A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

Σχετικά έγγραφα
PRORAČUN GLAVNOG KROVNOG NOSAČA

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

4. STATIČKI PRORAČUN STUBIŠTA

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

BETONSKE KONSTRUKCIJE. Program

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

BETONSKE KONSTRUKCIJE. Program

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

4. STATIČKI PRORAČUN STUBIŠTA

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

TEHNIČKA DOKUMENTACIJA POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP"

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

Zadatak 4b- Dimenzionisanje rožnjače

Betonske konstrukcije 1 - vežbe 1 -

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

SPREGNUTE KONSTRUKCIJE

Polumontažni sistem za izvođenje međuspratnih i krovnih konstrukcija YTONG STROP

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL

ZA RAZLIČITE RASPONE KONSTRUKCIJE

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

6. Plan armature prednapetog nosača

7. Proračun nosača naprezanih poprečnim silama

POLU MONTAŽNI STROPOVI OMNIA PLOČA POLU MONTAŽNI STROP

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD. Josipa Tomić. Osijek, 15. rujna 2016.

PROSTORNI STATIČKI ODREĐENI SUSTAVI

1 - KROVNA KONSTRUKCIJA : * krovni pokrivač, daska, letva: = 0,60 kn/m 2 * sneg, vetar : = 1,00 kn/m 2

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

Opšte KROVNI POKRIVAČI I

GRAĐEVINSKI FAKULTET U BEOGRADU Modul za konstrukcije PROJEKTOVANJE I GRAĐENJE BETONSKIH KONSTRUKCIJA 1 NOVI NASTAVNI PLAN

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

PROSTA GREDA (PROSTO OSLONJENA GREDA)

BETONSKE KONSTRUKCIJE 2

Betonske konstrukcije

Austrotherm AMK element ispune za meduspratne konstrukcije

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar

CIGLA - tehnički priručnik

3. PRORAČUN AB SKLOPOVA

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

Proračunski model - pravougaoni presek

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

ZIDANE KONSTRUKCIJE STRUČNI STUDIJ GRAĐEVINARSTVA

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

ANALIZA DJELOVANJA (OPTEREĆENJA) - EUROKOD

3.1 Granična vrednost funkcije u tački

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

Q (promjenjivo) P (stalno) c uk=50 (kn/m ) =17 (kn/m ) =20 (kn/m ) 2k=0 (kn/m ) N 60=21 d=0.9 (m)

METALNE KONSTRUKCIJE ZGRADA

NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

4. ANALIZA OPTEREĆENJA

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Tablice za dimenzioniranje armiranobetonskih presjeka

1 Ulazni parametri programa Tutorial programa Primjeri riješeni programom... 58

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Masa, Centar mase & Moment tromosti

STATIČKI PRORAČUN KROVIŠTA SA DVOSTRUKOM STOLICOM

Proračun nosivosti elemenata

1.4 Tangenta i normala

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

TRIGONOMETRIJA TROKUTA

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

Prethodno napregnute konstrukcije

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1)

GRANIČNA STANJA NOSIVOSTI BETONSKIH KONSTRUKCIJA SADRŽAJ

STATIČKI ODREĐENI SUSTAVI

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

Građevinski fakultet Modul konstrukcije pismeni ispit 22. jun 2015.

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE

LOGO ISPITIVANJE MATERIJALA ZATEZANJEM

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

20 mm. 70 mm i 1 C=C 1. i mm

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Predavanje br.3 KONSTRUKTIVNI SKLOPOVI ZGRADA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA (NOVI NASTAVNI PLAN)

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD

Katalog proizvoda s tehničkim podacima

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

PREDGOTOVLJENE BETONSKE KONSTRUKCIJE

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

ELEKTROTEHNIČKI ODJEL

Linearna algebra 2 prvi kolokvij,

f 24 N/mm E N/mm 1,3 1,35 1,5

Transcript:

S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti STRUČNI DIO: A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana 1. Projektni zadatak 6 2. Tehnički opis 6 2.1. Elementi YTONG STROPA 6 2.2. Poprečni i uzdužni presjeci 8 3. Analiza opterećenja 10 4. Analiza nosivosti konstrukcije na seizmička opetećenja 12 5. Proračun nosivosti prema graničnim vrijednostima momenta savijanja 13 5.1. Parcijalni koeficjenti sigurnosti za granična stanja nosivosti 13 5.2. Tipovi gredica 13 5.3. Specifikacija armature prema tipovima gredica 14 5.4. Nosivost presjeka na moment savijanja 15 5.5. Odnos nosivosti za granični moment savijanja - korisno opterećenje -svjetli otvor 17 6. Proračun nosivosti prema graničnim vrijednostima poprečne sile 18 6.1. Nosivost presjeka na poprečne sile 18 6.2. Odnos nosivosti za graničnu poprečnu silu - korisno opterećenje -svjetli otvor 20 7. Proračun uporabljivosti prema ograničenju progiba konstrukcije 21 8. Tabele maksimalnog korisnog opterećenja za granična stanja nosivosti i uporabljivosti 23 B. STATIČKI PRORAČUN GREDICE ZA STANJE MONTAŽE 25 B.1. Dokaz nosivosti gredice 25 B.2. Dokaz nosivosti stropnog bloka 27 C. DIJAGRAMI NOSIVOSTI 28 D. POPIS KORIŠTENIH NORMI, TEHNIČKIH PROPISA i LITERATURE 31 E. Izvadak iz Izvješća o ispitivanju polumontažne stropne konstrukcije "Bijeli strop" br. 180-30/2001g. izvršenog na Građevinskom fakultetu sveučilišta u Zagrebu 32 F. ISPIS PRORAČUNA PROGIBA GREDICA YTONG STROPA 41

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" 1. PROJEKTNI ZADATAK Potrebno je izraditi proračun mehaničke otpornosti i stabilnosti polumontažne stropne konstrukcije "YTONG STROP" i načiniti tabelarni prikaz za određivanje tipova gredica, u ovisnosti od svjetlog otvora i korisnog opterećenja. Potrebno je također izračunati razmake podupiranja u fazi montaže i betoniranja, a sve sukladno novim propisima: Tehničkom propisu za betonske konstrukcije (139/09, 14/10, 125/10, 136/12), normama za uporabna opterećenja (HRN EN 1991-1- 1), snijeg (HRN EN 1991-1-3), vjetar (HRN EN 1991-1-4) te normi za proračun i projektiranje betonskih konstrukcija (HRN EN 1992-1-1). Ovaj projekt namijenjen je projektantima kao pomoć i smjernica pri dimenzioniranju konstrukcije, a ovlaštenim proizvođačima konstrukcije za ispitivanje gredica sukladno HRN EN 15037-1. 2. TEHNIČKI OPIS 2. 1. ELEMENTI YTONG STROPA 1. Ytong strop YTONG STROP sastoji se od slijedećih predgotovljenih dijelova: gredica, ležajnica, YTONG stropnih blokova, armature poprečnog rebra (φ8-b500), sitnozrnog betona (0-4mm) i YTONG tankoslojnog morta. U konstrukciju se još ugrađuje dodatna armatura na mjestima spoja stropa sa serklažima, vijencima, stupovima i ostalim nosačima. 2.1.1. Gredica 6

Gredica je predgotovljeni dio iz kojeg u postupku dovršenja konstrukcije betoniranjem nastaje glavno rebro, jednostruko, dvostruko ili niz nosača različite namijene kao što su uvalne, grebene grede i sl. Oslanjanje gredica nalijeganjem trebalo bi biti veće od 6cm (HRN EN 15037-1). Gredica se sastoji iz: glavnog kostura "RAN" rešetkastog nosača, dodatne armature gornjeg i donjeg pojasa (prema čemu se razlikuju različiti tipovi) te betonske donje pojasnice, na koju se prilikom montaže oslanjaju stropni porobetonski YTONG blokovi i ležajnice. 2. Pogled na gredicu 3. Presjek gredice 2.1.2. Stropni blok YTONG stropni blok od porobetona grupe proizvoda 4,0/0,5 (srednje vrijednosti) tlačne čvrstoće 4,0N/mm 2 i obujamske mase 500kg/m 3, prema HRN EN 771-4, postavlja se između gredica te služi kao skela za hodanje, a nakon zalijevanja rebara i premaza tankoslojnim mortom sastavni je dio konačne konstrukcije. Poprečnim i uzdužnim piljenjem, dimenzije bloka lagano se mogu prilagoditi i manjim razmacima gredica, te raznim oblicima udovoljiti svakom zahtjevu konstrukcije. 2.1.3. Ležajnica Ležajnica služi kao oplata poprečnog rebra. Obično se postavlja nakon 4-5 blokova. Za funkciju poprečnog rebra, u donju i gornju zonu, provlači se rebrasta armatura ø8mm. 2.1.3. Tankoslojni mort Tankoslojni mort je važan sastavni dio YTONG stropa. Postavlja ga se najranije jedan sat nakon ugradnje betona. Mort se načini rijetkim, kao mješavina Ytong morta, cementa i vode. Dodatak cementa kreće se cca 30-50%. Mješavina mora biti rijetka toliko da se sama razlijeva po površini. Nanosi ga se slobodnim izlijevanjem u debljini maksimalno 2mm. Po površini ga se predlaže razvući metlom. Osnovna funkcija tankoslojnog morta je popunjavanje spojeva među blokovima i zaštita gornje, porozne plohe YTONG stropnog bloka. 7

