Linearna algebra. skripta. Januar 2013.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Linearna algebra. skripta. Januar 2013."

Transcript

1 Linearna algebra skripta Januar 03.

2

3 Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta u Beogradu koji sam držao od oktobra 0. do januara 03. Kao glavni propratni udžbenik uz ova skripta, studentima savetujem da koriste []. To je knjiga dostupna svima i ona uključuje materijal sa standardnog osnovnog kursa linearne algebre za studente univerziteta u SAD. Uz nju je, kao dodatak, priložena knjiga rešenja zadataka [3]. Za ovaj udžbenik sam se opredelio zbog laganog stila kao i bogatstva primera i zadataka za vežbu. Neki delovi ovog teksta su nastali pod uticajem knjiga [], [5] i [4]. Studentima takod e savetujem da koriste skripta [6]. Materijal je podeljen u trinaest delova po nedeljama kako su se odvijala predavanja (svake nedelje je održan jedan blok od tri časa). Ta podela nije najprirodnija po sadržaju ali je bila praktična zbog numeracije tvrd enja tokom celog kursa. To je i osnovni razlog zašto sam tu organizaciju zadržao i u skriptama. Svi komentari su dobrodošli! U Beogradu, 0. januar 03. Zoran Petrić zpetric@mi.sanu.ac.rs Zahvalnica Velike zasluge za uspeh ovog kursa pripadaju kolegi Filipu Samardžiću koji je svojom energijom i zalaganjem pomogao studentima da savladaju gradivo. v

4

5 SADRŽAJ Reč autora Zahvalnica Osnovni pojmovi i notacija v v x Odeljak. Prva nedelja.. Skup R n i neke operacije.. Sistemi linearnih jednačina.3. Gausove operacije 3.4. Predstavljanje opšteg rešenja 4.5. Matrice i skraćeni zapis Gausove metode 7 Odeljak. Druga nedelja 9.. Redukovana stepenasta forma 9.. Vektorski prostori Odeljak 3. Treća nedelja Potprostori i linearni omotači Linearna nezavisnost 7 Odeljak 4. Četvrta nedelja 4.. Baza vektorskog prostora 4.. Dimenzija vektorskog prostora 4 Odeljak 5. Peta nedelja Vektorski prostori i linearni sistemi Neke operacije s potprostorima 30 Odeljak 6. Šesta nedelja Višestruka uloga R n Skalarni proizvod i norma vektora u R n Projekcija vektora na pravu 40 Odeljak 7. Sedma nedelja Gram-Šmitov postupak ortogonalizacije Ortogonalna projekcija vektora na potprostor 45 vii

6 viii Sadržaj Odeljak 8. Osma nedelja Linearna preslikavanja, izomorfizmi Linearna preslikavanja (homomorfizmi) Slika i jezgro linearnog preslikavanja 55 Odeljak 9. Deveta nedelja Reprezentacija linearnih preslikavanja Svaka matrica reprezentuje linearno preslikavanje Množenje matrica 65 Odeljak 0. Deseta nedelja Elementarne redukcijske matrice Inverzne matrice Promena baze Promena reprezentacije preslikavanja 75 Odeljak. Jedanaesta nedelja 79.. Determinante, definicija i osnovna svojstva 79.. Minori i kofaktori Kramerova teorema 85 Odeljak. Dvanaesta nedelja 87.. Sličnost matrica 87.. Dijagonalizabilnost Sopstvene vrednosti i sopstveni vektori 89 Odeljak 3. Trinaesta nedelja Minimalan polinom 93 Bibliography 99 Index 00

7

8 OSNOVNI POJMOVI I NOTACIJA prazan skup N skup prirodnih brojeva: {0,,,...} Z skup celih brojeva: {...,,, 0,,,...} R skup realnih brojeva R + skup realnih brojeva većih od nule V, W, U vektorski prostori v, w, u vektori v,..., v n niz vektora P n prostor polinoma stepena manjeg ili jednakog n [S] linearni omotač skupa vektora S U + W suma potprostora nekog prostora U W direktna suma potprostora nekog prostora A, B, C matrice A B matrica A se vrsta-redukuje na matricu B A T transponovana matrica E n jedinična matrica tipa n n A obostrani inverz za A 0 m n nula matrica tipa m n M m n skup matrica nad R tipa m n M n skup kvadratnih matrica nad R tipa n n {x,..., x n } konačan skup; x i x j za i j X broj elemenata konačnog skupa X (x, y) ured en par; (x, y ) = (x, y ) (x = x y = y ) X Y Dekartov proizvod skupova X i Y : {(x, y) x X, y Y } ρ X X refleksivna ( x X)(x, x) ρ ρ X X simetrična ( x, y X)((x, y) ρ (y, x) ρ) ρ X X tranzitivna ( x, y, z X)(((x, y) ρ (y, z) ρ) (x, z) ρ) ρ X X rel. ekvivalencije refleksivna, simetrična i tranzitivna f : X Y je - ( x, x X)(f(x ) = f(x ) x = x ) f : X Y je na ( y Y )( x X)(y = f(x)) f : X Y je bijekcija - i na, tj. postoji g : Y X tako da je g f = X i f g = Y x

9

10 . Prva nedelja.. Skup R n i neke operacije Glavnu ulogu u ovom kursu igraju vektorski prostori R n. definišemo skup R n = df { x. x n x,..., x n R}. Za početak Opredelili smo se da elemente od R n posmatramo kao kolone zbog nekih pogodnosti koje će nam taj pristup doneti. Naravno, naročito zbog problema zapisa, taj pristup ima i nekih mana. Elemente od R n označavamo sa u, v, w,... Sabiranje u R n definišemo prirodno po komponentama, tj. x. + x n y. y n = df x + y. x n + y n. Množenje elemenata od R n skalarima (elementima od R) definišemo na sledeći način x rx r.. = df x n.. rx n. Tvr-denje.. Sabiranje u R n i množenje skalarima zadovoljavaju: ( u + v) + w = u + ( v + w), za 0 = 0., u + 0 = u = 0 + u, 0 u + ( ) u = 0 = ( ) u + u, u + v = v + u, r( u + v) = r u + r v (r + s) u = r u + s u

11 ODELjAK. PRVA NEDELjA (rs) u = r(s u) u = u. dokaz. Direktno po definiciji koristeći odgovarajuća svojstva realnih brojeva... Sistemi linearnih jednačina Definicija. Izraz oblika a x a n x n za n, gde su a,..., a n realni brojevi a x,..., x n promenljive, se zove linearna kombinacija promenljivih x,..., x n. Definicija. Jednačina oblika a x a n x n = b, gde je a x a n x n linearna kombinacija a b R je linearna jednačina po promenljivim x,..., x n. Ona je homogena kada je b = 0. Kažemo da je s = s. s n R n partikularno rešenje (ili samo rešenje) gornje jednačine kada je ispunjeno a s a n s n = b. Opšte rešenje jenačine je skup svih njenih parikularnih rešenja. Definicija. Niz od m (m ) linearnih jednačina po promenljivim x,..., x n je sistem linearnih jednačina po promenljivim x,..., x n koji zapisujemo u obliku a x a n x n = b... a m x a mn x n = b m Kažemo da je s R n partikularno rešenje (ili samo rešenje) sistema kada je s partikularno rešenje svake jednačne u sistemu. Opšte rešenje sistema je skup svih njegovih partikularnih rešenja. Rešiti sistem jednačina znači odrediti njegovo opšte rešenje. Napomena. Ako je S i za i m opšte rešenje i-te jednačine gornjeg sistema, onda je S... S m opšte rešenje tog sistema.

