatkom pri aproksimaiji ukije poliomom Talorovu ormulu možemo zapisati i u obliku: ( k ( k = T + R = ( + R k k =! Napomea Za = radi se o prikazu ukije poliomom u okolii ishodišta Talorova se ormula tada aziva i Malauriova ormula (Coli Malauri 698-746 škotski matematičar i glasi: ( M = + + + LL + + R!!! 8

Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike Napomea Lagrageov teorem sredje vrijedosti je speijali slučaj Talorovog teorema koji se dobiva za = : ( ( = ( + ( ξ = ( ξ ξ (! Primjer: Razviti ukiju ( = po Talorovoj ormuli u okolii točke = = = ( = = ( ( = = = = = 4 5 = ( = = 8 M 5 L = Slijedi: 5 L( = + ( ( + ( LL + ( + R 8 48 R = ( ( ( ( + + + 5 L! ξ = + = è!!! = = 8 + 4 + 8 aproksimaija: aproksimaija: + = + + = + + 8 8 4 8 itd aproksimaija: 9

Geodetski akultet dr s J Beba-Brkić Predavaja iz Matematike Zadai: Napisati Malauriovu ormulu sljedećih ukija: = e ; a b = si; = os Razviti ukiju = l po poteijama od Razviti ukiju = l( + po poteijama od