2.2. POPREČNI I UZDUŽNI PRESJECI a) Poprečni presjeci 4. Poprečni presjek kroz YTONG stropni blok 5. Poprečni presjek kroz ležajnice b) Uzdužni presjeci 8

6. Strop složen prije ugradnje armature i betoniranja Za računsku analizu uvrstit će se slijedeći konstruktivni parametri: kakvoća čelika "RAN" rešetkastog nosača B500 visina "RAN" nosača 120mm, masa 1,255 kg/m osnovna armatura gornje zone jedne gredice 1ø7 osnovna armatura donje zone jedne gredice 2ø7 dijagonale "RAN" nosača 2ø4 kakvoća dodatne armature B500 dodatna armatura jedne gredice : ø6, ø8, ø10, ø12 osnovni osni razmak gredica 68cm beton razreda tlačne čvrstoće C20/25 ukupna visina stropa 15cm Proračun nosivosti izveden je prema HRN EN 1992, a uzeti su u razmatranje kriteriji graničnog momenta savijanja, granična poprečna sila i granični progib. Za svaki tip gredice izračunat je odnos svijetlog otvora i korisnog opterećenja, a sve je prikazano tabelarno u dijagramima, kako bi se lagano mogao odabrati ispravan tip gredice. Elaborat služi projektantu prilikom odabira tipa gredice, proizvođaču gredice za ispravan način izrade gredica (sukladno normi HRN EN 15037-1 Predgotovljeni betonski proizvodi - Stropni sustavi sastavljeni od nosača i blokova) te izvoditelju za ispravan način izvođenja konstrukcije. 9

3. ANALIZA OPTEREĆENJA Opterećenje se sastoji od stalnog i promjenjivog opterećenja, za koje postoje različiti parcijalni koeficijenti sigurnosti prema HRN EN 1992-1-1. Koeficijent sigurnosti za stalno opterećenje je 1,35 a za promjenjivo 1,50. Stalno opterećenje sastoji se od vlastite težine stropne konstrukcije, težine dodatnih podnih slojeva, žbuke podgleda, pregradnih zidova i neke stalno postavljene opreme. Za ovakav način proračuna za nepoznatu stropnu konstrukciju, lako se može odrediti samo vlastita težina stropne konstrukcije, dok je nemoguće predvidjeti točnu težinu podnih slojeva, pregradnih zidova i dr. za svaku stropnu konstrukciju posebno. Zbog toga moramo pribjeći podjeli stalnog opterećenja na vlastitu težinu stropne konstrukcije i dodatno stalno opterećenje. Formirat ćemo dva opterećenja: 1. stalno opterećenje: 2. promjenjivo opterećenje opterećenje od vlastite težine konstrukcije g dodatni stalni teret g uporabno opterećenje q 3.1. Vlastita težina stropne konstrukcije - traka širine 0,68 m : - za 1m 2 : stropni blok 5,0x(0,62x0,15) =0,47 kn/m beton rebra za ukrućenje 25,0x(0,63x0,04x0,15) =0,10 kn/m beton gredica 25x(0,12x0,05+0,03x0,09) =0,22 kn/m ---------------------------- g = 0,79 kn/m 0,79/0,68= 1,20... za proračun odabrano g = 1,50 kn/m 2 Vlastita težina stropne konstrukcije od udvostručenih gredica - traka širine 0,77 m : - za 1m 2 : stropni blok 5,0x(0,62x0,15) =0,47 kn/m beton rebra za ukrućenje 25,0x(0,73x0,04x0,15) =0,12 kn/m beton gredica 25x(0,12x0,14+0,03x0,18) =0,56 kn/m ---------------------------- g = 1,15 kn/m 1,15/0,77= 1,49... za proračun odabrano g = 1,70 kn/m 2 10

3.2. Dodatni stalni teret U stanogradnji uobičajeno je nekoliko tipova podnih slojeva i drugog stalnog opterećenja. Tip 1 Tip 2 parket 2,5cm 0,025x7 0,18 kn/m 2 cementni estrih 4,0cm 0,04x22 0,88 kn/m 2 elastificirani okipor i hidroizolacija 2cm 0,02x1,5 0,03 kn/m 2 žbuka u podgledu 2,0cm 0,02x18 0,36 kn/m 2 g 1 = 1,45 kn/m 2 Zamjenjujuće opterećenje od obostrano ožbukanog pregradnog zida od YTONG ploča 10cm i 15cm, okomito na smjer gredica visine zida 2,5 m i smještenog na sredini prosječnog statičkog raspona od l=4,0m. debljine 10cm i P= 0,90x2,5= 2,25 kn/m g 2 = 2x P/l = 1,20 kn/m 2 debljine 15cm i P= 1,10x2,5= 2,75 kn/m g 2 = 2x P/l = 1,40 kn/m 2 Ovo opterećenje uzima se u obzir za proračun graničnih stanja nosivosti na momente savijanja i proračun graničnih stanja uporabljivosti - progiba. Za dokaz graničnih stanja nosivosti na poprečne sile uzima se stvarna sila prema vrsti zida i njegovom položaju u odnosu na ležajeve. 7. Dvostruka gredica na mjestu oslanjanja pregradnog zida Ukoliko su pregradni zidovi položeni u smjeru gredica, tada moraju ležati direktno na gredici, koja se tada posebno proračunava ili što je češći slučaj za klasične pregradne zidove, visine uobičajene za stanogradnju (2,50-2,70m), ispod zida postavljaju se dvije konstruktivne gredice. 3.3 Uporabno opterećenje Uporabno opterećenje stambenih i javnih zgrada prema normi HRN EN 1991-1-1. uobičajene stambene prostorije q= 2,00 kn/m 2 stubišta u stambenim i uredskim zgradama q= 3,00 kn/m 2 uredski prostori bez teške opreme q= 3,00 kn/m 2 prostorije u trgovinama, robnim kućama, dvoranama q= 5,00 kn/m 2 skladišta, knjižnice q= 6,00 kn/m 2 11

4. ANALIZA NOSIVOSTI KONSTRUKCIJE NA SEIZMIČKA OPETEĆENJA Prema odredbama Tehničkog propisa za zidane konstrukcije (NN 01/07), normama HRN EN 1996-1-1 i HRN EN 1998-1, na potresnoj platformi "Zavoda za gradbeništvo Slovenije" ispitani su modeli objekata građeni u YTONG sustavu. Kao međukatna i krovna konstrukcija u modelu izveden je YTONG strop. Činjenicu da se prema normi HRN EN 1992-1-1 (10.9.3. Sustavi stropova) Tabela 10.1, konstrukcija sa gustim rebrima za ukrućenje, a bez tlačne ploče, smatra "punom pločom" za sva horizontalna opterećenja, pa tako i za seizmička opterećenja potvrđeno je ispitivanjem, temeljem kojeg je u siječnju 2010g. izdan Izvještaj broj P 0891/08-650-1. iz kojeg izdvajam zaključak 4.4.4. "YTONG strop" (predgotovljena stropna konstrukcija s ispunskim elemetima od porastog betona bez tlačne ploče) ispunjava zahtjeve za monolitnim djelovanjem i djeluje kao kruta horizontalna dijafragma i pri najjačem potresu" Prema normi HRN EN 1992-1-1 (tabela 10.1.) za osni razmak gredica 0,68m i visinu konstrukcije od 15cm, maksimalni osni razmak poprečnih rebara može biti 120cm! Sve navedeno odnosi se isključivo za zidane objekte. 8. Maksimalni razmak poprečnih rebara 12

5. PRORAČUN NOSIVOSTI PREMA GRANIČNIM VRIJEDNOSTIMA MOMENTA SAVIJANJA 5.1. PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA GRANIČNA STANJA NOSIVOSTI Parcijalni koeficjenti za opterećenja (HRN EN 1990) za stalna djelovanja za promjenjiva djelovanja 1,35x(g+ g) 1,5xq Parcijalni koeficjenti za materijale (HRN EN 1992-1-1) za beton C20/25 γ c =1,50 f cd = 1,33 kn/cm 2 za čelik B500 γ s =1,15 f yd = 43,48 kn/cm 2 5.2. TIPOVI GREDICA 9. Tipovi jednostrukih gredica 10. Tipovi dvostrukih gredica 13