12 .3. Gausove operacije 3.3. Gausove operacije Pod Gausovim operacijama podrazumevamo sledeće: (ρ i ρ j ) za i j, i-ta i j-ta jednačina zamene mesta; (rρ i ) za r 0, leva i desna strana i-te jednačine se pomnože sa r; (rρ i + ρ j ) za i j, i-ta jednačina pomnožena sa r se doda j-toj. Primer. 3x 3 = 9 x +5x x 3 = 3 x +x = 3 ρ ρ 3 3 x +x = 3 x +5x x 3 = 3x 3 = 9 x +6x = 9 3ρ x +5x x 3 = 3x 3 = 9 x +6x = 9 ρ + ρ x x 3 = 7 3x 3 = 9 Tvr-denje.. Ako se sistem σ dobija od sistema σ primenom neke Gausove operacije, onda se i sistem σ dobija od sistema σ primenom neke Gausove operacije. ρ i ρ j dokaz. Ako σ σ, onda σ ρ i ρ j σ. Ako σ rρi σ, onda σ r ρi σ. rρ i + ρ j Ako σ σ, onda σ rρ i + ρ j σ. Tvr-denje.3. Ako je sistem σ dobijen od sistema σ primenom neke Gausove operacije, onda je svako rešenje sistema σ ujedno i rešenje sistema σ. dokaz. Neka je s R n rešenje sistema σ. Dakle važi: a s a n s n = b... a m s a mn s n = b m ρ i ρ j Ako σ σ, onda je očigledno s rešenje sistema σ. Pošto iz i-te jednakosti sledi da je ra i s ra in s n = rb i,

13 4 ODELjAK. PRVA NEDELjA imamo da ako σ rρ i σ, onda je s rešenje sistema σ. Pošto iz i-te i j-te jednakosti sledi da je imamo da ako σ (ra i + a j )s (ra in + a jn )s n = rb i + b j, rρ i + ρ j σ, onda je s rešenje sistema σ. Definicija. Dva sistema su ekvivalentna kada imaju isto opšte rešenje. Kao posledicu tvrd enja. i.3 imamo sledeću teoremu. Teorema.4 (Gausov metod). Ako je sistem σ dobijen od sistema σ konačnom primenom Gausovih operacija, onda su sistemi σ i σ ekvivalentni. Definicija. Promenljiva x i ( i n) je vodeća promenljiva u linearnoj jednačini a x a i x i a n x n = b, kada je a i 0 a a =... = a i = 0. Tada za a i kažemo da je pivot. Definicija. Sistem je u stepenastoj formi kada za svaku jednačinu koja ima vodeću promenljivu važi da je ona ili prva u sistemu ili i prethodna jednačina ima vodeću promenljivu levo od date. Primer. Poslednji sistem u prethodnom primeru je u stepenastoj formi, dok svi koji mu prethode nisu. Napomena.5. Svaki sistem se u konačnom broju koraka (Gausovih operacija) može svesti na sistem u stepenastoj formi..4. Predstavljanje opšteg rešenja Ako sistem ima jedinstveno rešenje ili nema rešenja onda je predstavljanje opšteg rešenja jednostavno. Šta se dešava kada to nije slučaj? Primer. Redukujemo dati sistem na stepenastu formu. x +y +z w = y z +w = 3x +6z 6w = 6 y +z w = 3ρ + ρ 3 y z +w = 3y +3z 3w = 3 x +y +z w = y +z w =

14 .4. Predstavljanje opšteg rešenja 5 3ρ + ρ 3 y z +w = ρ + ρ 4 0 = 0 x +y +z w = 0 = 0 Definicija. Promenljiva koja se ne pojavljuje kao vodeća u sistemu u stepenastoj formi je slobodna promenljiva. U gornjem primeru, u poslednjem sistemu, z i w su slobodne promenljive. Opšte rešenje ovog sistema dobijamo metodom supstitucije unazad. Promenljive z i w mogu imati proizvoljne vrednosti. Dobijamo da je y = + z w a onda je x = ( + z w) z + w = z + w. Znači opšte rešenje je: z + w S = { + z w z z, w R} = { 0 +z +w 0 z, w R} w 0 0 i ova poslednja forma je ona u kojoj ćemo ga predstavljati. Definicija. Za dati sistem (dole levo) kažemo da je sistem (dole desno) njemu odgovarajući homogen sistem. a x a n x n = b... a m x a mn x n = b m a x a n x n = 0... a m x a mn x n = 0 Tvr-denje.6. Linearni sistem kome je p R n jedno partkularno rešenje ima opšte rešenje oblika { p + h h je rešenje odgovarajućeg homogenog sistema}. dokaz. Prvo pokazujemo da je svako s R n koje je rešenje sistema predstavivo u obliku p + h, gde je h neko rešenje odgovarajućeg homogenog sistema. Za to je dovoljno pokazati da je s p rešenje odgovarajućeg homogenog sistema. Kad u i-toj jednačini odgovarajućeg homogenog sistema, koja glasi a i x a in x n = 0,

15 6 ODELjAK. PRVA NEDELjA zamenimo umesto svakog x j razliku s j p j (j-tu komponentu vektora s p) dobijamo tačnu jednakost, zato što je a i (s p ) a in (s n p n ) = a i s a in s n (a i p a in p n ) = b i b i = 0. Pošto to možemo uraditi za svaku jednačinu, dobijamo da je s p rešenje odgovarajućeg homogenog sistema. Kao drugo, pokazujemo da je svaki element od R n oblika p+ h, gde je h rešenje odgovarajućeg homogenog sistema, rešenje polaznog sistema. Kad u i-toj jednačini polaznog sistema, koja glasi a i x a in x n = b i, zamenimo umesto svakog x j zbir p j + h j (j-tu komponentu vektora p + h) dobijamo tačnu jednakost, zato što je a i (p + h ) a in (p n + h n ) = a i p a in p n + a i h a in h n = b i + 0 = b i. Pošto to možemo uraditi za svaku jednačinu, dobijamo da je p + h rešenje polaznog sistema. Tvr-denje.7. Za homogen sistem po n promenljivih važi: () 0 R n je njegovo partikularno rešenje; () ako su h i h njegova rešenja i c, c R, onda je i c h + c h njegovo rešenje. dokaz. Direktno zamenom u proizvoljnoj jednačini homogenog sistema kao i u prethodnom dokazu. Posledica.8. Svaki homogen sistem ima ili tačno jedno rešenje ili ih ima beskonačno mnogo. dokaz. Po tvrd enju.7 (), homogen sistem ima bar jedno rešenje a to je 0. Ako je h rešenje različito od 0 onda je za svako r R i r h takod e rešenje tog sistema po tvrd enju.7 (), pa sistem ima beskonačno mnogo rešenja. Posledica.9. Svaki sistem linearnih jednačina ili nema rešenja ili ima tačno jedno rešenje ili ih ima beskonačno mnogo.

16 .5. Matrice i skraćeni zapis Gausove metode 7 dokaz. Direktno iz posledice.8 i tvrd enja Matrice i skraćeni zapis Gausove metode Definicija. Matrica A tipa m n nad R je pravougaona tabela koja se sastoji od m vrsta i n kolona tako da se u preseku i-te vrste i j-te kolone nalazi a ij R. Ako je m = n, onda je matrica kvadratna. Matrica je matrica sistema: dok je a a... a n A = a a... a n... a m a m... a mn a x +a x... +a n x n = b a x +a x... +a n x n = b... a m x +a m x... +a mn x n = b m, a a... a n b a a... a n b.... a m a m... a mn b m proširena matrica tog sistema. Gausove operacije iz prethodnog primera matrično zapisujemo kao: 0 3ρ + ρ ρ + ρ 3 ρ + ρ Definicija. Vektor kolona je matrica tipa m i to je naš zapis za element od R m. Vektor vrsta je matrica tipa n.

17 8 ODELjAK. DRUGA NEDELjA Skup svih matrica tipa m n nad R označavamo sa M m n. Posebno, kada je m = n, onda M n n skraćeno zapisujemo kao M n. Sabiranje u skupu M m n definišemo po komponentama, tj. a... a n... + a m... a mn b... b n... = df a + b... a n + b n... b m... b mn a m + b m... a mn + b mn dok množenje matrice skalarom definišemo kao r a... a n ra... ra n... = df.... a m... a mn ra m... ra mn Treba primetiti da se ove definicije, za n =, slažu sa odgovarajućim definicijama za R m datim u odeljku..

18 . Druga nedelja.. Redukovana stepenasta forma Primer. Posmatrajmo sistem linearnih jednačina: x +y z = y +3z = 7 x z = i njegovo matrično svod enje na stepenastu formu: ρ ρ ρ + ρ Med utim, mi možemo i da nastavimo sa Gausovim operacijama: 4 ρ 3 3ρ ρ ρ 3 + ρ 0 ρ ρ Iz poslednje matrice odmah vidimo da je jedinstveno rešenje polaznog sistema x y =. z Definicija. Sistem linearnih jednačina je u redukovanoj stepenastoj formi kada je on u stepenastoj formi i još je svaki pivot jednak i on je jedini ne-nula skalar u svojoj koloni. Analogno za matrice. Napomena.. Svaki sistem (matrica) u stepenastoj formi se može konačnom primenom Gausovih operacija (rρ i ) i (rρ i + ρ j ) svesti na redukovanu stepenastu formu. Tom prilikom pivoti ostaju na mestima gde su i bili. Primer. Rešiti sistem x +6x +x 3 +x 4 = 5 3x +x 3 +4x 4 = 3x +x 3 +x 4 = 5 ρ + ρ ρ 3 ρ ρ

