HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 17: Φίλτρα (II)

Σχετικά έγγραφα
Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 6 ΔΙΑΦΑΝΕΙΑ 1

Ψηφιακή Επεξεργασία Σημάτων

Σχήµα 1: Χρήση ψηφιακών φίλτρων για επεξεργασία σηµάτων συνεχούς χρόνου

Διάλεξη 10. Σχεδιασμός Φίλτρων. Κεφ Φίλτρο Διαφοροποιεί το φάσμα ενός σήματος Π.χ. αφήνει να περάσουν ή σταματά κάποιες συχνότητες

Τ.Ε.Ι. Λαμίας Τμήμα Ηλεκτρονικής

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

Kεφάλαιο 7 Σχεδιασμός IIR Φίλτρων

Αντίστροφος Μετασχηματισμός Ζ. Υλοποίηση συστημάτων Διακριτού Χρόνου. Σχεδίαση φίλτρων

Σχεδιασμός Φίλτρων. Κυριακίδης Ιωάννης 2011

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

ΑΣΚΗΣΗ 6 Σχεδίαση FIR και IIR φίλτρων στο Matlab

HMY 220: Σήματα και Συστήματα Ι

ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΟΣ ΑΣΚΗΣΗ 5

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

1) Να σχεδιαστούν στο matlab οι γραφικές παραστάσεις των παρακάτω ακολουθιών στο διάστημα, χρησιμοποιώντας τις συναρτήσεις delta και step.

Παρουσίαση του μαθήματος

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5γ. Σημειώσεις μαθήματος: E mail:

Μετασχηματισμός αναλογικών φίλτρων σε ψηφιακά

Σχεδιασµός IIR Φίλτρων Φίλτρα «άπειρης» κρουστικής απόκρισης IIR - Infinite impulse response filters

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

Filter Design - Part I. Νοέµβριος 2005 ΨΕΣ 1

Άσκηση 1 η Να εξετάσετε αν τα ακόλουθα σήματα είναι περιοδικά. Στην περίπτωση περιοδικού σήματος, ποια είναι η θεμελιώδης περίοδος; 1 )

ΗΛΕΚΤΡΟΝΙΚΗ Ι ΔΙΑΓΡΑΜΜΑΤΑ BODE ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΤΕΥΧΟΣ ΣΗΜΕΙΩΣΕΩΝ

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Ζ (ΖTransform)

Αναλογικά φίλτρα. Για να επιτύχουµε µια επιθυµητή απόκριση χρειαζόµαστε σηµαντικά λιγότερους συντελεστές γιαένα IIR φίλτροσεσχέσηµετοαντίστοιχο FIR.

HMY 220: Σήματα και Συστήματα Ι

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 20: Διακριτός Μετασχηματισμός Fourier (Discrete Fourier Transform DFT)

Σχήμα Χαμηλοδιαβατά φίλτρα:

Ψηφιακή Επεξεργασία Σημάτων

Σχεδιασµός IIR φίλτρων

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. στο χώρο της συχνότητας

Διάρκεια εξέτασης 2 ώρες

Ψηφιακή Επεξεργασία Σημάτων

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

HMY 220: Σήματα και Συστήματα Ι

Ιατρικά Ηλεκτρονικά. Χρήσιμοι Σύνδεσμοι. ΙΑΤΡΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ - ΔΙΑΛΕΞΗ 5α. Σημειώσεις μαθήματος: E mail:

stopband Passband stopband H L H ( e h L (n) = 1 π = 1 h L (n) = sin ω cn

Ψηφιακή Επεξεργασία Σήματος

HMY 220: Σήματα και Συστήματα Ι

(s) V Ιn. ΘΕΜΑ 1 1. Υπολογίστε την συνάρτηση µεταφοράς τάσης του. του κυκλώµατος και χαρακτηρίστε το.