5.3. SPECIFIKACIJA ARMATURE PREMA TIPOVIMA GREDICA: Tabela 1 RED. BR. TIP GREDICE OSNOVNA ARMATURA Aa DODATNA ARMATURA Aa UKUPNO ARMATURA = Aa+Aa UKUPNO ARMATURA = Aa+Aa KONTROLA MAKS. ARM. (<4%) MASA DODATNE ARMATURE B500 [cm 2 ] B500 [cm 2 ] [ cm 2 ] [ cm 2 ] [ %] kg/m 1 2 3 4 5 6 7 8 9 10 0 A0 1 7 0,385-0 0,385 0,385 0,5-1 A1 1 7 0,385-0 0,385 0,385 0,5-2 A2 1 7 0,385 1 6 0,280 0,665 0,665 0,9 0,222 3 A3 1 7 0,385 1 8 0,500 0,885 0,885 1,2 0,405 4 A4 1 7 0,385 1 10 0,790 1,175 1,175 1,6 0,633 5 A5 1 7 0,385 2 8 1,010 1,395 1,395 1,9 0,810 6 A6 1 7 0,385 3 8 1,510 1,895 1,895 2,5 1,215 7 A7 1 7 0,385 2 8+1 10 1,800 2,185 2,185 2,9 1,443 8 A8 1 7 0,385 2 8+1 12 2,140 2,525 2,525 3,4 1,721 9 D1 2 7 0,770 2 8 1,010 1,780 1,780 0,8 0,810 10 D2 2 7 0,770 2 10 1,570 2,340 2,340 1,1 1,266 11 D3 2 7 0,770 4 8 2,010 2,780 2,780 1,3 1,620 12 D4 2 7 0,770 2 8+2 10 2,580 3,350 3,350 1,6 2,076 13 D5 2 7 0,770 2 8+2 12 3,270 4,040 4,040 1,9 2,632 14 D6 2 7 0,770 4 8+2 12 4,270 5,040 5,040 2,4 3,442 Tabela 2 ARMATURA U GORNJOJ ZONI ARMATURA U DONJOJ ZONI RED. BR. TIP GREDICE OSNOVNA ARMATURA Aa DODATNA ARMATURA Aa UKUPNO ARMATURA = Aa+Aa KOEFICJENT ARMIRANJA µ MASA DODATNE ARMATURE B500 [cm 2 ] B500 [cm 2 ] [ cm 2 ] [ %] kg/m 1 2 3 4 6 7 8 9 10 0 A0 2 7 0,770-0 0,770 1,0-1 A1 2 7 0,770 1 6 0,28 1,050 1,4 0,222 2 A2 2 7 0,770 1 8 0,500 1,270 1,7 0,405 3 A3 2 7 0,770 1 10 0,790 1,560 2,1 0,633 4 A4 2 7 0,770 2 8 1,010 1,780 2,4 0,810 5 A5 2 7 0,770 1 8+1 10 1,290 2,060 2,7 1,038 6 A6 2 7 0,770 1 8+1 12 1,630 2,400 3,2 1,316 7 A7 2 7 0,770 4 8 2,010 2,780 3,7 1,620 8 A8 2 7 0,770 3 8+1 10 2,300 3,070 4,1 1,848 9 D1 4 7 1,540 4 8 2,010 3,550 1,7 1,620 10 D2 4 7 1,540 2 8+2 10 2,580 4,120 2,0 2,076 11 D3 4 7 1,540 6 8 3,020 4,560 2,2 2,430 12 D4 4 7 1,540 4 8+2 10 3,580 5,120 2,4 2,886 13 D5 4 7 1,540 4 8+2 12 4,270 5,810 2,8 3,442 14 D6 4 7 1,540 4 8+4 10 5,150 6,690 3,2 4,152 14

5.4. NOSIVOST PRESJEKA NA MOMENT SAVIJANJA Proračun se zasniva na metodi graničnih stanja. Granični moment nosivosti proračunat je za dvostruko armirani presjek uz slijedeće pretpostavke: 1. razred tlačne čvrstoće betona C20/25 2. prema HRN EN 1992-1-1 najveća dopuštena vrijednost koeficjenta tlačnog područja presjeka iznosi ξ lim = x lim /d= 0,45 pa iz toga slijedi: ε s1 = 4,278 o / oo ; ε c = 3,5 o / oo ; ζ=z/d= 0,813 ; µ lim =0,252 3. sukladno HRN EN 1992 (EUROKOD 2) kontrolirat će se odabrana armatura tlačne zone gredice koja ne smije prelaziti 4% površine gredice (vidi tabelu 1. stupac 9.) 4. postupak proračuna 11. Raspodjela naprezanja i položaj rezultanti unutarnjih sila M RDlim = bxd 2 xf cd xµ lim... = 5,0x13,5 2 x1,33x0,252= 305,42 kncm za jednostruke gredice = 14,0x13,5 2 x1,33x0,252= 855,16 kncm za dvostruke gredice A SD =M RDlim /(ζ lim xdxf yd )... = 305,42/(0,813*13,5*43,48)= 0,640 cm 2 za jednostruke gredice = 855,16/(0,813*13,5*43,48)= 1,792 cm 2 za dvostruke gredice M ai =(A a -A SD )xd xf yd M aii =A a xd xf yd M u =Ma min +M RDlim ************************************************************************** M RDlim - plafonirani moment za jednostruko armirani presjek b - širina poprečnog presjeka =5cm (14cm za dvostruke gredice) d - statička visina presjeka =13,5cm A SD - armatura u vlačnoj zoni za plafonirani moment ζ lim - uz ξ lim =0,45 (za <C35/45); ζ lim = 0,813 M ai - računska nosivost presjeka prema dodatnoj vlačnoj armaturi A a - površina vlačne armature d - razmak između težišta vlačne i tlačne armature =12,0cm M aii - računska nosivost presjeka prema tlačnoj armaturi A a - površina tlačne armature M u - granični moment nosivosti Ma min - min (M ai, M aii ) f yd - proračunska granica popuštanja armature 15

Tabela 3 PRORAČUN GRANIČNE NOSIVOSTI POPREČNOG PRESJEKA NA SAVIJANJE GRANIČNI MOMENT NOSIVOSTI GRANIČNI MOMENT NOSIVOSTI MIN(9,10) MOMENT NOSIVOSTI PRESJEKA PREMA TLAČNOJ ARMATURI MOMENT NOSIVOSTI PRESJEKA PREMA DODATNOJ VLAČNOJ ARMATURI ARMATURA U VLAČNOJ ZONI ZA PLAFONIRANI MOMENT PLAFONIRANI MOMENT ŠIRINA GREDICE ARMATURA DONJE ZONE ARMATURA GORNJE ZONE TIP GREDICE RED. BR. Aa Aa b M SD A SD Ma I Ma II Mu Mu [ cm 2 ] [ cm 2 ] [ cm] [ kncm] [ cm 2 ] [ kncm] [ kncm] [ kn] [ kncm] [ knm] 1 2 4 5 6 7 8 9 10 10 11 12 0 A0 0,385 0,770 5,0 305,415 0,640 67,832 200,878 67,83 373,25 3,73 1 A1 0,385 1,050 5,0 305,415 0,640 213,925 200,878 200,88 506,29 5,06 2 A2 0,665 1,270 5,0 305,415 0,640 328,712 346,970 328,71 634,13 6,34 3 A3 0,885 1,560 5,0 305,415 0,640 480,022 461,758 461,76 767,17 7,67 4 A4 1,175 1,780 5,0 305,415 0,640 594,810 613,068 594,81 900,22 9,00 5 A5 1,395 2,060 5,0 305,415 0,640 740,902 727,855 727,86 1033,27 10,33 6 A6 1,895 2,400 5,0 305,415 0,640 918,301 988,735 918,30 1223,72 12,24 7 A7 2,185 2,780 5,0 305,415 0,640 1116,570 1140,046 1116,57 1421,98 14,22 8 A8 2,525 3,070 5,0 305,415 0,640 1267,880 1317,444 1267,88 1573,29 15,73 9 D1 1,780 3,550 14,0 855,161 1,792 917,263 928,733 917,26 1772,42 17,72 10 D2 2,340 4,120 14,0 855,161 1,792 1214,666 1220,918 1214,67 2069,83 20,70 11 D3 2,780 4,560 14,0 855,161 1,792 1444,241 1450,493 1444,24 2299,40 22,99 12 D4 3,350 5,120 14,0 855,161 1,792 1736,426 1747,896 1736,43 2591,59 25,92 13 D5 4,040 5,810 14,0 855,161 1,792 2096,441 2107,910 2096,44 2951,60 29,52 14 D6 5,040 6,690 14,0 855,161 1,792 2555,589 2629,670 2555,59 3410,75 34,11 by " YTONG" 16

5.5. ODNOS NOSIVOSTI ZA GRANIČNI MOMENT SAVIJANJA - KORISNO OPTEREĆENJE - SVJETLI OTVOR L0 q (kn/m²) g + g (kn/m²) - statički raspon L = 1,05 x L0 za jednu gredicu (osni razmak 0,68m): 0,68x(1,35g+1,35 g+1,5 q) (1,05 L0) 2 8 M RD M RD g+q = 7,114 2-0,90g+0,1 g L0 g = 1,50 kn/m 2 g je uzet kao prosječni = 1,5 kn/m 2 za dvostruke gredice (osni razmak 0,77cm): 0,77x(1,35g+1,35 g+1,5q) (1,05 L0) 8 2 M RD g+q = 6,282 M RD - 0,90g+0,1 g L0 2 g = 1,80 kn/m 2 g je uzet kao prosječni = 1,5 kn/m 2 17