19 0 ODELjAK. DRUGA NEDELjA 4 3 ρ 3 + ρ ρ 3 + ρ ρ + ρ Iz poslednje matrice odmah vidimo da je opšte rešenje sistema 9 + x 3 9 S = { 3 3 x 3 x 3 x 3 R} = { x x 3 R}. Definicija. Za matricu A kažemo da se (vrsta)-redukuje na matricu B (u oznaci A B) kada postoji konačan (možda i prazan) niz Gausovih operacija koje matricu A prevode u matricu B. Tvr-denje.. Relacija je relacija ekvivalencije na skupu matrica. dokaz. (refleksivnost) prazan niz operacija; (simetričnost) posledica tvrd enja.; (tranzitivnost) nadovežemo nizove Gausovih operacija. Za matrice A i B za koje važi A B kažemo da su vrsta- Definicija. ekvivalentne. Teorema.3. Svaka matrica je vrsta-ekvivalentna jedinstvenoj matrici u redukovanoj stepenastoj formi. dokaz. Po napomenama.5 i., svaka matrica je vrsta-ekvivalentna nekoj u redukovanoj stepenastoj formi. Da je ta forma jedinstvena pokazujemo indukcijom po broju n kolona u polaznoj matrici. (baza indukcije) Ako je n = i A je nula matrica onda je ona u redukovanoj stepenastoj formi i svaka matrica vrsta-ekvivalentna sa A je takod e nula matrica. Ako A nije nula matrica, onda se ona ne može redukovati na nula-matricu pa se mora svesti na jedinu ne-nula matricu tipa m koja je u redukovanoj stepenastoj formi a to je matrica (induktivni korak) Pretpostavimo da tvrd enje važi za sve matrice sa n kolona. Neka je A matrica tipa m n i neka su B i C dve različite

20 .. Vektorski prostori matrice u redukovanoj stepenastoj formi koje su vrsta-ekvivalentne sa A. Neka je A matrica koja se dobija od matrice A odbacivanjem poslednje kolone. Primetimo da svaki niz Gausovih operacija koji prevodi A u B takod e prevodi i A u B koja je nastala od B odbacivanjem poslednje kolone i koja je u redukovanoj stepenastoj formi. Isto važi i za A i C, koja nastaje odbacivanjem poslednje kolone iz C. Po induktivnoj hipotezi imamo da je B = C. Znači B i C se razlikuju u poslednjoj koloni. Neka je ta razlika na mestu in. Posmatrajmo sledeće homogene sisteme: b x b n x n = 0... b m x b mn x n = 0 a x a n x n = 0... a m x a mn x n = 0 c x c n x n = 0... c m x c mn x n = 0 čije su matrice redom A, B i C. Po teoremi.4, imamo da svi ovi sistemi imaju iste skupove rešenja. Neka je s. s n proizvoljno partikularno rešenje. Pokazaćemo da s n mora biti 0. Ograničavajući se na i-te jednačine u drugom i trećem sistemu imamo: b i s b in s n (c i s c in s n ) = 0. Odavde, pošto je b i = c i,..., b i(n ) = c i(n ) imamo da je (b in c in )s n = 0, odakle sledi, pošto je b in c in 0, da je s n = 0. Znači u svakom partikularnom rešenju je s n = 0 pa x n mora biti i u drugom i u trećem sistemu vodeća promenljiva. Pošto su B i C u redukovanoj stepenastoj formi i pošto im se prvih n kolona poklapaju, to pivoti u poslednjoj koloni moraju biti jedinice na istom mestu. Znači B = C... Vektorski prostori Definicija. V je vektorski prostor nad poljem R kada je 0 V i za svako u, v V i r R važi da je u V, u + v V i r u V i pritom je zadovoljeno: () ( u + v) + w = u + ( v + w),

21 ODELjAK. DRUGA NEDELjA () u + 0 = u = 0 + u, (3) u + ( u) = 0 = ( u) + u, (4) u + v = v + u, tj. (V, +, 0) je komutativna grupa i (5) r( u + v) = r u + r v (6) (r + s) u = r u + s u (7) (rs) u = r(s u) (8) u = u. Pošto ćemo govoriti samo o vektorskim prostorima nad poljem R, zvaćemo ih skraćeno samo vektorski prostori. Primer. Po tvrd enju. imamo da je R n vektorski prostor. Takod e je lako proveriti da je M m n vektorski prostor u odnosu na operacije definisane u.5. Primer. Vektori u euklidskom prostoru čine jedan vektorski prostor u odnosu na geometrijski zadano sabiranje vektora i množenje vektora skalarima. Primer. P = { x y x + y + z = 0} je vektorski prostor u odnosu na z operacije preuzete iz R 3. Ovo će biti posledica tvrd enja 3. a zasad bi trebalo proveriti da P sadrži 0 0, da x y P x y P, da je P 0 z z zatvoren za sabiranje i množenje skalarima kao i da su zadovoljena svojstva ()-(8). ( ) z Primer. { z, z Z} nije vektorski prostor zato što nije zatvoren z za množenje skalarima... Primer. { 0 } jeste vektorski prostor. To je trivijalan vektorski prostor. 0

22 .. Vektorski prostori 3 Primer. P 3 = {a 0 + a x + a x + a 3 x 3 a 0, a, a, a 3 R}, tj. skup polinoma sa realnim koeficijentima stepena manjeg ili jednakog 3 u odnosu na standardno sabiranje polinoma i množenje polinoma realnim brojevima jeste vektorski prostor. Naslućuje se veza izmed u P 3 i R 4 po kojoj bi npr. polinomu + x x 3 odgovarao 0 R4. Primer. Neka je X proizvoljan skup i V vektorski prostor, tada V X = {f f : X V }, u odnosu na sabiranje definisano sa (f + f )(x) = df f (x) + f (x) i množenje skalarima definisano sa (rf)(x) = df r(f(x)), jeste vektorski prostor. Specijalno, R N = {f f : N R} jeste vektorski prostor. Njegov element f(n) = n + odgovara beskonačnoj koloni Primer. prostor. Skup svih polinoma sa realnim koeficijentima jeste vektorski Tvr-denje.4. U svakom vektorskom prostoru važi: () 0 v = 0 () ( ) v + v = 0 (3) r 0 = 0. dokaz. () 0 v = (0 + 0) v 5 = 0 v + 0 v, a odavde dodavanjem 0 v obema stranama, uz pomoć svojstava, i 3 vektorkih prostora zaključujemo da je 0 = 0 v. () ( ) v + v 8 = ( ) v + v 5 = ( + ) v = 0 v = 0. (3) r 0 = r( 0 + 0) = r 0 + r 0, a odavde dodavanjem r 0 obema stranama kao u () zaključujemo 0 = r 0. Iz dela () ovog tvrd enja sledi da je ( ) v = v, pa nije neophodno proveravati da je v V za svako v V ako je već provereno da je r v V za svako v V i r R.

23 4 ODELjAK 3. TREĆA NEDELjA Definicija. Izraz oblika c v c n v n za n, gde su c,..., c n skalari a v,..., v n vektori, se zove linearna kombinacija vektora v,..., v n (videti odeljak.). Napomena.5. Za m linearnih kombinacija vektora v,..., v n imamo da je njihova linearna kombinacija d (c v c n v n ) d m (c m v c mn v n ) jednaka linearnoj kombinaciji vektora v,..., v n : (d c d m c m ) v (d c n d m c mn ) v n. Tvr-denje.6. Ako su matrice A i B vrsta-ekvivalentne, onda je svaka vrsta matrice B linearna kombinacija vrsta matrice A. dokaz. Primetimo da tvrd enje važi ako je B dobijeno od A primenom jedne Gausove operacije. Dokaz dalje izvodimo indukcijom pri čemu ovo koristimo kao bazu indukcije a u induktivnom koraku se oslanjamo na napomenu.5.

24 3. Treća nedelja 3.. Potprostori i linearni omotači Definicija. Potprostor vektorskog prostora V je U V koji je sam vektorski prostor u odnosu na nasled ene operacije iz V, tj. 0 U i za svako u, v U i r R važi da je u + v U i r u U. Tvr-denje 3.. Za neprazan podskup U vektorskog prostora V sledeća tvrd enja su ekvivalentna: () U je potprostor od V ; () U je zatvoren za linearne kombinacije parova vektora iz U, tj. za u, u U i c, c R važi da je c u + c u U; (3) U je zatvoren za linearne kombinacije proizvoljnog konačnog skupa vektora iz U, ti. za u,..., u n U i c,..., c n R važi da je c u c n u n U. dokaz. U krugu (3) () () (3), samo je implikacija () () netrivijalna. Iz pretpostavke da je U neprazan zaključujemo da postoji u U. Iz () dobijamo da je 0 u+0 u U, pa je po tvrd enja.4 () i 0 U. Ako su u, v U, i r R, onda su i u + v, r u + 0 u U, što znači da je U zatvoren za sabiranje i množenje skalarima (samim tim i za inverze u odnosu na sabiranje). Svojstva -8 iz definicije vektorskog prostora važe i za U pošto su nasled ena iz V. Primer. Skup rešenja homogenog sistema sa n promenljivih je potprostor od R n. Ovo sledi iz tvrd enja.7 i 3. (videti treći primer u odeljku.). Primer. Skup rešenja sistema linearnih jednačina sa n promenljivih ne mora biti potprostor od R n. Primer. P (prostor polinoma stepena manjeg ili jednakog ) je potprostor od P 3. ( ) x Primer. { x R} je potprostor od R. 0 5