Ολοκληρωµένο Περιβάλλον Σχεδιασµού Και Επίδειξης Φίλτρων

ΕΝΟΤΗΤΑ 12: ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΔΙΑΓΡΑΜΜΑΤΑ BODE

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Ο Μετασχηματισμός Ζ. Ανάλυση συστημάτων με το μετασχηματισμό Ζ

ΘΕΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟ ΜΑΘΗΜΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ (ΚΙΙΙ)

Σήματα και Συστήματα. Διάλεξη 10: Γραμμικά Φίλτρα. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Αναλογικά φίλτρα. Τα IIR φίλτρα μπορούν εύκολα να σχεδιασθούν αρχίζοντας από ένα αναλογικό φίλτρο και

10-Μαρτ-2009 ΗΜΥ Παραθύρωση Ψηφιακά φίλτρα

HMY 220: Σήματα και Συστήματα Ι

A k s s k. H c (s) = H(z) = 1 e s kt dz 1

Σχεδιασµός IIR φίλτρων - Λύσεις των Ασκήσεων

Ανάλυση ΓΧΑ Συστημάτων

HMY 220: Σήματα και Συστήματα Ι

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων. Διάλεξη 22: Γρήγορος Μετασχηματισμός Fourier Ανάλυση σημάτων/συστημάτων με το ΔΜΦ

ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Μετασχηµατισµός αναλογικών φίλτρων σε ψηφιακά

ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΝΙΚΑ ΦΙΛΤΡΑ

6-Μαρτ-2009 ΗΜΥ Μετασχηματισμός z

( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2

Ψηφιακός Έλεγχος. 10 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1

Σχεδιασµός ΙIR Φίλτρων

Σύνθεση και Σχεδίαση Παθητικών Φίλτρων LC

Κεφάλαιο 6 Σχεδιασμός FIR φίλτρων

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Σήματα και Συστήματα. Διάλεξη 1: Σήματα Συνεχούς Χρόνου. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα ΙΙ

Ενδεικτικές Ασκήσεις για το μάθημα: «Μετρήσεις Φυσικών Μεγεθών»

HMY 220: Σήματα και Συστήματα Ι

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Συστήματα Επικοινωνιών Ι

Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο

Μετασχηµατισµός Ζ (z-tranform)

Ο αντίστροφος μετασχηματισμός Laplace ορίζεται από το μιγαδικό ολοκλήρωμα : + +

1. Φάσμα συχνοτήτων 2. Πεδίο μιγαδ

Σήματα και Συστήματα

H ap (z) = z m a 1 az m (1)

Συστήματα Αυτόματου Ελέγχου

Ανάλυση Ηλεκτρικών Κυκλωμάτων

3. Δίνεται ψηφιακό σύστημα που περιγράφεται από τη σχέση. y[n] = x[n]-2x[n-1] y[n] = x[n]-2x[1-n]

ΕΥΑΙΣΘΗΣΙΑ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

Κεφάλαιο 6. Έλεγχος στο Πεδίο της Συχνότητας. Τόπος Ριζών Διάγραµµα Bode Διάγραµµα Nyquist Ψηφιακός PID

Ψηφιακή Επεξεργασία Σημάτων

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

(jω) ΣΧΗΜΑ 3.1 ΣΧΗΜΑ 3.2

Υπολογίζουμε εύκολα τον αντίστροφο Μετασχηματισμό Fourier μιας συνάρτησης χωρίς να καταφεύγουμε στην εξίσωση ανάλυσης.

Λύσεις θεμάτων Α εξεταστικής περιόδου Χειμερινού εξαμήνου

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟ ΟΥ ΙΟΥΝΙΟΥ 2004., η οποία όµως µπορεί να γραφεί µε την παρακάτω µορφή: 1 e

15/3/2009. Ένα ψηφιακό σήμα είναι η κβαντισμένη εκδοχή ενός σήματος διάκριτου. χρόνου. Φλώρος Ανδρέας Επίκ. Καθηγητής

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ. Μετασχηµατισµός Laplace. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

Παραρτήματα. Παράρτημα 1 ο : Μιγαδικοί Αριθμοί

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών

Επομένως το εύρος ζώνης του διαμορφωμένου σήματος είναι 2.