6. PRORAČUN NOSIVOSTI PREMA GRANIČNIM VRIJEDNOSTIMA POPREČNE SILE 6.1. NOSIVOST PRESJEKA NA POPREČNE SILE Izvršit ćemo proračun na pretpostavkama Normiranog postupka (standardne metode) s armaturnom rešetkom, za područje posmičnih sila V SD <V RD2. 12. Pogled na rešetkasti nosač Nosivost na poprečne sile presjeka s poprečnom armaturom dana je izrazom: V u = V RD1 + V WD V u = ukupna nosivost na poprečne sile V RD1 = proračunska nosivost na poprečnu silu bez poprečne armature (nosivost betona) V WD = doprinos poprečne armature u ukupnoj nosivosti na poprečne sile V RD1 = τ RD x k x b x d x (1,2+ 40 x ρ 1 ) τ RD za beton razreda tlačne čvrstoće C20/25 =0,025 kn/cm 2 k =1,6-d =1,465 (za elemente sa neprekinutom armaturom u polju) b - širina poprečnog presjeka = 5cm (14cm za dvostruke gredice) d - statička visina presjeka = 13,5cm ρ 1 = A a /b x d...>0,02 u - razmak dijagonala = 20,0cm α - kut nagiba poprečne armature u odnosu na os elementa= 31 V WD = A SW x 0,9d x f yd x (1+ctg α) x sin α / u (1+ctg α) x sin α = 1,372 f yd = 43,48 kn/cm 2 A SW = površina za dijagonale 4mm.. za jednostruke gredice = 0,251cm 2 za dvostruke gredice = 0,503cm 2 V WD = 0,251 x 0,9 x 13,5 x f yd x 1,372 / u = 9,10 kn... za jednostruke gredice = 0,503 x 0,9 x 13,5 x f yd x 1,372 / u = 18,23 kn... za dvostruke gredice 18

Tabela 4 PRORAČUN GRANIČNE NOSIVOSTI POPREČNOG PRESJEKA NA POPREČNE SILE RED. BR. TIP GREDICE ARMATURA GORNJE ZONE ARMATURA DONJE ZONE ŠIRINA GREDICE ρ DOPRINOS BETONA DOPRINOS POPREČNE ARMATURE UKUPNA NOSIVOSTI NA POPREČNE SILE Aa' Aa b <0,02 V RD1 V WD V u [ cm 2 ] [ cm 2 ] [ cm] [ kn] [ kn] [ kn] 1 2 4 5 6 7 8 9 10 0 A0 0,385 0,770 5,0 0,011 4,09 9,10 13,19 1 A1 0,385 1,050 5,0 0,016 4,50 9,10 13,60 2 A2 0,665 1,270 5,0 0,019 4,83 9,10 13,93 3 A3 0,885 1,560 5,0 0,020 4,94 9,10 14,04 4 A4 1,175 1,780 5,0 0,020 4,94 9,10 14,04 5 A5 1,395 2,060 5,0 0,020 4,94 9,10 14,04 6 A6 1,895 2,400 5,0 0,020 4,94 9,10 14,04 7 A7 2,185 2,780 5,0 0,020 4,94 9,10 14,04 8 A8 2,525 3,070 5,0 0,020 4,94 9,10 14,04 9 D1 1,780 3,550 14,0 0,019 13,51 18,23 31,74 10 D2 2,340 4,120 14,0 0,020 13,84 18,23 32,07 11 D3 2,780 4,560 14,0 0,020 13,84 18,23 32,07 12 D4 3,350 5,120 14,0 0,020 13,84 18,23 32,07 13 D5 4,040 5,810 14,0 0,020 13,84 18,23 32,07 14 D6 5,040 6,690 14,0 0,020 13,84 18,23 32,07 by " YTONG" 19

6.2. ODNOS NOSIVOSTI ZA GRANIČNU POPREČNE SILU - KORISNO OPTEREĆENJE - SVJETLI OTVOR L0 q (kn/m²) g + g (kn/m²) - statički raspon L = 1,05 x L0 za jednu gredicu: 0,68x(1,35g+1,35 g+1,5q) L0 2 V RD g+q = 1,961 V RD - 0,90g+0,1 g L0 vlastita težina stropa - jednostruke gredice..g = 1,50 kn/m 2 g je uzet kao prosječni = 1,50 kn/m 2 za dvostruke gredice: 0,77x(1,35g+1,35 g+1,5q) L0 2 1,732 V V RD RD g+q = - 0,90g+0,1 g L0 vlastita težina stropa - dvostruke gredice..g = 1,80 kn/m 2 g je uzet kao prosječni = 1,50 kn/m 2 20

7. PRORAČUN NOSIVOSTI PREMA OGRANIČENJU PROGIBA KONSTRUKCIJE Proračun progiba izveden je iteracijama prema modelu proračuna EUROCOD 2, na el. računalu. za proračun su korištene slijedeće pretpostavke : 1. Iz Izvješća o ispitivanju polumontažne stropne konstrukcije "Bijeli strop" br. 180-30/2001g. izvršenog na Građevinskom fakultetu sveučilišta u Zagrebu, vidljivo je da je dijagram opterećenja i progiba gotovo linearan, bez znakova popuštanja konstrukcije, odnosno da se konstrukcija i za velika opterećenja ponaša kao da je u cijelosti u NAPONSKOM STANJU I. Za to postoji logično objašnjenje, a to je očito zbog velikog postotka armature, te sudjelovanju u nosivosti Ytong stropnog bloka i premaza tankoslojnim mortom. Računskom kontrolom za dva ispitivana tipa stropne konstrukcije, dobiveni su gotovo identični rezultati. Ti isti uvjeti uz variranje armature, opterećenja i raspona, korišteni su za računsku kontrolu u ovom projektu. (vidjeti prilog E.) 2. Prema EUROCOD 2 kao maximalni dopušteni progib uzeta je veličina od L o /250. 3. Za srednji polumjer d m = 2Ab/O = 3,63 cm odabrano je: dm= 2Ab/O = 3,63cm, εs =0,58 φ =1,67 (iz ispitivanja konstrukcije na Građ. Fakultetu u Zagrebu br. 180-30/2001.) g/p je uzet kao prosječni: 0,50 4 Ψo - koeficjent kombinacije za smanjenje vjerojatnosti konstantnog djelovanja maksimalnog korisnog opterećenja za stambene objekte sukladno HRN EN 1990 odabrano 0,3 5. U proračunu za progib pravokutnog poprečnog presjeka, korištena je zamjenska širina rebra b z dobivena jednadžbom uz uvjet istih momenata Inercije, pravokutnog presjeka i obrnutog "T" presjeka. Za jednostruku gredicu b z =6,35cm, a za dvostruku gredicu b z =15,49cm 6. Prilikom postavljanja konstrukcije uz privremeno podupiranje podupiračima, potrebno je izvesti nadvišenje, a sve sukladno uputama za izradu konstrukcije. Takvo podupiranjem izvedeno nadvišenje, za kraće raspone do 4,0m svijetlog raspona iznosi l/350. Za raspone veće od 4,0m radno nadvišenje je maksimalno dozvoljeno prema EUROCOD-u 2 i iznosi l/250.tako dobiveno nadvišenje neopterećene konstrukcije odbit će se od ukupnog računskog progiba. radno nadvišenje fo= l/250 za raspone >4,0m (vidjeti tabelu 5.) 7. Rezultati proračuna prikazat će se tabelarno, dok je na kraju priložen ispis pojedinih iteracija. 21

13. Podupiranje i nadvišenje konstrukcije Tabela 5 RADNA NADVIŠENJA YTONG STROPA SVIJETLI RASPON Lo STATIČKI RASPON Ls NADVIŠENJE NADVIŠENJE SVIJETLI RASPON Lo STATIČKI RASPON Ls NADVIŠENJE NADVIŠENJE [ m] [ m] [ cm] [ m] [ m] [ cm] 1 2 4 5 6 7 8 9 2,00 2,10 Ls/350 0,6 4,25 4,46 Ls/250 1,8 2,25 2,36 Ls/350 0,7 4,25 4,46 Ls/250 1,8 2,50 2,63 Ls/350 0,8 4,50 4,73 Ls/250 1,9 2,75 2,89 Ls/350 0,8 4,75 4,99 Ls/250 2,0 3,00 3,15 Ls/350 0,9 5,00 5,25 Ls/250 2,1 3,25 3,41 Ls/350 1,0 5,25 5,51 Ls/250 2,2 3,50 3,68 Ls/350 1,1 5,50 5,78 Ls/250 2,3 3,75 3,94 Ls/350 1,1 5,75 6,04 Ls/250 2,4 4,00 4,20 Ls/350 1,2 6,00 6,30 Ls/250 2,5 do raspona 4,0m izvesti nadvišenje Ls/350, za veće raspone Ls/250 by " YTONG" 6,25 6,56 Ls/250 2,6 22