25 6 ODELjAK 3. ( z Primer. { z Z} nije potprostor od R 0). TREĆA NEDELjA Definicija. Linearni omotač (lineal) nepraznog skupa vektora S nekog vektorskog prostora, u oznaci [S] ili L(S) ili span(s), je skup {c s c n s n n N +, c,..., c n R, s,..., s n S}. Linearni omotač praznog skupa vektora nekog vektorskog prostora je trivijalan potprostor tog vektorskog prostora. Tvr-denje 3.. Linearni omotač proizvoljnog skupa vektora nekog vektorskog prostora je potprostor tog vektorskog prostora. dokaz. Neka je V vektorski prostor i neka je S V. Ako je S = onda je po definiciji [S] trivijalan potprostor od V. Ako je S neprazan, onda koristimo tvrd enje 3.. Neka su u, v [S]. Po definiciji linearnog omotača, u = a s a k s k i v = b t b l t l za s,..., s k, t,..., t l S. Tada je c u + d v = ca s ca k s k + db t db l t l [S]. Napomena 3.3. Linearni omotač od S V je najmanji potprostor od V koji sdrži S. ( ( Primer. Lineal od {, } R ) ) je R. To je zato što se za ( x proizvoljno x, y R, vektor može dobiti kao linearna kombinacija y) x + y ( + ) x y ( ). Primer. Neka je W = [{3x x, x}] P. Lako je proveriti da je W {a x + a x a, a R}. Da važi i obrnuta inkluzija sledi iz toga što se za svako a, a R, polinom a x + a x može dobiti kao linearna kombinacija a (3x x ) + a + 3a (x). Tvr-denje 3.4. Za S, T V važi

26 3.. Linearna nezavisnost 7 () S [S]; () S T [S] [T ]; (3) [[S]] = [S]. dokaz. () Ako je v S, onda zbog v = v sledi da je v [S]. () Ako je v [S], onda je po definiciji v = c s c n s n za s,..., s n S. Pošto je S T, to je s,..., s n T, pa je po definiciji v [T ]. (3) Po () je S [S], pa je po () [S] [[S]]. Za obrnutu inkluziju, pretpostavimo da je v [[S]]. Po definiciji imamo da je v = c u +...+c n u n za u,..., u n [S]. Pošto je po tvrd enju 3., [S] potprostor od V, to je po tvrd enju 3. i v [S]. 3.. Linearna nezavisnost Od ovog odeljka pa nadalje smatramo kad navedemo konačan skup {x,..., x n } da su svi x,..., x n med usobno različiti. Definicija. Skup vektora S nekog vektorskog prostora je linearno zavisan kada postoji v S takav da je v [S { v}]. U suprotnom je linearno nezavisan. Napomena 3.5. Prazan skup vektora je trivijalno linearno nezavisan, dok je { 0} linearno zavisan pošto je 0 [ ] = [{ 0} { 0}]. Tvr-denje 3.6. Skup vektora S nekog vektorskog prostora je linearno nezavisan akko za svaki konačan podskup { v,..., v n } S važi: c v c n v n = 0 c =... = c n = 0. dokaz. ( ) Pretpostavimo suprotno, tj. za neki skup { v,..., v n } S važi c v c n v n = 0 i c n 0 (analogno postupamo ako je bilo koje drugo c i 0). Tada, ako je n = dobijamo da je v n = 0, a ako je n >, onda važi v n = c v... c n v n. c n c n U oba slučaja sledi da je v n [S { v n }], što znači da je S linearno zavisan a to je suprotno pretpostavci.

27 8 ODELjAK 3. TREĆA NEDELjA ( ) Pretpostavimo suprotno tj. za neko v S i neke u,..., u n S { v} važi v = c u c n u n. Odavde zaključujemo da je c u c n u n + ( ) v = 0 a to je suprotno pretpostavci zato što je skalar uz v jednak 0. ( ) ( ) Primer. Skup {, } R je linearno nezavisan zato što 45 5 ( ) ( ) ( c + c 45 = 5 0) 40c 50c = 0 c 5c + 5c = 0 = c = 0. Primer. Skup { + x, x} P je linearno nezavisan zato što c (+x)+c ( x) = 0 c +c +(c c )x = 0 c + c = 0 c c = 0 c = c = 0. Primer. Skup { 3 4, 9, 4 8 } R je linearno zavisan zato što je = 9, tj ( ) 4 8 = Primer. Svaki podskup od V koji sadrži 0 je linearno zavisan zato što je 0 [S { 0}] za svako S V. Tvr-denje 3.7. Sve ne-nula vrste matrice u stepenastoj formi čine linearno nezavisan skup. dokaz. Neka je A matrica u stepenastoj formi i neka je k broj njenih ne-nula vrsta. Dokaz izvodimo indukcijom po k 0. (baza indukcije) Ako je k = 0, onda je skup ne-nula vrsta matrice A prazan pa je on po napomeni 3.5 linearno nezavisan. (induktivni korak) Neka su ρ,..., ρ k ne-nula vrste matrice A. Neka je l i, i k, broj kolone u kojoj se nalazi pivot i-te vrste. Na primer, ako je A = , onda je l =, l = i l 3 = 4. Pretpostavimo c ρ c k ρ k = (0... 0).

28 3.. Linearna nezavisnost 9 Ograničimo ovu jednakost na l -tu kolonu i dobijamo c a l c k a kl = 0 (u našem primeru dobijamo c + c 0 + c 3 0 = 0). Pošto je matrica u stepenastoj formi imamo da je a l =... = a kl = 0, pa dobijamo c = 0. Ako je k = ovime je tvrd enje dokazano. Ako je k >, onda iz matrice A izbacimo prvu vrstu i ostaje nam matrica ( A u stepenastoj ) formi sa k ne-nula vrsta. U našem primeru je A 0 0 =. Uz c = 0 imamo da c ρ c k ρ k = (0... 0) c ρ c k ρ k = (0... 0), pa pomoću induktivne hipoteze zaključujemo da je c =... = c k = 0. Lema 3.8. Za v V i S V važi: () [S] = [S { v}] akko v [S]; () ako je S linearno nezavisan i v S, onda je S { v} linearno nezavisan akko v [S]. dokaz. () ( ) v [S { v}] = [S]. () ( ) Iz S [S] (3.4 ()) i { v} [S] ( v [S]) zaključujemo S { v} [S]. Po 3.4 () i (3) onda važi [S { v}] [[S]] = [S]. Obrnutu inkluziju zaključujemo iz S S { v} pomoću 3.4 (). () ( ) Iz toga što je S { v} linearno nezavisan sledi da v [(S { v}) { v}] = [S]. () ( ) Neka je za { v,..., v n } S { v}, c v c n v n = 0. Ako je { v,..., v n } S, onda zbog linearne nezavisnosti skupa S važi c =... = c n = 0. Ako je v = v (analogno postupamo kada je v i = v), onda je c = 0 zbog pretpostavke v [S] pa je i c =... = c n = 0 zbog linearne nezavisnosti skupa S. Znači u svakom slučaju je c =... = c n = 0 pa je S { v} linearno nezavisan po tvrd enju 3.6. Tvr-denje 3.9. Za svaki konačan S V postoji T S takav da je T linearno nezavisan i [T ] = [S]. dokaz. Indukcijom po broju k 0 elemenata od S.

29 0 ODELjAK 4. ČETVRTA NEDELjA (baza indukcije) Ako je k = 0, onda je S prazan i po napomeni 3.5 je linearno nezavisan. (induktivni korak) Neka je k. Ako je S linearno nezavisan, onda za T uzmimo baš skup S. Ako je S linearno zavisan onda za neko v S važi v [S { v}]. Po lemi 3.8 () dobijamo [S { v}] = [(S { v}) { v}] = [S]. Pošto S { v} ima k element, na njega možemo primeniti induktivnu hipotezu i zaključiti da postoji T S { v} S takav da je T linearno nezavisan i [T ] = [S { v}] = [S]. Tvr-denje 3.0. Skup S = { u,..., u n } V je linearno zavisan akko je u = 0 ili je za neko i n, u i [{ u,..., u i }]. dokaz. ( ) Indukcijom po n. (baza indukcije) Ako je n =, onda je u [{ u } { u }] = [ ] = { 0}, pa je u = 0. (induktivni korak) Ako je n > i ako je { u,..., u n } linearno nezavisan, onda je po lemi 3.8 () u n [{ u,..., u n }]. Ako je { u,..., u n } linearno zavisan, onda po induktivnoj hipotezi važi da je u = 0 ili je za neko i n, u i [{ u,..., u i }]. ( ) Trivijalno. Tvr-denje 3.. Svaki podskup linearno nezavisnog skupa je linearno nezavisan. Svaki nadskup linearno zavisnog skupa je linearno zavisan. dokaz. Dovoljno je pokazati drugo tvrd enje jer iz njega prvo sledi kontrapozicijom. Pretpostavimo da je S linearno zavisan i da je S T V. Po definiciji linearne zavisnosti postoji v S takav da je v [S { v}]. Pošto je v S i S T, to je v T. Po tvrd enju 3.4 () imamo [S { v}] [T { v}], pa je v [T { v}]. Dakle, T je linearno zavisan.

