Geometrija (I smer) deo 1: Vektori

Σχετικά έγγραφα
Matematika 1 { fiziqka hemija

Vektori Koordinate Proizvodi Centar masa Transformacije UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET. Geometrija I{smer.

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

Elementi spektralne teorije matrica

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Operacije s matricama

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Zbirka rešenih zadataka iz Matematike I

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

Geometrija (I smer) deo 2: Afine transformacije

SISTEMI NELINEARNIH JEDNAČINA

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Drugi deo (uvoda) Vektori

3.1 Granična vrednost funkcije u tački

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Teorijske osnove informatike 1

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet.

Vektorski prostori. Vektorski prostor

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

Dijagonalizacija operatora

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

Analitička geometrija

Zadaci iz trigonometrije za seminar

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Linearna algebra 2 prvi kolokvij,

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

Linearna algebra 2 prvi kolokvij,

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.

VEKTORI. Opera u Sidneju, Australija

APROKSIMACIJA FUNKCIJA

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

1 Promjena baze vektora

Vektori. 28. studenoga 2017.

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Ispitivanje toka i skiciranje grafika funkcija

Analitička geometrija i linearna algebra

7 Algebarske jednadžbe

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija

VEKTORI. Nenad O. Vesi 1. = α, ako je

Slika 9: Izometrijske transformacije koordinata. Ovo razmatranje možemo sumirati sledećom teoremom

Vektorska algebra i analiza

radni nerecenzirani materijal za predavanja

Osnovne teoreme diferencijalnog računa

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Računarska grafika. Rasterizacija linije

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora

Matematiqka gimnazija u Beogradu Vektori. Milivoje Luki

5. Karakteristične funkcije

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Linearna algebra za fizičare, zimski semestar Mirko Primc

18. listopada listopada / 13

Zadaci iz Linearne algebre (2003/4)

numeričkih deskriptivnih mera.

10 Afina preslikavanja ravni

ELEKTROTEHNIČKI ODJEL

O trouglu. mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

EUKLIDSKA GEOMETRIJA

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

Algebarske strukture

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

I Pismeni ispit iz matematike 1 I

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

Linearna algebra I, zimski semestar 2007/2008

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Riješeni zadaci: Nizovi realnih brojeva

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Linearna algebra. skripta. Januar 2013.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Računarska grafika. Rasterizacija linije

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

Univerzitet u Kragujevcu Tehnički fakultet u Čačku Katedra za matematiku Zbirka zadataka za prijemni ispit iz MATEMATIKE Čačak, 2009.

Dvanaesti praktikum iz Analize 1

Linearna algebra. skripta. Januar 2013.

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

Jednodimenzionalne slučajne promenljive

Zadaci iz Osnova matematike

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

1 Pojam funkcije. f(x)

Transcript:

Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013.

Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo da su dve usmerene duži ekvivalentne, tj. predstavljaju isti vektor, ako imaju isti pravac, smer i intenzitet.

Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo da su dve usmerene duži ekvivalentne, tj. predstavljaju isti vektor, ako imaju isti pravac, smer i intenzitet. Za svaku tačku A i vektor v postoji jedinstvena usmerena duž AB takva da je v = AB. Usmerenu duž AB je predstavnik vektora AB.

Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo da su dve usmerene duži ekvivalentne, tj. predstavljaju isti vektor, ako imaju isti pravac, smer i intenzitet. Za svaku tačku A i vektor v postoji jedinstvena usmerena duž AB takva da je v = AB. Usmerenu duž AB je predstavnik vektora AB. kolinearni vektori, komplanarni vektori, nula vektor

Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo da su dve usmerene duži ekvivalentne, tj. predstavljaju isti vektor, ako imaju isti pravac, smer i intenzitet. Za svaku tačku A i vektor v postoji jedinstvena usmerena duž AB takva da je v = AB. Usmerenu duž AB je predstavnik vektora AB. kolinearni vektori, komplanarni vektori, nula vektor Sa V 2 označavamo skup svih vektora ravni, a sa V 3 skup svih vektora prostora. Ako nam nije važno da li radimo u ravni ili prostoru, skup vektora označavamo sa V.

Definicija (Sabiranje vektora) Neka je v = AB, u = BC. Zbir vektora v i u je vektor v + u := AC.

Definicija (Sabiranje vektora) Neka je v = AB, u = BC. Zbir vektora v i u je vektor v + u := AC. Definicija (Množenje vektora skalarom (brojem)) Neka je α R broj i v V vektor. Proizvod α v broja i vektora je vektor u koji ima: (P) isti pravac kao vektor v ; (I) intenzitet u = α v ; (S) smer vektora u je isti kao smer vektora v ako α > 0, a suprotan ako α < 0.