8. TABELE MAKSIMALNOG KORISNOG OPTEREĆENJA ZA GRANIČNA STANJA NOSIVOSTI I UPORABLJIVOSTI Tabela 6 JEDNOSTRUKE GREDICE, STATIČKI SUSTAV SLOBODNO OSLONJENA GREDA, BETON C20/25 MAKSIMALNO KORISNO OPTEREĆENJE g+p ( kn/m 2 ) za kriterije: moment nosivosti, progib i poprečne sile TIP GREDICE A0 A1 A2 A3 A4 A5 A6 A7 A8 POPR. SILE V RD za C20/25 (kn) Progib M RD (knm) Progib Progib Progib Progib M RD (knm) M RD (knm) M RD (knm) M RD (knm) Progib Progib Progib Progib M RD (knm) M RD (knm) M RD (knm) M RD (knm) L0 ( m ) 3,73 5,06 6,34 7,67 9,00 10,33 12,24 14,22 15,73 14,04 1 2 4 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2,00 5,44 7,80 2,25 4,04 5,91 2,50 3,05 4,56 6,02 7,56 9,05 10,56 12,73 14,99 16,71 9,81 2,75 2,31 10,60 3,56 11,10 4,77 12,90 6,04 7,27 8,52 10,31 12,18 13,60 8,81 3,00 1,75 7,60 2,80 7,95 3,81 9,40 4,89 10,65 5,92 6,97 8,47 10,04 11,24 7,98 3,25 1,31 5,45 2,21 5,72 3,07 6,85 3,99 7,85 4,86 9,00 5,76 10,00 7,04 8,38 9,40 7,27 3,50 0,97 3,90 1,74 4,10 2,48 5,00* 3,27 5,80 4,03 6,80 4,80 7,50 5,91 9,05 7,06 10,10 7,94 6,67 3,75 0,69 2,72 1,36 2,85 2,01 3,55 2,70 4,25 3,35 5,00 4,03 5,65 4,99 6,90 5,99 7,75 6,76 8,65 6,14 4,00 0,46 2,55 1,05 2,68 1,62 3,41 2,22 4,05 2,80 4,78* 3,39 5,40 4,24 6,60 5,12 7,40 5,80 8,25 5,68 4,25 0,27 1,72 0,79 1,85 1,30 2,45 1,83 2,97 2,35 3,58 2,87 4,10 3,62 5,10 4,40 5,79 5,00 6,48 5,28 4,50 0,11 1,05 0,58 1,20 1,03 1,70 1,50 2,13 1,96 2,65 2,43 3,10 3,10 3,93 3,80 4,50 4,33 5,10 4,92 4,75 0,60 0,40 0,65 0,80 1,10 1,23 1,45 1,64 1,89 2,06 2,26 2,66 3,00* 3,28 3,48 3,76 4,00 4,60 5,00 0,24 0,60 0,60 0,99 0,90 1,36 1,29 1,74 1,60 2,28 2,22 2,85 2,65 3,28 3,08* 4,31 5,25 0,44 0,79 0,45 1,12 0,79 1,47 1,05 1,96 1,60 2,47 1,96 2,86 2,34 4,04 5,50 0,61 0,92 1,23 0,62 1,68 1,08 2,14 1,45 2,50 1,73 3,81 5,75 0,74 1,02 1,43 0,65 1,86 0,93 2,19 1,22 3,59 6,00 0,58 0,84 1,22 1,61 1,91 3,39 by " YTONG" NAPOMENA: za brojeve označene sa asteriskom * priloženi su rezultati proračuna 23

Tabela 7 DVOSTRUKE GREDICE, STATIČKI SUSTAV SLOBODNO OSLONJENA GREDA, BETON C20/25 MAKSIMALNO KORISNO OPTEREĆENJE g+p ( kn/m 2 ) za kriterije: moment nosivosti, progib i poprečne sile TIP GREDICE D1 D2 D3 D4 D5 D6 POPR. SILE V RD za C20/25 (kn) Progib Progib Progib Progib M RD (knm) M RD (knm) M RD (knm) M RD (knm) M RD Progib (knm) Progib M RD (knm) L0 ( m ) 17,72 20,70 22,99 25,92 29,52 34,11 32,07 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3,00 10,90 12,98 14,58 16,62 19,13 22,34 17,05 3,25 9,07 10,84 12,21 13,94 16,08 18,82 15,62 3,50 7,62 9,14 10,32 11,82 13,67 16,02 14,40 3,75 6,45 10,65 7,78 8,80 10,11 11,72 13,77 13,34 4,00 5,49 10,25 6,66 11,60 7,56 8,71 10,12 11,92 12,42 4,25 4,69 8,05 5,73 9,15 6,53 10,05 7,54 11,15 8,80 10,39 11,60 4,50 4,03 6,35 4,95 7,27 5,66 8,00 6,57 8,95 7,69 10,10 9,11 11,70 10,87 4,75 3,46 4,97 4,29 5,80 4,93 6,40 5,75 7,20 6,75 8,15 8,03 9,50 10,22 5,00 2,98 3,90 3,73 4,55* 4,31 5,10 5,04 5,80 5,95 6,60 7,10 7,80 9,64 5,25 2,57 2,95 3,25 3,55 3,77 4,05 4,44 4,65 5,26 5,35 6,30 6,33 9,11 5,50 2,21 2,22 2,83 2,80 3,31 3,20 3,91 3,65 4,66 4,28* 5,61 5,20 8,63 5,75 1,90 1,60 2,46 2,05 2,90 2,45 3,45 2,86 4,14 3,45 5,01 4,20 8,19 6,00 1,62 1,10 2,14 1,50 2,54 1,80 3,05 2,20 3,68 2,70 4,48 3,35 7,79 6,25 1,38 0,65 1,86 1,00 2,23 1,30 2,70 1,65 3,28 2,05 4,02 2,65 7,42 6,50 1,17 1,61 1,95 0,85 2,38 1,15 2,92 1,55 3,60 2,10 7,08 by " YTONG" NAPOMENA: za brojeve označene sa asteriskom * priloženi su rezultati proračuna 24

B. STATIČKI PRORAČUN GREDICE "YTONG STROPA" ZA STANJE MONTAŽE Gredice "Ytong stropa" u pravilu se podupiru linijski u sredini raspona. Kod gredica raspona do 2,00m podupiranje nije potrebno, ukoliko se izvoditelj pridržava uputa za transport gredica i montažu konstrukcije. B.1 DOKAZ NOSIVOSTI GREDICE Za provjeru nosivosti gredica mjerodavna su dva sustava : a) gredica bez podupora raspona do 2,00m tip A0 (bez dodatne armature u gornjoj zoni) P g 2,00m Vlastita težina konstrukcije g v =1,5 kn/m 2 ili za jednu gredicu g v ' = 1,02kN/m Koncentrirano pokretno opterećenje P = 1,50kN na jednoj gredici. M = 1,02x2,0 2 /8+1,5x2,0/4 = 1,26kNm Kritična tlačna - uzdužna sila u gornjem pojasu je za h=120mm ; kontrola napona i izvijanja N= M/h=1,26/0,12 = 10,5kN Dopušteni napon na izvijanje gornjeg tlačnog pojasa σ i,dop a 1 = 20cm l i = 0,5x200= 100mm A s1 =38,5 mm 2, l=117,86 mm 4, i=1,75 mm, l i =100 mm, λ=100/1,75=57 Za ČO561 je λ v =75,9, λ 1 = λ/ λ v =57/75,9=0,751, mjerodavna je krivulja C. očitamo iz tabele χ=0,69 ; υ=1,2 -koeficjent sigurnosti za izuzetno montažno opterećenje σ i,dop1 = χ xσ v / υ = 0,69x500/1,2 =287,5 N/mm 2. N 1 =287,5x38,5=11,07kN nosivost tlačnog pojasa veća je od kritične sile izvijanja 25

kontrola deformacija (sukladno normi za Predgotovljene betonske proizvode - Stropni sustavi sastavljeni od nosača i blokova HRN EN 15037-1 dodatak H) - bez koncentriranog pokretnog opterećenja f dop =L/500 = 0,40cm I id = 44,378cm 3 E c = 2,1x10 8 f= 5xg v 'xl 4 4 5x1,02x2,0 = = 0,0023m = 0,23cm 384xE c xi id 384x2,1x4,44x10 računski progib f manji je od dozvoljenog progiba f dop Progib je kontroliran i proračunskim modelom u programskom paketu Tower, a dobiveni rezultati približno su istovjetni izvedenom proračunu. b) gredica sa poduporom u sredini raspona 5,00m tip A0 (bez dodatne armature u gornjoj zoni) Q g 2,50m Koncentrirano pokretno opterećenje Q = 1,50Kn na jednoj gredici. Vlastita težina konstrukcije g v =1,50kN/m 2 ili za jednu gredicu g v ' = 1,02kN/m M = 0,070x1,02x2,5 2 +0,203x1,5x2,5 = 1,21kNm iz proračuna momenta u polju slijedi da je za proračun nosivosti mjerodavan sustav a.) 26