30 4. Četvrta nedelja 4.. Baza vektorskog prostora U daljem tekstu sa X označavamo broj elemenata konačnog skupa X. Definicija. Za niz vektora B = u, u,... nekog vektorskog prostora, označimo sa B skup članova tog niza. Ukoliko je B konačan niz, onda je broj članova tog niza njegova dužina. Definicija. Niz vektora B je linearno nezavisan kada u njemu nema ponavljanja i skup B je linearno nezavisan. Definicija. Baza vektorskog prostora V je niz vektora B = u, u,... tog prostora takav da je B linearno nezavisan i [B] = V. ( ( 0 Primer. E =, je baza za R 0) ). To važi zato što u E nema ( ( ( ) ( ) ( ponavljanja, {, } je linearno nezavisan (c 0) ) +c 0 = ( ) ( ) ( ) ( ) ( 0) ) 0 c = c = 0) i [{, }] = R x (za svako R 0 je x +y = ( 0 y 0 x ). y) ( ) ( ) Primer. Na isti način se može pokazati da je B =, takod e 4 baza za R Definicija. E n =..,..,...,.. 0 je standardna (kanonska) baza 0 0 za R n. Vektore u njoj označavamo redom sa e, e,..., e n. Definicija. Skup vektora daje bazu za V kada je njegovo proizvoljno ured enje u niz jedna baza za V. Napomena. Skup S V daje bazu za V akko S je linearno nezavisan i [S] = V.

31 ODELjAK 4. ČETVRTA NEDELjA Primer. Neka je V = {u : R R u(θ) = a cos θ + b sin θ, a, b R} i neka je sabiranje i množenje skalarima definisano kao u sedmom primeru iz odeljka.. Pokažimo da je B = cos θ, sin θ baza za V. Kao prvo u B nema ponavljanja, zatim c cos θ + c sin θ = 0 (ovo sa desne strane jednakosti je konstantna funkcija koja svako x R slika u 0) daje c = 0 kad stavimo θ = 0 i c = 0 kad stavimo θ = π, pa je {cos θ, sin θ} linearno nezavisan. Po definiciji prostora V jasno je da je [{cos θ, sin θ}] = V, pa je cos θ, sin θ baza za V. Primer. Vektorski prostor P 3 ima izmed u ostalih i sledeće baze: B =, x, x, x 3, B = x 3, x, x,, B 3 =, + x, + x + x, + x + x + x 3. Primer. vektora. Trivijalan prostor { 0} ima samo jednu bazu i to je prazan niz Primer. Prostor svih polinoma sa realnim koeficijentima ima beskonačnu bazu, x, x, x 3,... i lako je pokazati da nema konačnu bazu jer bi u njoj postojao polinom najvećeg stepena pa se nijedan polinom stepena većeg od tog ne bi mogao dobiti kao linearna kombinacija polinoma iz baze. Primer. Sistem x +y w = 0 z +w = 0 {y 0 + w 0 y, w R} 0 ima opšte rešenje blika i to je potprostor od R 4 čija je baza 0, 0. 0 Teorema 4.. Konačan niz B = β,..., β n je baza vektorskog prostora V akko za svako v V postoji jedinstvena n-torka skalara c,..., c n takva da je v = c β c n βn. dokaz. ( ) Neka je v V. Pošto je [{ β,..., β n }] = V to postoji n-torka c,..., c n takva da je v = c β c n βn. Ako bi postojala još jedna n-torka d,..., d n takva da je v = d β d n βn, onda bi važilo (c d ) β (c n d n ) β n = 0,

32 4.. Baza vektorskog prostora 3 pa je c = d,..., c n = d n, zbog linearne nezavisnosti skupa { β,..., β n }. ( ) Očigledno je [B] = V. Još treba pokazati da su β,..., β n med usobno različiti i da je B linearno nezavisan. Ako je β i = β j za i < j, onda je β i = 0 β β i β j β n = 0 β β i β j β n, što je suprotno pretpostavci o jedinstvenosti. Ukoliko bi { β,..., β n } bio linearno zavisan onda bi važilo 0 = c β c n βn = 0 β β n, pri čemu je neko c i 0, što je suprotno pretpostavci o jedinstvenosti. Definicija. Neka je B = β,..., β n baza vektorskog prostora V. Neka je v V i v = c β c nβn (po teoremi 4., n-torka c,..., c n je jedinstvena). Kažemo da je na bazu B i pišemo c. R n reprezentacija vektora v u odnosu c n.. Rep B ( v) = c. ( ( 3 Primer. Neka je v = R ) 3, tj Rep E ( v) =. Neka je B = ) ( ( E 0, baza za R ) ) (ovo se lako proverava). Da bismo odredili Rep B ( v) dovoljno je odrediti skalare c i c takve da je ( ) ( ) ( ) 0 3 c + c =. Rešavajući odgovarajući ( ) sistem jednačina dobijamo c = 3 i c =, pa je 3 Rep B ( v) =. B Primer. Neka su B =, x, x, x 3 i B = + x, x, x + x, x + x 3 dve baze za P 3 (u slučaju B ovo treba proveriti). Neka je v = x + x P 3. c n B

33 4 ODELjAK 4. ČETVRTA NEDELjA Tada je 0 Rep B ( v) = 0 B 0, Rep B ( v) = 0 0 B. 4.. Dimenzija vektorskog prostora Definicija. Vektorski prostor je konačnodimenzionalan kada ima bazu konačne dužine. Primer. Prostor R n je konačnodimenzionalan jer ima bazu E n dužine n. Primer. Prostor svih polinoma sa realnim koeficijentima nije konačnodimenzionalan (videti šesti primer u odeljku 4.). Napomena. Nadalje posmatramo samo konačnodimenzionalne prostore. Mala lema o zameni. Neka su T i S podskupovi od vektorskog prostora V takvi da je T S = i neka je p V takav da je p [T S], p S i S { p} je linearno nezavisan. Tada postoji t T takav da je [T S] = [(T { t}) { p} S]. dokaz. Iz p [T S] sledi p = c t +...+c n t n +d s +...+d k s k. Mora da postoji i n takvo da je c i 0 (inače bi S { p} bio linearno zavisan). Znači t i [(T { t i }) { p} S] pa je: [(T { t i }) { p} S]= [(T { t i }) { p} S { t i }], po lemi 3.8 () = [T { p} S] = [T S], po lemi 3.8 () Velika lema o zameni. Ako su T, S i P podskupovi vektorskog prostora V takvi da je P konačan, T S = P S =, [T S] = V i S P je linearno nezavisan, onda postoji T T takav da je T = P i [(T T ) P S] = V. dokaz. Indukcijom po broju n = P 0. (baza indukcije) Neka je n = 0 što znači da je P =. T = P = važi [(T T ) P S] = [T S] = V. Tada za

34 4.. Dimenzija vektorskog prostora 5 (induktivni korak) Neka je n > 0 i neka je p P. Pošto je p [T S] i S { p} je linearno nezavisan, to je po maloj lemi o zameni V = [T S] = [(T { t}) { p} S] za neko t T. Sada možemo primeniti induktivnu hipotezu na T = T { t}, P = P { p} i S = { p} S i dobijamo da za neko T T takvo da je T = P važi V = [(T T ) P S ] = [((T { t}) T ) (P { p}) ({ p} S)] = [(T (T { t})) P S] = [(T T ) P S], za T = T { t}. Lema 4.. Ako je T konačan podskup od V takav da je [T ] = V i ako je Q V linearno nezavisan, onda Q nema više elemenata od T. dokaz. Neka T ima n elemenata i pretpostavimo da Q ima više od n elemenata. Neka je P skup nekih n elemenata od Q. Po velikoj lemi o zameni (ovde je S = ) dobijamo da je [P ] = V, pa za svako v Q P, v V = [P ] [Q { v}] (po tvrd enju 3.4 () zato što je P Q { v}). To bi značilo da je Q linearno zavisan što je suprotno pretpostavci. Teorema 4.3. U svakom konačnodimenzionalnom vektorskom prostoru sve baze su jednake dužine. dokaz. Dovoljno je pokazati da ako je B konačna baza i B neka druga baza, onda dužina od B nije veća od dužine od B. Pošto su B i B baze to su njihove dužine redom B i B i još je [B] = V i B je linearno nezavisan. Po lemi 4., skup B nema više elemenata od skupa B. Definicija. Dimenzija konačnodimenzionalnog vektorskog prostora V, u oznaci dim V, je dužina njegove proizvoljne baze. Lema 4.4. Linearno nezavisan skup vektora iz n-dimenzionalnog vektorskog prostora ne može imati više od n elemenata. dokaz. Direktno iz leme 4.. Tvr-denje 4.5. Za svaki podskup T konačnodimenzionalnog vektorskog prostora V za koji važi da je [T ] = V, postoji T T koji daje bazu za V.