Razlika dva vektora v u := v +( 1) u je zbir vektora v i vektora 1 u, suprotnog vektoru u.

Razlika dva vektora v u := v +( 1) u je zbir vektora v i vektora 1 u, suprotnog vektoru u. Ako su α 1,..., α n R brojevi, a v 1,..., v n vektori, tada se izraz α 1 v1 + + α n vn naziva linearna kombinacija vektora.

Razlika dva vektora v u := v +( 1) u je zbir vektora v i vektora 1 u, suprotnog vektoru u. Ako su α 1,..., α n R brojevi, a v 1,..., v n vektori, tada se izraz α 1 v1 + + α n vn naziva linearna kombinacija vektora. Primer Vektori v = AB, u = CD su zadati svojim predstavnicima (na papiru). Odrediti predstavnika vektora v 2 u.

Skup V svih vektora (ravni ili prostora) je vektorski prostor u smislu Linearne algebre, tj. važi Teorema Ako su v, u, w V vektori, a α, β R realni brojevi tada važi: (S1) (S2) (S3) (S4) v +( u + w ) = ( v + u )+ w, (M1) α( v + u ) = α v +α u, v + 0 = v = 0 + v, (M2) α(β v ) = (αβ) v, v +( v ) = 0, (M3) (α + β) v = α v +β v, v + u = u + v ; (M4) 1 v = v.

Linearna zavisnost i nezavisnost vektora

Linearna zavisnost i nezavisnost vektora Definicija Vektori a 1,..., a n su linearno nezavisni ako iz relacije α 1 a1 + + α n an = 0 sledi α 1 = = α n = 0. U suprotnom, kada je bar jedan od brojeva α i različit od nule vektori se nazivaju linearno zavisnim.

Linearna zavisnost i nezavisnost vektora Definicija Vektori a 1,..., a n su linearno nezavisni ako iz relacije α 1 a1 + + α n an = 0 sledi α 1 = = α n = 0. U suprotnom, kada je bar jedan od brojeva α i različit od nule vektori se nazivaju linearno zavisnim. Primer Vektori odredjeni stranicama trougla su linearno zavisni.

Linearna zavisnost i nezavisnost vektora Definicija Vektori a 1,..., a n su linearno nezavisni ako iz relacije α 1 a1 + + α n an = 0 sledi α 1 = = α n = 0. U suprotnom, kada je bar jedan od brojeva α i različit od nule vektori se nazivaju linearno zavisnim. Primer Vektori odredjeni stranicama trougla su linearno zavisni. Teorema Nenula vektori a i b su linearno zavisni ako i samo ako su kolinearni.

Teorema U vektorskom prostoru V 2 postoje dva linearno nezavisna vektora, a svaka tri vektora su linearno zavisna.

Teorema U vektorskom prostoru V 2 postoje dva linearno nezavisna vektora, a svaka tri vektora su linearno zavisna. Teorema U vektorskom prostoru V 3 postoje tri linearno nezavisna vektora, a svaka četiri vektora su linearno zavisna. Primer Dat je paralelogram ABCD, a tačke P, Q, R, S su redom središta ivica AB, BC, CD, DA. a) Izraziti PQ +2 PS preko vektora AB i AD. b) Izraziti QS PR preko vektora AB i AD.

Koordinate vektora i tačaka

Koordinate vektora i tačaka baza i dimenzija vektorskog prostora

Koordinate vektora i tačaka baza i dimenzija vektorskog prostora Neka je e = ( e 1, e 2 ) neka baza vektora ravni. Ako za neki vektor v važi v = v1 e1 +v 2 e2 tada kažemo da su (v 1, v 2 ) koordinate vektora v u bazi e i pišemo [ v ] e = (v 1, v 2 ). Slično je u prostoru.

Koordinate vektora i tačaka baza i dimenzija vektorskog prostora Neka je e = ( e 1, e 2 ) neka baza vektora ravni. Ako za neki vektor v važi v = v1 e1 +v 2 e2 tada kažemo da su (v 1, v 2 ) koordinate vektora v u bazi e i pišemo [ v ] e = (v 1, v 2 ). Slično je u prostoru. Primer Dat je paralelogram OABC. Tačke P i Q su središta ivica AB i BC, redom. Odrediti koordinate vektora PQ u bazi e = ( e 1, e 2 ), ako je e 1 = OA, e 2 = OC.