B.2 DOKAZ NOSIVOSTI STROPNOG BLOKA 14. Montaža konstrukcije Iako se u uputama za postavu stropa, koje se na gradilište isporučuju zajedno sa materijalom, izvoditelju savjetuje da prilikom montaže stropa postavi daske po kojima će se hodati, kontrolirat ćemo nosivost stropnog bloka u fazi suhe montaže, za sva opterećenja koja se mogu pojaviti. Očekujemo slijedeća opterećenja: - vlastita težina bloka G - opterećenje stopalom radnika koji montira strop, a u rukama drži teret težine 0,20kN. Ukupno opterećenje čovjeka s teretom kojim rukuje iznosi Q= 1,0+0,2= 1,20kN. U fazi mokre montaže pojavljuje se još opterećenje slojem tankoslojnog morta g m =0,10kN/m 2. Stropni blok je dimenzija 62,5x25,0x15,0cm sa zarezima za ležajeve 2,0x3,0cm, a masa mu iznosi 14kg. Analiza opterećenja: vlastita težina 0,14/0,625 =0,224 kn/m' tankoslojni mort 0,10x 0,25 =0,025 kn/m' g =0,249 kn/m' g SD =0,249x1,35 korisno opterećenje Q SD =1,2x1,50 proračunske unutarnje sile i naprezanja =0,40kN/m' =1,80kN M SDmax =0,40x0,59 2 /8+1,80x0,59/4=0,283kNm Q SDmax = 0,40x0,59/2+1,80=1,92kN f tsd =0,283x6/(0,25x0,15 2 )= 302kN/m 2 = 0,30N/mm 2 < 0,36N/mm 2 τ SD =1,92/(0,25x0,15)=51kN/m 2 = 0,05N/mm 2 < 0,18N/mm 2 karakteristična vlačna čvrstoća YTONG stropnog bloka na savijanje f tr = 1/5 srednje vrijednosti tlačne čvrstoće / γm, γm=2,2 f tr = 0,2x4,0/2,2 = 0,36N/mm 2 karakteristična posmična čvrstoća YTONG stropnog bloka τ R = 1/10 srednje vrijednosti tlačne čvrstoće / γm, γm=2,2 f tr = 0,1x4,0/2,2 = 0,18N/mm 2 27

C. DIJAGRAMI NOSIVOSTI Dijagrami nosivosti izrađeni su kao pomoć projektantima radi brzog određivanja tipa gredice koji je potreban za zadano opterećenje i svijetli otvor. Opterećenje treba u pravilu uzeti iz statičkog proračuna, a ako ono ne postoji onda treba odabrati neko standardno opterećenje za određenu namjenu. Za stambenu izgradnju može se uzeti korisno opterećenje bez vlastite težine stropne konstrukcije, g+q= 1,5+2,0= 3,50kN/m 2. Opterećenja pregradnim zidovima treba posebno odrediti u ovisnosti od situacije u projektu. Da bi se u ovom projektu zadovoljio izvedeni princip proračuna progiba, stropna konstrukcija prilikom montaže mora zadržati radno nadvišenje. Podupiranjem gredica takvo se nadvišenje treba kontrolirati i po potrebi dovesti do zahtijevanih veličina (tabela 5). Dijagrami nosivosti napravljeni su za jednostruke i dvostruke gredice statičkog sustava slobodno oslonjena greda. Za sve ostale uvijete oslanjanja, izvedbena riješenja i varijante, potreban je statički proračun iz kojeg će se odrediti tip gredice. Za zadano opterećenje (ukupno opterećenje bez vlastite težine) i svijetli otvor odabire se onaj tip gredice koji leži desno od zadane točke opterećenje - svijetli otvor. 15. Očitanje tipa gredica iz dijagrama nosivosti Primjer: za stambeno opeterećenje bez pregradnih zidova g+q= 3,50kN/m 2 i svijetli raspon (razmak između zidova, greda i sl.) Lo= 3,80m odabran je tip gredica A5. 28

29

30

D. POPIS KORIŠTENIH NORMI, TEHNIČKIH PROPISA i LITERATURE ZA STATIČKI PRORAČUN KORIŠTENE SU SLIJEDEĆE NORME I TEHNIČKI PROPISI: 1. Zakon o gradnji (NN 153/13) 2. Zakon o prostornom uređenju (NN 153/13) 3. Zakon o građevnim proizvodima (NN 76/13, 30/14) 4. Tehnički propis o građevnim proizvodima (NN 33/10, 87/10, 146/10, 81/11,100/11-ispravak, 130/12, 81/13 136/14, 119/15) 6. Opeterećenja na konstrukciju: HRN EN 1991-1-1 (-2),(-3), HRN EN 1996-1-1 (-2), (-3):2012/NA:2012 7. Osnove projektiranja konstrukcija (HRN EN 1990:2002+A1:2005+A1:2005/AC:2010) 8. Projektiranje konstrukcija otpornih na potres HRN EN 1998, HRN EN 1998-1:2011/NA:2011 9. Projektiranje zidanih konstrukcija HRN EN 1996-1-1 (-2) i HRN EN 1996-1-1:2012/NA:2012 10. Tehnički propis za zidane konstrukcije (NN 01/07) 11. Tehnički propis za betonske konstrukcije (NN 139/09, 14/10, 136/12) 12. Zidni elementi od porastoga betona HRN EN 771-4 13. Predgotovljeni betonski proizvodi - Stropni sustavi sastavljeni od nosača i blokova (ispune) HRN EN 15037-1 ZA STATIČKI PRORAČUN KORIŠTENA JE SLIJEDEĆA LITERATURA: 1. Betonske konstrukcije; Ivan Tomičić 2. Betonske konstrukcije - priručnik; Jure Radić 3. Zidane konstrukcije; Zorislav Sorić 4. "Projektiranje potresno otpornih nosivih zidanih konstrukcija od YTONG-a"; D.Aničić 5. Izvještaj Zavoda za gradbeništvo Slovenije, Ljubljana, siječanj 2010. br. P0891/08-650-1 6. "Obnašanje YTONG hiš pri potresnoj obtežbi" 7. Izvješće o ispitivanju polumontažne stropne konstrukcije "Bijeli strop", Građ. fakultet Sveučilišta u Zagrebu siječanj 2001. br. 180-30/2001 8. XELLA Baustoffhandbuch -Porenbeton 9. "Sustav konstrukcija Bijeli strop" Priručnik, Građ. fakultet Sveučilišta u Splitu 10. YTONG sustav gradnje -Katalog proizvoda s tehničkim podacima Sastavio : Tomislav Gojkovič dig ; Zagreb, svibanj 16. 31

PRILOG E. IZVADAK IZ IZVJEŠĆA O ISPITIVANJU POLUMONTAŽNE STROPNE KONSTRUKCIJE "BIJELI STROP" BR. 180-30/2001G. IZVRŠENOG NA GRAĐEVINSKOM FAKULTETU SVEUČILIŠTA U ZAGREBU 32

33

34

računska kontrola - jednostruke gredice PRORAČUN KRATKOTRAJNOG PROGIBA ZA NOSAČE PRAVOKUTNOG PRESJEKA -prema EC2 (od kont. opterećenja ) UNOS : g = 1,50 kn/m 2 g= 1,50 kn/m 2 Lo= 3,30 m A s1 = 2,754 cm 2 za jednu gredicu od stalnog opterećenja M g+ g = 3,06 knm A s2 = 1,681 cm 2 d 1 = 1,5 cm d= 13,5 cm d 2 = L=1,05Lo= 1,5 cm 346,5 cm L razred tlačne čvrstoće betona bz= 6,4 cm f ck = 20 /25 N/mm 2 h= 15,0 cm f yk = 50 kn/cm 2 modul elast. betona E cm = 2885 kn/cm 2 vlač. čvrstoća betona f ctm = 2,2 N/mm 2 TIP ARMATURE = A β 1 = 1,0 modul elast. čelika E s = 20.000 kn/cm 2 ( A - REBRASTI ČELIK, B - GLATKI ČELIK ) ZA KRATKOTRAJNO OPTEREĆENJE γ g = γ q =1,0 Ib= 1,79E+03 cm 4 f= kxl 2 x1/r I = 0,49 cm α=e s /E cm = 6,93 I I = 2,72E+03 cm 4 1/r I= 3,90E-05 cm-1 kratkotrajni progib dobiven ispitivanjima fi= 0,39 cm položaj neutralne osi za stanje naprezanja I y Ig = 7,85 cm koeficjent (za linijsko opterećenje) k= 0,104 ****************************************************************************************************** PRORAČUN KRATKOTRAJNOG PROGIBA ZA NOSAČE PRAVOKUTNOG PRESJEKA -prema EC2 (od kont. opterećenja ) UNOS : g = 1,50 kn/m 2 g= 3,50 kn/m 2 Lo= 3,30 m A s1 = 2,754 cm 2 za jednu gredicu od stalnog opterećenja M g+ g = 5,10 knm A s2 = 1,681 cm 2 d 1 = 1,5 cm d= 13,5 cm d 2 = L=1,05Lo= 1,5 cm 346,5 cm L razred tlačne čvrstoće betona bz= 6,4 cm f ck = 20 /25 N/mm 2 h= 15,0 cm f yk = 50 kn/cm 2 modul elast. betona E cm = 2885 kn/cm 2 vlač. čvrstoća betona f ctm = 2,2 N/mm 2 TIP ARMATURE = A β 1 = 1,0 modul elast. čelika E s = 20.000 kn/cm 2 ( A - REBRASTI ČELIK, B - GLATKI ČELIK ) ZA KRATKOTRAJNO OPTEREĆENJE γ g = γ q =1,0 Ib= 1,79E+03 cm4 f= kxl 2 x1/r I = 0,81 cm α=e s /E cm = 6,93 I I = 2,72E+03 cm4 1/r I = 6,50E-05 cm -1 kratkotrajni progib dobiven ispitivanjima fi= 0,70 cm položaj neutralne osi za stanje naprezanja I y Ig= 7,85 cm koeficjent (za linijsko opterećenje) k= 0,104 35