35 6 ODELjAK 5. PETA NEDELjA dokaz. Po lemi 4.4, ako je dim V = n, onda svaki linearno nezavisan podskup od T ima najviše n elemenata. Neka je P linearno nezavisan podskup od T za koji ne postoji linearno nezavisan podskup od T sa više elemenata. Znači za svako t (T P ) važi da je P { t} linearno zavisan. Po lemi 3.8 () sledi da je t [P ], pa zaključujemo da je T [P ], odakle po tvrd enju 3.4 () i (3) dobijamo V = [T ] [[P ]] = [P ]. Iz P T, po tvrd enju 3.4 () dobijamo [P ] [T ] = V. Dakle [P ] = V, te P daje bazu za V. Lema 4.6. Ako je dim V = n i P V linearno nezavisan takav da je P = n, onda je [P ] = V. dokaz. Skup elemenata B proizvoljne baze B od V ima n elemenata i [B] = V. Po velikoj lemi o zameni dobijamo [P ] = V. Lema 4.7. Ako je dim V = n i P V takav da je [P ] = V i P n onda P daje bazu za V. dokaz. Po tvrd enju 4.5 postoji P P koji daje bazu za V. Po teoremi 4.3 je P = n a pošto je P n, to znači da je P = P. Tvr-denje 4.8. Svaki linearno nezavisan skup vektora konačnodimenzionalnog vektorskog prostora V se može dopuniti nekim vektorima iz skupa koji daje bazu za V do skupa vektora koji daje bazu za V. dokaz. Neka je P linearno nezavisan skup vektora iz V i neka je T skup koji daje bazu za V. Po velikoj lemi o zameni (ovde je S = ), postoji T T takav da je T = P i [(T T ) P ] = V. Pošto je (T T ) P T = dim V to, po lemi 4.7, sledi da (T T ) P daje bazu za V. Tvr-denje 4.9. U n-dimenzionalnom v.p. V, skup P V takav da je P = n je linearno nezavisan akko [P ] = V. dokaz. ( ) Direktno iz leme 4.6. ( ) Iz leme 4.7 dobijamo da P daje bazu za V, pa je linearno nezavisan.

36 5. Peta nedelja 5.. Vektorski prostori i linearni sistemi Podsetiti se komentara.5 kao i tvrd enja.6 i 3.7. Definicija. Prostor vrsta neke matrice je linearni omotač skupa svih vektor vrsta te matrice. Oznaka je RS(A). Vrsta-rang matrice A je dimenzija prostora RS(A). Primer. A = ( ) RS(A) = [{( 3), (4 6)}] = [{( 3)}], jer je (4 6) = ( 3). Lema 5.. Ako su dve matrice vrsta-ekvivalentne onda su im prostori vrsta jednaki pa su im samim tim i vrsta-rangovi jednaki. dokaz. Pretpostavimo A B (tj. A se vrsta-redukuje na B). Po tvrd enju.6 imamo da je svaka vrsta matrice B linearna kombinacija vrsta matrice A, pa je RS(B) RS(A) (ovde se koristi tvrd enje 3.4 () i (3)). Na isti način, pošto je relacija simetrična (tvrd enje.), dobijamo RS(A) RS(B), pa je RS(A) = RS(B). Na osnovu leme 5. i tvrd enja 3.7 zaključujemo da Gausov postupak eliminiše zavisnost med u vrstama ostavljajući linearni omotač nepromenjen. Na taj način se formira baza prostora vrsta neke matrice. Primer. A = ρ + ρ ρ + ρ ρ + ρ 3 Znači ( 3 ), (0 0), (0 0 3) je baza za RS(A) Definicija. Prostor kolona neke matrice je linearni omotač skupa svih vektor kolona te matrice. Oznaka je CS(A). Kolona-rang matrice A je dimenzija prostora CS(A). Definicija. Neka je A M m n. Transponovana matrica matrice A je matrica A T M n m takva da se u preseku i-te vrste i j-te kolone matrice 7

37 8 ODELjAK 5. PETA NEDELjA A T nalazi element koji se nalazi u preseku i-te kolone i j-te vrste matrice A. Prostije, prva vrsta matrice A postaje prva kolona matrice A T itd. Primer. A = A T = Primer. Za matricu A iz prethodnog primera odrediti bazu za CS(A). Prvo odredimo bazu za RS(A T ) 0 4 3ρ ρ 7ρ + ρ ρ ρ Dakle baza za RS(A T ) je ( 0 4), (0 3 ), pa je baza za CS(A): 0 0, 3 4 Primetimo da Gausove operacije mogu da promene prostor kolona matrice. Na primer, za ( ) ( ) ρ + ρ važi ( [{ ) (, 4 ) ( }] [{ 0 ) (, 0 ) }] ali ćemo pokazati da važi sledeće. Lema 5.. Ako su dve matrice vrsta-ekvivalentne onda su im kolonarangovi jednaki. dokaz. Pretpostavimo A B. Po teoremi.3, sistemi a x a n x n = 0 b x b n x n = a m x a mn x n = 0 b m x b mn x n = 0

38 5.. Vektorski prostori i linearni sistemi 9 imaju isto opšte rešenje, što znači: akko c c a. a m b. b m c n c n a n. a mn b n... b mn = = pa je skup nekih kolona matrice A linearno nezavisan akko je skup odgovarajućih kolona matrice B linearno nezavisan, odakle sledi da su kolonarangovi matrica A i B jednaki. Primer. A = Matrica A je svedena na redukovanu stepenastu formu. Za bazu od RS(A) možemo uzeti ( 3 0 ), (0 0 4). Što se tiče prostora CS(A), ako izdvojimo kolone matrice u redukovanoj stepenastoj formi koje sadrže pivote, to su članovi standardne baze za R 3. Ovde su to e i e (prva i treća kolona). One čine linearno nezavisan skup a sve ostale kolone su u linearnom omotaču tog skupa jer imaju nule u trećoj vrsti (svim vrstama različitim od prve i druge). Ovaj primer nas uvodi u sledeću teoremu. Teorema 5.3. Svaka matrica ima isti vrsta i kolna rang. dokaz. Po lemama 5. i 5., svod enje matrice na redukovanu stepenastu formu ne menja ni jedan od ovih rangova. Vrsta-rang dobijene matrice jednak je broju pivota u njoj a to je ujedno i broj kolona oblika e, e,... koje daju bazu za prostor kolona te matrice iz istog razloga kao u gornjem primeru. Definicija. Rang matrice je njen vrsta odnosno kolona-rang, pošto su oni jednaki. Oznaka je rank(a). Teorema 5.4. Za homogen sistem sa n promenljivih i sa matricom koeficijenata A sledeća tvrd enja su ekvivalentna:

39 30 ODELjAK 5. PETA NEDELjA () rank(a) = r; () prostor rešenja ima dimenziju n r. dokaz. rank(a) = r akko sistem se svodi na stepenastu formu sa r ne-nula vrsta, akko svedeni sistem ima r pivota, akko svedeni sistem ima n r slobodnih promenljivih, akko prostor rešenja ima dimenziju n r. Kako pokazati poslednju ekvivalenciju će biti jasano iz sledećeg primera. Primer. Posmatrajmo sledeći sistem u redukovanoj stepenastoj formi: x y +u = 0 0 z +u = 0 A = = Opšte rešenje čitamo direktno iz redukovane stepenaste forme. S = {y 0 + u 0 y, u R}. 0 Vektori 0 i 0 0 su linearno nezavisni jer prvi u drugoj vrsti ima jedinicu a drugi nulu (to je mesto koje odgovara promenljivoj y) i isto tako drugi u četvrtoj vrsti ima jedinicu a prvi nulu (to je mesto koje odgovara promenljivoj u) tako da je nemoguće napraviti njihovu netrivijalnu linearnu kombinaciju jednaku 0. Isto se dešava i u opštem slučaju. 5.. Neke operacije s potprostorima U ovom odeljku će biti reči o preseku, sumi i direktnoj sumi potprostora nekog vektorskog prostora. Lema 5.5. Ako su U i W potprostori nekog vektorskog prostora, onda je i U W takod e potprostor tog vektorskog prostora.