Neka je e baza vektorskog prostora i O fiksirana tačka. Tada se Oe naziva koordinatni sistem ili reper.

Neka je e baza vektorskog prostora i O fiksirana tačka. Tada se Oe naziva koordinatni sistem ili reper. Definicija Koordinate tačke M reperu Oe definišemo kao koordinate vektora OM u bazi e, tj. [M] Oe := [ OM] e.

Neka je e baza vektorskog prostora i O fiksirana tačka. Tada se Oe naziva koordinatni sistem ili reper. Definicija Koordinate tačke M reperu Oe definišemo kao koordinate vektora OM u bazi e, tj. Primer [M] Oe := [ OM] e. Neka je OABC paralelogram, i neka je e = ( OA, OB) baza. Odrediti koordinate temena paralelograma u reperu Oe.

Neka je e baza vektorskog prostora i O fiksirana tačka. Tada se Oe naziva koordinatni sistem ili reper. Definicija Koordinate tačke M reperu Oe definišemo kao koordinate vektora OM u bazi e, tj. Primer [M] Oe := [ OM] e. Neka je OABC paralelogram, i neka je e = ( OA, OB) baza. Odrediti koordinate temena paralelograma u reperu Oe. Koordinate vektora se dobijaju oduzimanjem koordinata tačaka: [ MN] e = [ MO + ON] e = [ ON] e [ OM] e = [N] Oe [M] Oe.

Skalarni proizvod

Skalarni proizvod Definicija Skalarni proizvod vektora je preslikavanje koje dvama vektorima dodeljuje broj v u := v u cos φ gde je φ [0, π) (neorjentisani) ugao izmedju vektora v i u.

Skalarni proizvod Definicija Skalarni proizvod vektora je preslikavanje koje dvama vektorima dodeljuje broj v u := v u cos φ gde je φ [0, π) (neorjentisani) ugao izmedju vektora v i u. Znak skalarnog proizvoda nam govori da li je ugao medju vektorima oštar, prav ili tup.

Skalarni proizvod Definicija Skalarni proizvod vektora je preslikavanje koje dvama vektorima dodeljuje broj v u := v u cos φ gde je φ [0, π) (neorjentisani) ugao izmedju vektora v i u. Znak skalarnog proizvoda nam govori da li je ugao medju vektorima oštar, prav ili tup. Pomoću skalarnog proizvoda vektora mogu se računati dužine i uglovi v = v v, cos ( v, u ) = v u v u.

Ortonormirana baza je ona baza čiji su svi vektori medjusobno ortogonalni i jedinični, tj. Dakle, baza e = ( e 1,..., e n ) ortonormirana ako važi e i e i = 1 za iste vektore i e i e j = 0 za različite vektore.

Ortonormirana baza je ona baza čiji su svi vektori medjusobno ortogonalni i jedinični, tj. Dakle, baza e = ( e 1,..., e n ) ortonormirana ako važi e i e i = 1 za iste vektore i e i e j = 0 za različite vektore. Odatle sledi da je skalarni proizvod vektora v = v 1 e1 +v 2 e2 i u = u 1 e1 +u 2 e2 datih u ortonormiranoj bazi jednak v u = v1 u 1 + v 2 u 2. U prostoru važi slična formula v u = v 1 u 1 + v 2 u 2 + v 3 u 3.

Ortonormirana baza je ona baza čiji su svi vektori medjusobno ortogonalni i jedinični, tj. Dakle, baza e = ( e 1,..., e n ) ortonormirana ako važi e i e i = 1 za iste vektore i e i e j = 0 za različite vektore. Odatle sledi da je skalarni proizvod vektora v = v 1 e1 +v 2 e2 i u = u 1 e1 +u 2 e2 datih u ortonormiranoj bazi jednak v u = v1 u 1 + v 2 u 2. U prostoru važi slična formula v u = v 1 u 1 + v 2 u 2 + v 3 u 3. Zadatak Dati su vektori v = ( 6 6, 2 2, 3 3 ) i u = ( 2 2, 6 6, 3 3 ) iz V3 svojim koordinatama u ortonormiranoj bazi. Odrediti: a) v ; b) ( v, u ).

Orjentacija u ravni i prostoru

Orjentacija u ravni i prostoru Orjentaciju uvodimo intuitivno. Šta je pozitivna, a šta negativna orjentacija je stvar dogovora.

Orjentacija u ravni i prostoru Orjentaciju uvodimo intuitivno. Šta je pozitivna, a šta negativna orjentacija je stvar dogovora. Trougao ABC u ravni je pozitivne orjentacije ako je smer obilaska njegovih temena suprotan smeru kretanja kazaljke na satu.