36

37

38

39

računska kontrola - dvostruke gredice PRORAČUN KRATKOTRAJNOG PROGIBA ZA NOSAČE PRAVOKUTNOG PRESJEKA -prema EC2 (od kont. opterećenja ) UNOS : g = 1,80 kn/m 2 A s1 = 9,313 cm 2 g= 3,20 kn/m 2 A s2 = 7,005 cm 2 Lo= 5,00 m d 1 = 1,5 cm d= 13,5 cm za dvije gredice od stalnog opterećenja M g+ g = 13,26 knm d 2 = 1,5 cm L=1,05Lo= 525,0 cm L razred tlačne čvrstoće betona bz= 15,5 cm f ck = 20 /25 N/mm 2 h= 15,0 cm f yk = 50 kn/cm 2 modul elast. betona E cm= 2885 kn/cm 2 vlač. čvrstoća betona f ctm = 2,2 N/mm 2 TIP ARMATURE = A β 1 = 1,0 modul elast. čelika E s= 20.000 kn/cm 2 ( A - REBRASTI ČELIK, B - GLATKI ČELIK ) ZA KRATKOTRAJNO OPTEREĆENJE γ g = γ q =1,0 Ib= 4,36E+03 cm 4 f= kxl 2 x1/r I = 1,69 cm α=e s /E cm = 6,93 I I= 7,82E+03 cm 4 1/r I= 5,88E-05 cm -1 kratkotrajni progib dobiven ispitivanjima fi= 1,60 cm položaj neutralne osi za stanje naprezanja I y Ig= 7,78 cm koeficjent (za linijsko opterećenje) k= 0,104 ****************************************************************************************************** PRORAČUN KRATKOTRAJNOG PROGIBA ZA NOSAČE PRAVOKUTNOG PRESJEKA -prema EC2 (od kont. opterećenja ) UNOS : g = 1,80 kn/m 2 A s1 = 9,313 cm 2 g= 6,20 kn/m 2 A s2 = 7,005 cm 2 Lo= 5,00 m d 1 = 1,5 cm d= 13,5 cm za dvije gredice od stalnog opterećenja M g+ g = 21,22 knm d 2 = 1,5 cm L=1,05Lo= 525,0 cm L razred tlačne čvrstoće betona bz= 15,5 cm f ck = 20 /25 N/mm 2 h= 15,0 cm f yk = 50 kn/cm 2 modul elast. betona E cm= 2885 kn/cm 2 vlač. čvrstoća betona f ctm = 2,2 N/mm 2 TIP ARMATURE = A β 1 = 1,0 modul elast. čelika E s= 20.000 kn/cm 2 ( A - REBRASTI ČELIK, B - GLATKI ČELIK ) ZA KRATKOTRAJNO OPTEREĆENJE γ g = γ q =1,0 Ib= 4,36E+03 cm 4 f= kxl 2 x1/r I = 2,70 cm α=e s /E cm = 6,93 I I= 7,82E+03 cm 4 1/r I= 9,41E-05 cm -1 kratkotrajni progib dobiven ispitivanjima fi= 2,65 cm položaj neutralne osi za stanje naprezanja I y Ig= 7,78 cm koeficjent (za linijsko opterećenje) k= 0,104 40

PRILOG F. ISPIS PRORAČUNA PROGIBA GREDICA YTONG STROPA 41

PRORAČUN PROGIBA ZA NOSAČE PRAVOKUTNOG PRESJEKA -prema EC2 (od kont. opterećenja ) g= 1,50 kn/m 2 g+q= 5,00 kn/m 2 Lo= 3,50 m A s1 = 1,270 cm 2 g/q= 0,50 A s2 = 0,665 cm 2 za jednu gredicu od stalnog opterećenja M g+ g = 4,59 knm d 1 = 1,5 cm d= 13,5 cm za jednu gredicu od korisnog opterećenja M q = 2,87 knm d 2 = 1,5 cm koeficjent puzanja φ (za suhi okoliš i to=28 dana)= 1,67 L=1,05Lo= 367,5 cm relat deformacija od skupljanja εcs(za suhi okoliš)= 0,58 0/00 razred tlačne čvrstoće betona bz= 6,4 cm f ck= 20 /25 N/mm 2 h= 15,0 cm f yk = 50 kn/cm 2 L modul elast. betona E cm= 2885 kn/cm2 vlač. čvrstoća betona f ctm= 2,2 N/mm2 TIP ARMATURE = A β 1= 1,0 modul elast. čelika E s= 20.000 kn/cm2 ( A - REBRASTI ČELIK, B - GLATKI ČELIK ) ZA KRATKOTRAJNO OPTEREĆENJE γ g = γ q =1,0 ZA DUGOTRAJNO OPTEREĆENJE Ψ q = 0,30 Ib= 1,79E+03 cm4 prorač. modul elast. betona E cef= 1080 kn/cm2 Msd= 5,45 knm α=e s/e cm= 6,93 α eii= 18,51 II= 2,20E+03 cm4 II= 2,98E+03 cm4 1/r I= 1,18E-04 cm-1 1/r I= 1,70E-04 cm-1 položaj neutralne osi za stanje naprezanja I y Ig= 7,73 cm položaj neutralne osi za stanje naprezanja I y Ig= 8,01 cm koeficjent (za linijsko opterećenje) k= 0,104 f= kxl 2 x1/r m = 2,39 cm f= kxl 2 x1/r I = 1,66 cm utjecaj skupljanja: S I= 1/rcsI= 2,64 cm3 9,52E-06 cm-1 radno nadvišenje f 0 = l/ 350 = 1,05 cm srednja zakrivljenost 1/rtot= 1,79E-04 cm-1 f ε,φ ε,φ = kxl 2 x1/r tot = f dop = L/250 = 1,47 cm f tot =f ε,φ -f 0 = ε,φ 2,52 cm 1,47 cm ******************************************************************************* PRORAČUN PROGIBA ZA NOSAČE PRAVOKUTNOG PRESJEKA -prema EC2 (od kont. opterećenja ) g= 1,50 kn/m 2?g+q= 4,78 kn/m 2 Lo= 4,00 m A s1 = 1,780 cm 2?g/q= 0,50 A s2 = 1,175 cm 2 za jednu gredicu od stalnog opterećenja M g+ g = 5,83 knm d 1 = 1,5 cm d= 13,5 cm za jednu gredicu od korisnog opterećenja M q = 3,58 knm d 2 = 1,5 cm koeficjent puzanja φ (za suhi okoliš i to=28 dana)= 1,67 L=1,05Lo= 420,0 cm relat deformacija od skupljanja εcs(za suhi okoliš)= 0,58 0/00 modul elast. betona E cm = bz= 6,4 cm f 20 /25 N/mm 2 ck = h= 15,0 cm f yk= 50 kn/cm 2 2885 kn/cm2 razred tlačne čvrstoće betona vlač. čvrstoća betona f ctm= 2,2 N/mm2 TIP ARMATURE = A β 1= 1,0 modul elast. čelika E s= 20.000 kn/cm2 ( A - REBRASTI ČELIK, B - GLATKI ČELIK ) L ZA KRATKOTRAJNO OPTEREĆENJE γ g = γ q =1,0 ZA DUGOTRAJNO OPTEREĆENJE Ψ q = 0,30 Ib= 1,79E+03 cm4 prorač. modul elast. betona E cef= 1080 kn/cm2 Msd= 6,91 knm α=e s /E cm = 6,93 α eii = 18,51 I I= 2,41E+03 cm4 I I= 3,62E+03 cm4 1/r I= 1,35E-04 cm-1 1/r I= 1,76E-04 cm-1 položaj neutralne osi za stanje naprezanja I y Ig= 7,72 cm položaj neutralne osi za stanje naprezanja I y Ig= 7,95 cm koeficjent (za linijsko opterećenje) k= 0,104 f= kxl 2 x1/r m = 3,24 cm f= kxl 2 x1/r I = 2,48 cm utjecaj skupljanja: S I= 2,31 cm3 1/r csi= 6,84E-06 cm-1 radno nadvišenje f 0 = l/ 250 = 1,68 cm srednja zakrivljenost 1/r tot= 1,83E-04 cm-1 f ε,φ ε,φ = kxl 2 x1/r tot = f dop = L/250 = 1,68 cm f tot =f ε,φ -f 0 = ε,φ 3,37 cm 1,69 cm 42

PRORAČUN PROGIBA ZA NOSAČE PRAVOKUTNOG PRESJEKA -prema EC2 (od kont. opterećenja ) g= 1,50 kn/m 2 g+q= 3,00 kn/m 2 Lo= 4,75 m A s1 = 2,400 cm 2 g/q= 0,50 A s2= 1,895 cm 2 za jednu gredicu od stalnog opterećenja M g+ g = 6,34 knm d 1 = 1,5 cm d= 13,5 cm za jednu gredicu od korisnog opterećenja M q = 3,17 knm d 2 = 1,5 cm koeficjent puzanja φ (za suhi okoliš i to=28 dana)= 1,67 L=1,05Lo= 498,8 cm relat deformacija od skupljanja εcs(za suhi okoliš)= 0,58 0/00 modul elast. betona E cm = bz= 6,4 cm f 20 /25 N/mm 2 ck = h= 15,0 cm f yk = 50 kn/cm 2 2885 kn/cm2 razred tlačne čvrstoće betona vlač. čvrstoća betona f ctm = 2,2 N/mm2 TIP ARMATURE = A β 1 = 1,0 modul elast. čelika E s= 20.000 kn/cm2 ( A - REBRASTI ČELIK, B - GLATKI ČELIK ) L ZA KRATKOTRAJNO OPTEREĆENJE γ g = γ q =1,0 ZA DUGOTRAJNO OPTEREĆENJE Ψ q = 0,30 Ib= 1,79E+03 cm4 prorač. modul elast. betona E cef= 1080 kn/cm2 Msd= 7,29 knm α=e s/e cm= 6,93 α eii= 18,51 I I= 2,70E+03 cm 4 I I= 4,48E+03 cm 4 1/r I= 1,22E-04 cm -1 1/r I= 1,51E-04 cm -1 položaj neutralne osi za stanje naprezanja I y Ig= 7,67 cm položaj neutralne osi za stanje naprezanja I y Ig= 7,82 cm koeficjent (za linijsko opterećenje) k= 0,104 f= kxl 2 x1/r m = 3,91 cm f= kxl 2 x1/r I = 3,16 cm utjecaj skupljanja: S I = 1,65 cm3 1/r csi= 3,96E-06 cm-1 radno nadvišenje f 0 = l/ 250 = 2,00 cm srednja zakrivljenost 1/r tot= 1,55E-04 cm-1 f ε,φ ε,φ = kxl 2 x1/r tot = f dop = L/250 = 2,00 cm f tot =f ε,φ -f 0 = ε,φ 4,01 cm 2,01 cm ******************************************************************************* PRORAČUN PROGIBA ZA NOSAČE PRAVOKUTNOG PRESJEKA -prema EC2 (od kont. opterećenja ) g= 1,50 kn/m 2 g+q= 3,08 kn/m 2 Lo= 5,00 m A s1 = 3,070 cm 2 g/q= 0,50 A s2 = 2,525 cm 2 za jednu gredicu od stalnog opterećenja M g+ g = 7,12 knm d 1 = 1,5 cm d= 13,5 cm za jednu gredicu od korisnog opterećenja M q = 3,61 knm d 2 = 1,5 cm koeficjent puzanja φ (za suhi okoliš i to=28 dana)= 1,67 L=1,05Lo= 525,0 cm relat deformacija od skupljanja εcs(za suhi okoliš)= 0,58 0/00 razred tlačne čvrstoće betona bz= 6,4 cm f ck= 20 /25 N/mm 2 h= 15,0 cm f yk = 50 kn/cm 2 L modul elast. betona E cm= 2885 kn/cm2 vlač. čvrstoća betona f ctm= 2,2 N/mm2 TIP ARMATURE = A β 1= 1,0 modul elast. čelika E s= 20.000 kn/cm2 ( A - REBRASTI ČELIK, B - GLATKI ČELIK ) ZA KRATKOTRAJNO OPTEREĆENJE γ g = γ q =1,0 ZA DUGOTRAJNO OPTEREĆENJE Ψ q = 0,30 Ib= 1,79E+03 cm4 prorač. modul elast. betona E cef= 1080 kn/cm2 Msd= 8,20 knm α=e s/e cm= 6,93 α eii= 18,51 II= 2,98E+03 cm4 II= 5,30E+03 cm4 1/r I= 1,25E-04 cm-1 1/r I= 1,43E-04 cm-1 položaj neutralne osi za stanje naprezanja I y Ig= 7,67 cm položaj neutralne osi za stanje naprezanja I y Ig= 7,80 cm koeficjent (za linijsko opterećenje) k= 0,104 f= kxl 2 x1/r m = 4,12 cm f= kxl 2 x1/r I = 3,58 cm utjecaj skupljanja: S I= 1/rcsI= 1,57 cm3 3,18E-06 cm-1 radno nadvišenje f 0 = l/ 250 = 2,10 cm srednja zakrivljenost 1/rtot= 1,47E-04 cm-1 f ε,φ ε,φ = kxl 2 x1/r tot = f dop = L/250 = 2,10 cm f tot =f ε,φ -f 0 = ε,φ 4,21 cm 2,11 cm 43

PRORAČUN PROGIBA ZA NOSAČE PRAVOKUTNOG PRESJEKA -prema EC2 (od kont. opterećenja ) g= 1,80 kn/m 2 g+p= 4,55 kn/m 2 Lo= 5,00 m A s1= 4,120 cm 2 g/p= 0,50 A s2= 2,340 cm 2 za dvostruku gredicu od stalnog opterećenja M g+ g = 10,81 knm d 1 = 1,5 cm d= 13,5 cm za dvostruku gredicu od pokretnog opterećenja Mq= 6,04 knm d 2 = 1,5 cm koeficjent puzanja φ (za suhi okoliš i to=28 dana)= 1,67 L=1,05Lo= 525,0 cm relat deformacija od skupljanja εcs(za suhi okoliš)= 0,58 0/00 modul elast. betona E cm= bz= 15,5 cm f ck= 20 /25 N/mm 2 h= 15,0 cm f yk = 50 kn/cm 2 2885 kn/cm2 razred tlačne čvrstoće betona vlač. čvrstoća betona f ctm = 2,2 N/mm2 TIP ARMATURE = A β 1 = 1,0 modul elast. čelika E s= 20.000 kn/cm2 ( A - REBRASTI ČELIK, B - GLATKI ČELIK ) L ZA KRATKOTRAJNO OPTEREĆENJE γ g = γ q =1,0 ZA DUGOTRAJNO OPTEREĆENJE Ψ q = 0,30 Ib= 4,36E+03 cm4 prorač. modul elast. betona E cef= 1080 kn/cm2 Msd= 12,62 knm α=e s/e cm= 6,93 α eii= 18,51 I I = 5,72E+03 cm4 I I = 8,33E+03 cm4 1/r I= 1,02E-04 cm-1 1/r I= 1,40E-04 cm-1 položaj neutralne osi za stanje naprezanja I y Ig= 7,77 cm položaj neutralne osi za stanje naprezanja I y Ig= 8,06 cm koeficjent (za linijsko opterećenje) k= 0,104 f= kxl 2 x1/r m = 4,03 cm f= kxl 2 x1/r I = 2,93 cm utjecaj skupljanja: S I= 7,05 cm3 1/r csi= 9,09E-06 cm-1 radno nadvišenje f 0 = l/ 250 = 2,10 cm srednja zakrivljenost 1/r tot= 1,49E-04 cm-1 f ε,φ ε,φ = kxl 2 x1/r tot = f dop = L/250 = 2,10 cm f tot =f ε,φ -f 0 = ε,φ 4,29 cm 2,19 cm ******************************************************************************* PRORAČUN PROGIBA ZA NOSAČE PRAVOKUTNOG PRESJEKA -prema EC2 (od kont. opterećenja ) g= 1,80 kn/m 2 g+p= 4,28 kn/m 2 Lo= 5,50 m A s1= 5,810 cm 2 g/p= 0,50 A s2 = 4,040 cm 2 za dvostruku gredicu od stalnog opterećenja M g+ g = 12,65 knm d 1 = 1,5 cm d= 13,5 cm za dvostruku gredicu od pokretnog opterećenja Mq= 6,87 knm d 2 = 1,5 cm koeficjent puzanja φ (za suhi okoliš i to=28 dana)= 1,67 L=1,05Lo= 577,5 cm relat deformacija od skupljanja L εcs(za suhi okoliš)= 0,58 0/00 modul elast. betona E cm= bz= 15,5 cm f ck= 20 /25 N/mm 2 h= 15,0 cm f yk = 50 kn/cm 2 2885 kn/cm2 razred tlačne čvrstoće betona vlač. čvrstoća betona f ctm= 2,2 N/mm2 TIP ARMATURE = A β 1= 1,0 modul elast. čelika E s= 20.000 kn/cm2 ( A - REBRASTI ČELIK, B - GLATKI ČELIK ) ZA KRATKOTRAJNO OPTEREĆENJE γ g = γ q =1,0 ZA DUGOTRAJNO OPTEREĆENJE Ψ q = 0,30 Ib= 4,36E+03 cm4 prorač. modul elast. betona E cef = 1080 kn/cm2 Msd= 14,71 knm α=e s/e cm= 6,93 α eii= 18,51 I I= 6,45E+03 cm4 I I= 1,05E+04 cm4 1/r I= 1,05E-04 cm-1 1/r I= 1,30E-04 cm-1 položaj neutralne osi za stanje naprezanja I y Ig= 7,74 cm položaj neutralne osi za stanje naprezanja I y Ig= 7,97 cm koeficjent (za linijsko opterećenje) k= 0,104 f= kxl 2 x1/r m = 4,51 cm f= kxl 2 x1/r I = 3,65 cm utjecaj skupljanja: S I= 5,95 cm3 1/r csi= 6,10E-06 cm-1 radno nadvišenje f 0 = l/ 250 = 2,31 cm srednja zakrivljenost 1/r tot= 1,36E-04 cm-1 f ε,φ ε,φ = kxl 2 x1/r tot = f dop = L/250 = 2,31 cm f tot =f ε,φ -f 0 = ε,φ 4,72 cm 2,41 cm 44