40 5.. Neke operacije s potprostorima 3 dokaz. Po lemi 3. dovoljno je proveriti da je U W neprazan i da je U W zatvoren za linearne kombinacije parova vektora. Iz 0 U i 0 W sledi 0 U W pa je on neprazan. Neka su v, v U W i c, c R. Pošto je onda v, v U i U je potprostor, zaključujemo c v + c v U. Na isti način zaključujemo c v + c v W, pa je c v + c v U W. Definicija. Za U i W potprostore nekog vektorskog prostora definišemo njihovu sumu: U + W = df [U W ]. Primer. U, W R 3, U = { x y 0 x, y R}, W = { 0 y z y, z R}. Pošto je 0 0 pa je U + W = R 3., 0 0 U i R 3 = [{ 0, 0 0 0, W, onda važi: }] [U W ] R 3 Lema 5.6. Ako je [S] = U i [T ] = W onda je [S T ] = U + W. dokaz. Iz S T U W, po tvrd enju 3.4 () imamo [S T ] [U W ]. Iz S, T S T, dvostrukom primenom tvrd enja 3.4 () imamo U, W [S T ] pa je i U W [S T ]. Odavde, po tvrd enju 3.4 () i (3), dobijamo [U W ] [S T ]. Dakle, [S T ] = [U W ] = U + W. Teorema 5.7 (Grasmanova formula). Za potprostore U i W konačnodimenzionalnog vektorskog prostora važi: dim(u + W ) = dim(u) + dim(w ) dim(u W ). dokaz. Neka je δ,..., δ r baza za U W. Po tvrd enju 4.8 ta baza se može dopuniti do baze za U i do baze za W. Dakle, neka je B = δ,..., δ r, β,..., β k baza za U i neka je C = δ,..., δ r, γ,..., γ l baza

41 3 ODELjAK 5. PETA NEDELjA za W. Dovoljno je da pokažemo da je D = δ,..., δ r, β,..., β k, γ,..., γ l baza za U + W. U D nema ponavljanja, inače bi moralo biti β i = γ j za neke i i j. Taj vektor bi onda pripadao U W pa ni B ni C ne bi bili linearno nezavisni. Kao posledicu leme 5.6 imamo [D] = [B C] = U + W. Još treba pokazati da je D linearno nezavisan. Pretpostavimo: d δ d r δr + b β b k βk + c γ c l γ l = 0. Neka je v = d δ d r δr + b β b kβk U. Iz gornje jednakosti dobijamo da je v = (c γ c l γ l ) W. Dakle v U W pa je v [{ δ,..., δ r }]. Po teoremi 4., zbog jedinstvenosti Rep B ( v) dobijamo b =... = b k = 0. Uz to, gornja jednakost postaje d δ d r δr + c γ c l γ l = 0, što zbog linearne nezavisnosti od C daje d =... = d r = c =... = c l = 0. Definicija. Konkatenacija (nadovezivanje) nizova vektora: β,..., β k γ,..., γ l = df β,..., β k, γ,..., γ l. Lema 5.8. Neka je V = U + W i neka su B i C redom baze za U i W. Tada su sledeća tvrd enja ekvivalentna: () svaki v V se može na jedinstven način predstaviti kao u + w pri čemu je u U a w W ; () B C je baza za V ; (3) za proizvoljne ne-nula vektore u U i w W, niz u, w je linearno nezavisan; (4) U W = { 0}. dokaz. (() ()) B C je niz bez ponavljanja jer bi inače postojao ne-nula vektor v B C koga bismo mogli predstaviti kao v + 0 i kao 0 + v, što je suprotno pretpostavci (). Kao posledicu leme 5.6 imamo da je [B C] = [B C] = U + W = V. Još treba pokazati da je B C linearno nezavisan. Neka je B = β,..., β k i C = γ,..., γ l. Pretpostavimo: b β b k βk + c γ c l γ l = 0 =

42 5.. Neke operacije s potprostorima 33 Po () imamo da je b β b k βk = 0 i c γ c l γ l = 0, odakle po linearnoj nezavisnosti skupova B i C sledi b =... = b k = c =... = c l = 0. (() (3)) Neka su u U i w W dva ne-nula vektora i neka je u = b β b k βk a w = c γ c l γ l. Zbog linearne nezavisnosti niza B C, ako bi bilo u = w onda bi to bili nula vektori što je suprotno pretpostavci. Pretpostavimo da je r u + s w = 0. Znači: rb β rb k βk + sc γ sc l γ l = 0, pa zbog linearne nezavisnosti niza B C dobijamo rb =... = rb k = sc =... = sc l = 0. Iz u 0 v sledi da je bar jedno b i i bar jedno c j različito od 0 pa je onda r = s = 0. ((3) (4)) Pretpostavimo suprotno, tj. postoji ne-nula vektor v U W. Onda je v, v linearno zavisan što je suprotno pretpostavci (3). ((4) ()) Pretpostavimo da za u, u U i w, w W važi u + w = u + w. Onda važi u u = w w U W pa po (4) važi u u = w w = 0, tj. u = u i w = w. Definicija. Za potprostore U i W nekog vektorskog prostora V kažemo da su nezavisni kada se svaki v U + W može na jedinstven način predstaviti kao u + w pri čemu je u U a w W. Definicija. Vektorski prostor V je (unutrašnja) direktna suma svojih potprostora U i W kada su oni nezavisni i V = U + W. Oznaka je V = U W. Ako je V = U W, onda po teoremi 5.7 i lemi 5.8 sledi da je dim(v ) = dim(u) + dim(w ) i da je U W = { 0}. Primer. Neka je M = { x y z y z = 0}, N = {k 0 0 k R} i N = {k 0 k R}. Možemo pokazati da je M N = R 3 = M N. Prevedimo M u oblik {x z 0 x, z R}. Dakle M = 0, 0, N = 0 0 i N = 0 su redom baze 0 za M, N i N. Pošto su M N i M N baze za R 3, to su, po lemi

43 34 ODELjAK 6. ŠESTA NEDELjA 5.8, direktne sume M N i M N jednake prostoru R 3.

44 6. Šesta nedelja 6.. Višestruka uloga R n Primer. Posmatramo euklidsku pravu p na kojoj je fiksirana tačka O (koordinatni početak) i jedan jedinični vektor i. Time smo fiksirali jedan koordinatni sistem prave p. Neka je A proizvoljna tačka prave p. Kažemo da je u A = OA vektor položaja tačke A. A O i p Posmatrajmo sledeća pridruživanja: x R x i A p, tako da je vektor položaja u A tačke A jednak vektoru x i. Ovo su bijekcije koje nam omogućavaju da element od R posmatramo na još dva načina:. kao geometrijski vektor na pravoj p (x je komponenta tog vektora u datom koordinatnom sistemu) i. kao tačku prave p (x je koordinata te tačke u datom koordinatnom sistemu). Primer. Posmatramo euklidsku ravan α u kojoj je fiksirana tačka O (koordinatni početak) i dva jedinična, ortogonalna vektora i i j. Kao i malopre, kažemo da je u A = OA vektor položaja tačke A. A j O i Posmatrajmo sledeća pridruživanja: ( ) x R x i + y j A p, y tako da je vektor položaja u A tačke A jednak linearnoj kombinaciji x i + y j. Ovo su takod e bijekcije koje nam omogućavaju da svaki element od R 35

45 36 ODELjAK 6. ŠESTA NEDELjA posmatramo na još dva načina, kao vektor u ravni čije su komponente (x, y), odnosno tačku A(x, y) te ravni. Ovo sve važi i za R 3 i euklidski prostor. Po analogiji, pošto nemamo vizuelnu predstavu o tome šta bi bio euklidski n-dimenzionalni prostor za n 4, smatramo elemente od R n za vektore tog prostora odnosno tačke čiji su to vektori položaja. 6.. Skalarni proizvod i norma vektora u R n Definicija. Za dva vektora u = u. u n i v = v. v n definišemo njihov skalarni proizvod u v kao realan broj u v u n v n. Lako se vidi da ovako definisan skalarni proizvod zadovoljava sledeća svojstva: () linearnost, tj. (a u + b v) w = a( u w) + b( v w), () komutativnost, tj. u v = v u, (3) pozitivna definisanost, tj. u u 0 i u u = 0 akko u = 0. Vektorski prostor V sa binarnom operacijom : V V R koja zadovoljava svojstva (), () i (3) je realni unitarni vektorski prostor. Definicija. Norma vektora u R n, u oznaci u, je u u = u u n. Za n 3 se lako proveri da ako u R n posmatramo kao geometrijski vektor, onda je njegov intenzitet (dužina) jednak u (to je ujedno i rastojanje tačke, čiji je to vektor položaja, od koordinatnog početka). Za n = ( u = (u )), to sledi zbog toga što je po definiciji intenzitet geometrijskog vektora u i jednak u = u = u. Za n = to sledi po Pitagorinoj teoremi, zbog toga što je intenzitet geometrijskog vektora u i + u j jednak u + u = u. u u O u