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

Ψηφιακή Επεξεργασία Σημάτων

ΜΕΡΟΣ Α: Απαραίτητες γνώσεις

Transcript:

HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 17: Φίλτρα (II)

Φίλτρα Bu*erworth, Chebyshev και ελλειπτικά φίλτρα Είναι οι πιο δημοφιλείς τεχνικές σχεδιασμού φίλτρων συνεχούς χρόνου (Appendix B Oppenheim) Υπάρχουν αναλυτικές εκφράσεις και για τις 3 κατηγορίες Ιδιότητες: Bu^erworth μονοτονική απόκριση συχνοτήτων στις ζώνες διέλευσης και αποκοπής, maximally flat in passband Chebyshev Type I: συμμετρική κυμάτωση (ripple) στη διέλευσης, μονοτονική απόκριση στη αποκοπής Type II: μονοτονική απόκριση στη διέλευσης, συμμετρική κυμάτωση στη αποκοπής Ellippc - συμμετρική κυμάτωση στις ζώνες διέλευσης και αποκοπής Ο σχεδιασμός φίλτρων ΔΧ Bu^erworth, Chebyshev, Ellippc με βάση αυτά τα αντίστοιχα φίλτρα ΣΧ και το διγραμμικό μετασχηματισμό έχει επίσης χρησιμοποιηθεί σε ευρεία κλίμακα Εντολές στο Matlab που υλοποιούν τέτοια φίλτρα: bu^er, bu^ord, cheby1, cheby2, cheby1ord, cheby2ord, ellip, ellipord 2

Φίλτρα Bu*erworth, Chebyshev και ελλειπτικά φίλτρα Παραδείγματα Butterworth Chebyshev Elliptic 3

Φίλτρα - Παράδειγμα Σχεδιασμός με μέθοδο impulse invariance Βαθυπερατό φίλτρο Bu^erworth προ- διαγραφές o Passband: 0-0.2π, κέρδος - 1 με 0 db, stopband: πάνω από 0.3π, εξασθένηση τουλάχιστον 15 db, άρα: διέλευσης µεταβατική αποκοπής Βήμα 1 o Μετασχηματισμός προδιαγραφών σε συνεχή χρόνο Μπορούμε να υποθέσουμε Τ d =1 άρα (Ω=ω/Τ d ): Βήμα 2 o Το φίλτρο Bu^erworth συνεχούς χρόνου έχει μέτρο: o Πρέπει: o Αρα: 4 (1) Ν ακέραιος, άρα Ν=6. Μπορούμε να αλλάξουμε και την τιμή του Ωc. Πχ αντικαθιστώντας Ν=6 στην (1) παίρνουμε Ωc=0.7032. Για αυτή την τιμή μάλιστα υπερβαίνουμε τις προδιαγραφές στη αποκοπής

Φίλτρα - Παράδειγμα Βήμα 3 o Προσδιορισμός πόλων - το κέρδος του φίλτρου συνεχούς χρόνου έχει 12 πόλους (2Ν=12) καθώς Για s=jω: Επομένως οι πόλοι ικανοποιούν την: διέλευσης µεταβατική αποκοπής Οι ποσότητες s/jω c είναι 2Ν- οστές ρίζες του - 1: Οι πόλοι βρίσκονται σε έναν κύκλο με ακτίνα Ωc(=0.7032) και απέχουν π/6 μεταξύ τους. Οι πόλοι του κέρδους προκύπτουν σε ζευγάρια από την συνάρτηση μεταφοράς συνεχούς χρόνου, δηλ αν το s k είναι πόλος της Η(s) τότε και το s k είναι πόλος της Η(s). Πως επιλέγουμε τους πόλους της H(s)? Για να είναι αιτιατό και ευσταθές το σύστημα H(s) πρέπει όλοι οι πόλοι του να είναι στο αριστερό ημιεπίπεδο, άρα: 5

Φίλτρα - Παράδειγμα Βήμα 4 o Προσδιορισμός της συνάρτησης μεταφοράς H(s) Πλέον γνωρίζουμε τους πόλους, άρα: o Πως μπορούμε να προσδιορίσουμε το Κ 0? Θέτοντας H c (0)=1 παίρνουμε: διέλευσης µεταβατική αποκοπής Ομως Αρα: o Τελικά λοιπόν: 6

Φίλτρα - Παράδειγμα Βήμα 5 o o Προσδιορισμός της συνάρτησης μεταφοράς H(z) Impulse invariance (μετά από ανάλυση σε μερικά κλάσματα): διέλευσης µεταβατική αποκοπής 7 Το τελικό φίλτρο ΔΧ πληροί τις προδιαγραφές, άρα το φίλτρο συνεχούς χρόνου είναι αρκούντως περιορισμένου εύρους ς, οπότε έχουμε μικρό ποσοστό αναδίπλωσης Η μέθοδος impulse invariance είναι κατάλληλη μόνο για φίλτρα με περιορισμένο εύρος ς (πχ βαθυπερατά). Για υψιπερατά η ζωνοφρακτικά φίλτρα χρειάζεται να φιλτράρουμε κατάλληλα!

Διγραμμικός μετασχηματισμός (bilinear transformaoon) Ο διγραμμικός μετασχηματισμός αναπαριστά αλγεβρικά την μεταβλητή s στη μεταβλητή z έτσι ώστε ολόκληρος ο άξονας jω του επιπέδου s να αντιστοιχεί σε μια περιστροφή του μοναδιαίου κύκλου στο επίπεδο z, δηλ: Ο (μη γραμμικός) μετασχηματισμός που το επιτυγχάνει είναι: Η παράμετρος δειγματοληψίας T d δεν επηρεάζει το αποτέλεσμα (καθώς πηγαίνουμε από προδιαγραφές ΔΧ σε ΣΧ και πάλι πίσω σε ΔΧ). Ο αντίστροφος μετασχηματισμός είναι: Για έχουμε: Αν σ<0, z <1 για κάθε Ω Αν σ>0, z >1 για κάθε Ω Αρα ευσταθή αιτιατά φίλτρα ΣΧ παραμένουν ευσταθή και αιτιατά σε ΔΧ. Για s=jω, άρα z =1 για κάθε Ω και ο άξονας Ω αναπαριστάται στο μοναδιαίο κύκλο. 8 Ισοδύναμα:

Διγραμμικός μετασχηματισμός (bilinear transformaoon) Ποια είναι η σχέση μεταξύ Ω και ω? Αρα: Τελικά: 9 Αποφεύγουμε την αναδίπλωση, αλλά έχουμε μη γραμμικό μετασχηματισμό της συχνότητας!

Διγραμμικός μετασχηματισμός (bilinear transformaoon) Θα πρέπει η μορφή της απόκρισης συχνοτήτων να είναι τέτοια ώστε να μην έχουμε σημαντικές παραμορφώσεις από αυτόν το μετασχηματισμό φίλτρα με τμηματικά σταθερή απόκριση (π.χ. βαθυπερατά, υψιπερατά, ζωνοπερατά κλπ) Ο διγραμμικός μετασχηματισμός παραμορφώνει τη φάση Δεν μπορούμε να πάρουμε φίλτρο ΔΧ με γραμμική φάση από ένα φίλτρο ΣΧ με γραμμική φάση 10

Παράδειγμα Φίλτρο Bu*erworth Εστω το φίλτρο με τις προδιαγραφές του προηγούμενου παραδείγματος σε ΔΧ: Θα σχεδιάσουμε φίλτρο Bu^erworth με διγραμμικό μετασχηματισμό Βήμα 1: Προδιαγραφές σε συνεχή χρόνο Βήμα 2 - Διαλέγουμε T d =1. Εχουμε μονοτονική απόκριση συχνοτήτων άρα πρέπει: Απόκριση συχνοτήτων: Λύνοντας ως προς Ω,Ν: Ν ακέραιος: 11

Παράδειγμα Φίλτρο Bu*erworth Βήμα 3: Εύρεση πόλων Οπως και πριν είναι 2Ν και προκύπτουν από τις 2Ν- οστές ρίζες της μονάδας, και έχουμε ακτίνα 0.766 - Διαλέγουμε τους 6 πόλους στο αριστερό ημιεπίπεδο Βήμα 4: Συνάρτηση μεταφοράς ΣΧ Αρα: Βήμα 5: Συνάρτηση μεταφοράς ΔΧ Διγραμμικός μετ/σμος 12

Παράδειγμα Φίλτρο Bu*erworth Η απόκριση συχνοτήτων πέφτει πολύ πιο γρήγορα λόγω του μη γραμμικού μετασχηματισμού συχνότητας (έχουμε αντιστοιχήσει το ω=π στο Ω=άπειρο!) 13