Orjentacija u ravni i prostoru Orjentaciju uvodimo intuitivno. Šta je pozitivna, a šta negativna orjentacija je stvar dogovora. Trougao ABC u ravni je pozitivne orjentacije ako je smer obilaska njegovih temena suprotan smeru kretanja kazaljke na satu. Baza ravni ( OA, OB) je pozitivne orjentacije, ako je trougao OAB pozitivne orjentacije.

Orjentacija u ravni i prostoru Orjentaciju uvodimo intuitivno. Šta je pozitivna, a šta negativna orjentacija je stvar dogovora. Trougao ABC u ravni je pozitivne orjentacije ako je smer obilaska njegovih temena suprotan smeru kretanja kazaljke na satu. Baza ravni ( OA, OB) je pozitivne orjentacije, ako je trougao OAB pozitivne orjentacije. Orjentacija baze prostora ( e 1, e 2, e 3 ) se odredjuje pravilom desne ruke.

Vektorski proizvod Definicija Vektorski proizvod je operacija koja dvama vektorima prostora v i u dodeljuje vektor v u kome su intenzitet, pravac i smer odredjeni sa: (I) v u = v u sin φ, gde je φ ugao izmedju v i u. (P) vektor v u je normalan na svaki od vektora v i u. (S) smer vektora v u je takav da je baza ( v, u, v u ) pozitivne orjentacije.

Vektorski proizvod Definicija Vektorski proizvod je operacija koja dvama vektorima prostora v i u dodeljuje vektor v u kome su intenzitet, pravac i smer odredjeni sa: (I) v u = v u sin φ, gde je φ ugao izmedju v i u. (P) vektor v u je normalan na svaki od vektora v i u. (S) smer vektora v u je takav da je baza ( v, u, v u ) pozitivne orjentacije. Primetimo da je na osnovu (I) intenzitet vektorskog proizvoda jednak površini paralelograma razapetog vektorima koje množimo.

Vektorski proizvod Definicija Vektorski proizvod je operacija koja dvama vektorima prostora v i u dodeljuje vektor v u kome su intenzitet, pravac i smer odredjeni sa: (I) v u = v u sin φ, gde je φ ugao izmedju v i u. (P) vektor v u je normalan na svaki od vektora v i u. (S) smer vektora v u je takav da je baza ( v, u, v u ) pozitivne orjentacije. Primetimo da je na osnovu (I) intenzitet vektorskog proizvoda jednak površini paralelograma razapetog vektorima koje množimo. Dakle, vektori v i u prostora su linearno nezavisni ako i samo ako je v u 0.

Teorema (osobine vektorskog proizvoda) Za vektore v, u, w prostora i brojeve α, β R važi: 1) v u = u v (antisimetričnost), 2) (α v +β u ) w= α( v w) + β( u w) (linearnost), Primetimo da vektorski proizvod nije komutativan, već antikomutativan. Vektorski proizvod nije ni asocijativan.

Teorema (osobine vektorskog proizvoda) Za vektore v, u, w prostora i brojeve α, β R važi: 1) v u = u v (antisimetričnost), 2) (α v +β u ) w= α( v w) + β( u w) (linearnost), Primetimo da vektorski proizvod nije komutativan, već antikomutativan. Vektorski proizvod nije ni asocijativan. To sledi iz formule za dvostruki vektorski proizvod: v (u w) = (v w)u (v u)w.

Za ortonormiranu bazu e = ( e 1, e 2, e 3 ) pozitivne orjentacije važe sledeći proizvodi e 1 e2 e3 e 1 0 e3 e 2 e 2 e 3 0 e1 e 3 e2 e 1 0

Za ortonormiranu bazu e = ( e 1, e 2, e 3 ) pozitivne orjentacije važe sledeći proizvodi e 1 e2 e3 e 1 0 e3 e 2 e 2 e 3 0 e1 e 3 e2 e 1 0 Neka je v = v 1 e1 +v 2 e2 +v 3 e3, u = u 1 e1 +u 2 e2 +u 3 e3 v u = (v2 u 3 v 3 u 2 ) e 1 +(v 3 u 1 v 1 u 3 ) e 2 +(v 1 u 2 v 2 u 1 ) e 3 = e1 e 2 e3 = v 1 v 2 v 3. u 1 u 2 u 3

Neka su A(a 1, a 2 ), B(b 1, b 2 ) i C(c 1, c 2 ) tačke ravni. Ako stavimo da je treća koordinata tih tačaka jednaka 0, dobijamo

Neka su A(a 1, a 2 ), B(b 1, b 2 ) i C(c 1, c 2 ) tačke ravni. Ako stavimo da je treća koordinata tih tačaka jednaka 0, dobijamo AB AC= b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 e 3 =: D ABC e3.

Neka su A(a 1, a 2 ), B(b 1, b 2 ) i C(c 1, c 2 ) tačke ravni. Ako stavimo da je treća koordinata tih tačaka jednaka 0, dobijamo AB AC= b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 e 3 =: D ABC e3. Lako se proverava da važi: površina trougla ABC je P ABC = 1 2 D ABC. tačke A, B, C ravni su kolinearne ako i samo ako D ABC = 0. trougao ABC je pozitivne orjentacije ako D ABC > 0.

Neka su A(a 1, a 2 ), B(b 1, b 2 ) i C(c 1, c 2 ) tačke ravni. Ako stavimo da je treća koordinata tih tačaka jednaka 0, dobijamo AB AC= b 1 a 1 b 2 a 2 c 1 a 1 c 2 a 2 e 3 =: D ABC e3. Lako se proverava da važi: Primer površina trougla ABC je P ABC = 1 2 D ABC. tačke A, B, C ravni su kolinearne ako i samo ako D ABC = 0. trougao ABC je pozitivne orjentacije ako D ABC > 0. Odrediti površinu trougla ABC, ako je A(1, 2), B(2, 3), C( 3, 4). Da li je trougao ABC pozitivne orjentacije?

Teorema Tačka M pripada trouglu ABC ako i samo ako su D ABM, D BCM i D CAM istog znaka.

Teorema Tačka M pripada trouglu ABC ako i samo ako su D ABM, D BCM i D CAM istog znaka. Primer Da li tačka M(2, 3) pripada trouglu ABC, ako je A(1, 7), B( 3, 3), C(3, 3)?

Mešoviti proizvod Definicija Mešoviti proizvod je operacija koja trima vekorima prostora dodeljuje broj [ v, u, w] := ( v u ) w.

Mešoviti proizvod Definicija Mešoviti proizvod je operacija koja trima vekorima prostora dodeljuje broj [ v, u, w] := ( v u ) w. Teorema Apsolutna vrednost mešovitog proizvoda [ v, u, w] jednaka je površina paralelepipeda odredjenog vektorima v, u, w.

Mešoviti proizvod Definicija Mešoviti proizvod je operacija koja trima vekorima prostora dodeljuje broj [ v, u, w] := ( v u ) w. Teorema Apsolutna vrednost mešovitog proizvoda [ v, u, w] jednaka je površina paralelepipeda odredjenog vektorima v, u, w. Tri vektora su linearno nezavisna (nekomplanarna) ako i samo ako im je mešoviti proizvod različit od nule.

Teorema (osobine mešovitog proizvoda) Za vektore v, u, w, t V 3 i α, β R važi: 1) [ v, u, w] = [ u, v, w], 2) [ v, u, w] = [ u, w, v ] = [ w, v, u ], 3) [α v +β u, w, t ] = α[ v, w, t ] + β[ u, w, t ] (linearnost).

Teorema (osobine mešovitog proizvoda) Za vektore v, u, w, t V 3 i α, β R važi: 1) [ v, u, w] = [ u, v, w], 2) [ v, u, w] = [ u, w, v ] = [ w, v, u ], 3) [α v +β u, w, t ] = α[ v, w, t ] + β[ u, w, t ] (linearnost). U ortonormiranoj bazi pozitivne orjentacije, mešoviti proizvod se računa pomoću determinante: [ v, u, w] v 1 v 2 v 3 = u 1 u 2 u 3 w 1 w 2 w 3.

Teorema (osobine mešovitog proizvoda) Za vektore v, u, w, t V 3 i α, β R važi: 1) [ v, u, w] = [ u, v, w], 2) [ v, u, w] = [ u, w, v ] = [ w, v, u ], 3) [α v +β u, w, t ] = α[ v, w, t ] + β[ u, w, t ] (linearnost). U ortonormiranoj bazi pozitivne orjentacije, mešoviti proizvod se računa pomoću determinante: [ v, u, w] v 1 v 2 v 3 = u 1 u 2 u 3 w 1 w 2 w 3. Primer Odrediti zapreminu tetraedra ABCD ako je A(1, 2, 3), B(0, 1, 1), C( 1, 2, 3), D(1, 0, 0).