46 6.. Skalarni proizvod i norma vektora u R n 37 Za n = 3, dva puta primenjujući Pitagorinu teoremu zaključujemo isto. u 3 u u O 3 u u u + u Uopštavajući ovo na R n definišemo intenzitet (dužinu) vektora u R n kao u = u u n. Rastojanje izmed u tačaka A i B je dužina vektora AB = u B u A a to je po prethodnom jednako u B u A = (u B ua ) (u B n u A n ). Osobine norme: (i) u 0, u = 0 akko u = 0, (ii) k u = k u i još dve sledeće teoreme. Teorema 6. (Koši-Švarc). u v u v. dokaz. Ako je u = 0 ili v = 0, onda važi u v = u v = 0. Pretpostavimo u, v 0, tada imamo: 0 ( u v v u) ( u v v u), po (3), akko 0 u v u v u v + u v, po (), () i def. norme, akko u v u v u v, akko u v u v, zato što je u, v > 0 jer su u, v 0. Analogno, polazeći od 0 ( u v + v u) ( u v + v u), dobijamo u v u v. Dakle važi u v u v. Teorema 6. (Minkovski). u + v u + v. dokaz. u + v u + v

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 23. Reč autora Ovo je verzija teksta koji je pod naslovom Linearna algebra prvobitno bio pripremljen za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 3 Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Sistemi linearnih jednačina

Sistemi linearnih jednačina Sistemi linearnih jednačina Sistem od n linearnih jednačina sa n nepoznatih (x 1, x 2,..., x n ) je a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2, a n1 x 1 + a n2 x 2 +

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. 5 Sistemi linearnih jednačina 47 5 Sistemi linearnih jednačina U opštem slučaju, pod sistemom linearnih jednačina podrazumevamo sistem od m jednačina sa n nepoznatih x 1 + a 12 x 2 + + a 1n x n = b 1 a

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Elementarna matematika - predavanja -

Elementarna matematika - predavanja - Elementarna matematika - predavanja - February 11, 2013 2 Sadržaj I Zasnivanje brojeva 5 I.1 Peanove aksiome............................. 5 I.2 Celi brojevi................................ 13 I.3 Racionalni

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA

LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA LINEARNA ALGEBRA I ANALITIČKA GEOMETRIJA Predrag Tanović February 11, 211 {WARNING: Sadržaj ovog materijala NI U KOM SLUČAJU NE MOŽE ZAMENITI UDŽBENIK: radi se o prepravljanim slajdovima predavanja. Reference

Διαβάστε περισσότερα

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Deljivost 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18. Rešenje: Nazovimo naš izraz sa I.Važi 18 I 2 I 9 I pa možemo da posmatramo deljivost I sa 2 i 9.Iz oblika u kom je dat

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

10 Iskazni račun - deduktivni sistem za iskaznu logiku

10 Iskazni račun - deduktivni sistem za iskaznu logiku 10 Iskazni račun - deduktivni sistem za iskaznu logiku Definicija 20 Iskazni račun je deduktivni sistem H = X, F orm, Ax, R, gde je X = S {,, (, )}, gde S = {p 1, p 2,..., p n,... }, F orm je skup iskaznih

Διαβάστε περισσότερα

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4. Linearna algebra A, kolokvijum, 1. tok 22. novembar 2014. 1. a) U zavisnosti od realnih parametara a i b Gausovim metodom rexiti sistem linearnih jednaqina nad poljem R ax + (a + b)y + bz = 3a + 5b ax +

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi

Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE. 1.1 Ortonormirani skupovi Poglavlje 1 GRAM-SCHMIDTOV POSTUPAK ORTOGONALIZACIJE 1.1 Ortonormirani skupovi Prije nego krenemo na sami algoritam, uvjerimo se koliko je korisno raditi sa ortonormiranim skupovima u unitarnom prostoru.

Διαβάστε περισσότερα

Uvod i vektorski prostori

Uvod i vektorski prostori ЛИНЕАРНА АЛГЕБРА припрема испита Оно што следи представља белешке које сам правио непосредно пред полагање усменог дела испита (јул 2002. године). Због тога нису потпуне, и може понешто бити нетачно, или

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Dimenzija vektorskog prostora

Dimenzija vektorskog prostora UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Marija Delić Dimenzija vektorskog prostora -master rad- Mentor: Akademik Prof. dr Stevan Pilipović Novi Sad,

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

1 Svojstvo kompaktnosti

1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti U ovoj lekciji će se koristiti neka svojstva realnih brojeva sa kojima se čitalac već upoznao tokom kursa iz uvoda u analizu. Na primer, važi Kantorov princip:

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

Zadaci iz Linearne algebre (2003/4)

Zadaci iz Linearne algebre (2003/4) Zadaci iz Linearne algebre (2003/4) Srdjan Vukmirović May 22, 2004 1 Matematička indukcija 1.1 Dokazati da za sve prirodne brojeve n važi 3 / (5 n + 2 n+1 ). 1.2 Dokazati da sa svake m Z i n N postoje

Διαβάστε περισσότερα

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f}

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f} Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f} nazivamo inverznom korespondencijom korespondencije f. A f B A f 1 B

Διαβάστε περισσότερα

Osnovne definicije i rezultati iz Uvoda u linearnu algebru

Osnovne definicije i rezultati iz Uvoda u linearnu algebru Osnovne definicije i rezultati iz Uvoda u linearnu algebru (0.01) Simetrije Neka je A = [a ij ] kvadratna matrica (matrica oblika n n). a) Za A kažemo da je simetrična matrica kadgod je A = A, tj. kadgod

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi

Διαβάστε περισσότερα

FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo

FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo FUNKCIJE - 2. deo Logika i teorija skupova 1 Logika FUNKCIJE - 2. deo Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f}

Διαβάστε περισσότερα

Relacije poretka ure denja

Relacije poretka ure denja Relacije poretka ure denja Relacija na skupu A je relacija poretka na A ako je ➀ refleksivna ➁ antisimetrična ➂ tranzitivna Umesto relacija poretka često kažemo i parcijalno ured enje ili samo ured enje.

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

4 Matrice i determinante

4 Matrice i determinante 4 Matrice i determinante 32 4 Matrice i determinante Definicija 1 Pod matricom tipa (formata) m n nad skupom (brojeva) P podrazumevamo funkciju koja preslikava Dekartov proizvod {1, 2,, m} {1, 2,, n} u

Διαβάστε περισσότερα

Konačno dimenzionalni vektorski prostori

Konačno dimenzionalni vektorski prostori Konačno dimenzionalni vektorski prostori Dragan S. Dor dević Niš, 2012. 2 Sadržaj Predgovor 5 1 Redukcija operatora 7 1.1 Linearni operatori, matrica linearnog operatora................ 7 1.2 Invarijatni

Διαβάστε περισσότερα

Bulove jednačine i metodi za njihovo

Bulove jednačine i metodi za njihovo Matematički fakultet Univerzitet u Beogradu Bulove jednačine i metodi za njihovo rešavanje Master rad Mentor: Slavko Moconja Student: Nevena Dordević Beograd, 2017. Sadržaj 1 Uvod 2 2 Bulova algebra 3

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA.   Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Analitička geometrija

Analitička geometrija 1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 1

ELEMENTARNA MATEMATIKA 1 Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Drugi deo (uvoda) Vektori

Drugi deo (uvoda) Vektori Drugi deo (uvoda) Vektori Vektori i skalari Skalar je običan broj. Vektor je lista (uređena n-torka) skalara (komponente vektora). Pomeranje (recimo, 10 koraka prema zapadu) izražavamo vektorom. Rastojanje

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Funkcije. Predstavljanje funkcija

Funkcije. Predstavljanje funkcija Funkcije narna relacija f je funkcionalna relacija ako važi: ( ) za svaki a postoji jedinstven element b takav da (a, b) f. Definicija. Funkcija 1 je uredjena trojka (,, f) gde f zadovoljava uslov: Činjenicu

Διαβάστε περισσότερα

Aksioma zamene. Aksioma dobre zasnovanosti. Aksioma dobre zasnovanosti Svaki neprazan skup A sadrži skup a takav da je A a = 0.

Aksioma zamene. Aksioma dobre zasnovanosti. Aksioma dobre zasnovanosti Svaki neprazan skup A sadrži skup a takav da je A a = 0. Aksioma zamene Aksioma zamene opisuje sledeće: ako je P (x, y) neko svojstvo parova skupova (x, y) takvo da za svaki skup x postoji tačno jedan skup y takav da par (x, y) ima svojstvo P, tada za svaki

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Linearna algebra za fizičare, zimski semestar Mirko Primc

Linearna algebra za fizičare, zimski semestar Mirko Primc Linearna algebra za fizičare, zimski semestar 006. Mirko Primc Sadržaj Poglavlje 1. Vektorski prostor R n 5 1. Vektorski prostor R n 6. Geometrijska interpretacija vektorskih prostora R i R 3 11 3. Linearne

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα