Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Σχετικά έγγραφα
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

SISTEMI NELINEARNIH JEDNAČINA

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

Ispitivanje toka i skiciranje grafika funkcija

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

18. listopada listopada / 13

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

3.1 Granična vrednost funkcije u tački

Operacije s matricama

Elementi spektralne teorije matrica

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

5 Ispitivanje funkcija

Teorijske osnove informatike 1

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Geometrija (I smer) deo 1: Vektori

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

Dijagonalizacija operatora

Linearna algebra 2 prvi kolokvij,

Osnovne teoreme diferencijalnog računa

1.1 Tangentna ravan i normala površi

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

IZVODI ZADACI (I deo)

Zadaci iz Osnova matematike

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

radni nerecenzirani materijal za predavanja

Linearna algebra 2 prvi kolokvij,

Matematika 1 { fiziqka hemija

Zadaci iz trigonometrije za seminar

numeričkih deskriptivnih mera.

4 Unitarni prostori. 4.1 Definicija i svojstva unitarnih prostora. K polje R ili C, V je vektorski prostor nad K

PP-talasi sa torzijom

1 Svojstvo kompaktnosti

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

APROKSIMACIJA FUNKCIJA

Matematička analiza 1 dodatni zadaci

Numerička matematika 2. kolokvij (1. srpnja 2009.)

5. Karakteristične funkcije

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

Otpornost R u kolu naizmjenične struje

Sistemi veštačke inteligencije primer 1

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

7 Algebarske jednadžbe

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

ELEKTROTEHNIČKI ODJEL

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

1.4 Tangenta i normala

ELEMENTARNE FUNKCIJE

6 Polinomi Funkcija p : R R zadana formulom

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

8 Funkcije više promenljivih

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

Diferencijabilnost funkcije više promenljivih

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

Geometrija (I smer) deo 2: Afine transformacije

Dvanaesti praktikum iz Analize 1

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

Uvod u teoriju brojeva

Funkcije dviju varjabli (zadaci za vježbu)

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Sistem sučeljnih sila

Jednodimenzionalne slučajne promenljive

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Računarska grafika. Rasterizacija linije

Granične vrednosti realnih nizova

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Granične vrednosti realnih funkcija i neprekidnost

PLOHE KONSTANTNE SREDNJE ZAKRIVLJENOSTI U MINKOWSKIJEVOM PROSTORU

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

CR podmnogostrukosti xestodimenzione sfere

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

1. Topologija na euklidskom prostoru R n

Transcript:

Klasifikacija blizu

Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) = 0 R(X, Y, Z, W ) = R(Z, W, X, Y ) R(X, Y )J = JR(X, Y ) R(X, Y ) = R(JX, JY ) R(JX, JY, Z, W ) = R(X, Y, JZ, JW ) = R(X, Y, Z, W ) za X, Y, Z, W χ(m).

Teorema Kelerova mnogostrukost je lokalno ravna.

Definicija Sekciona ravan Σ se zove holomorfna sekciona ravan ako je Σ invarijantna u odnosu na J, a to je ako i samo ako je {X, JX } ortonormirana baza za Σ gde je X bilo koji jedinični vektor ravni Σ. Za holomorfnu sekcionu ravan Σ u tački p sekciona krivina k(p, Σ) se zove holomorfna sekciona krivina. (k(p, Σ) = R(X, JX, X, JX ))

Teorema Neka je M Kelerova mnogostrukost. Ako je k(p, Σ) = c ( c je konstanta ) za svaku holomorfnu sekcionu ravan Σ, tada je R = cr 0 u tački p, gde je R 0 (X, Y, Z, W ) = 1 [< X, W >< Y, Z > < Y, W >< X, Z > 4 + < X, JW >< Y, JZ > < Y, JW >< X, JZ > +2 < X, JY >< W, JZ >] za X, Y, Z, W T p (M).

Definicija Neka je M skoro Hermitski prostor. M je blizu Kelerova mnogostrukost ako važi X (J)X = 0 za svako X χ(m).

Lema Za operator krivine R XY (X, Y χ(m)) važe sledeći identiteti: 1 < R XY X, Y > < R XY JX, JY >= X (J)(Y ) 2 2 < R WX Y, Z >=< R JWJX JY, JZ > 3 2 < 2 WX (J)Y, Z >=< R WJX Y, Z > + < R WJZ X, Y > + < R WJY Z, X > 4 < R WX Y, Z >=< R JWJX Y, Z > + < R JWX JY, Z > + < R JWX Y, JZ > za W, X, Y, Z χ(m).

Lema Za svako W, X, Y, Z χ(m) vazi < R WX Y, Z > < R WX JY, JZ >=< W (J)(X ), Y (J)(Z) >.

Lema Neka je M blizu Kelerova mnogostrukost. Neka je x T p M jedinični vektor u kom holomorfna sekciona krivina H(x) ima maksimum. Tada za svako y T p M takvo da je < x, y >=< Jx, y >= 0 i y = 1, vazi H(x) 3 < R xy x, y > + < R xjy x, Jy > 3 x (J)(y) 2.

Lema Pretpostavimo da holomorfna sekciona krivina H od M ima konstantnu vrednost µ u tački p M, i neka su x, u T p M takvi da je x = u = 1. Tada važi ako je < x, u >= 0. K xu = µ 4 {1 + 3 < Jx, u >2 } + 3 4 x(j)(u) 2,

Lema Neka je M blizu Kelerova mnogostrukost tačka po tačka λ(p). Tada za w, x, y, z T p (M) važi R(w, x, y, z) = = λ(p) (< w, y >< x, z > < w, z >< x, y > 4 + < Jw, y >< Jx, z > < Jw, z >< Jx, y > +2 < Jw, x >< Jy, z >) + 1 4 (< ( w J)y, ( x J)z > < ( w J)z, ( x J)y > + 2 < ( w J)x, ( y J)z >)

Lema Neka je M blizu Kelerova mnogostrukost. Onda je M lokalno simetrična.

Lema Neka je M blizu Kelerova mnogostrukost tačka po tačka λ. Ako M nije Kelerova onda je λ > 0.

Teorema Neka je M blizu Kelerova mnogostrukost tačka po tačka λ. Tada je M lokalno izometrična jednom od sledećih prostora rimanovoj površi M 2 komlpleksnom euklidskom prostoru C n kompleksnom hiperboličkom prostoru CD n kompleksnom projektivnom prostoru CP n sferi S 6

Primer S 6 je blizu Kelerova mnogostrukost( koja nije Kelerova mnogostrukost) 1.

Teorema () Neka je M blizu Kelerova mnogostrukost, dim M 4. Ako holomorfna sekciona krivina H(p, X ) ne zavisi od X onda je ona konstantna.

λ(w, X, Y, Z) = R(W, X, Y, Z) R(W, X, JY, JZ)

λ(w, X, Y, Z) = R(W, X, Y, Z) R(W, X, JY, JZ) P(V, W, X, Y, Z) = = ( 3 V (λ)(w, X, Y, Z) + V (λ)(w, X, Y, Z)) V,W,X X,Y,Z

λ(w, X, Y, Z) = R(W, X, Y, Z) R(W, X, JY, JZ) P(V, W, X, Y, Z) = = ( 3 V (λ)(w, X, Y, Z) + V (λ)(w, X, Y, Z)) V,W,X X,Y,Z λ(w, X, Y, Z) = < ( W J)X, ( Y J)Z > λ(w, X, Y, Z) = λ(w, JX, Y, JZ) = λ(jw, JX, JY, JZ) λ(w, X, Y, Z) = λ(w, X, JY, JZ)

Lema Neka je M blizu Kelerova mnogostrukost. Tada za sve W, X χ(m) važi P(JW, W, X, W, X ) + P(JW, W, JX, W, JX ) = 0 Lema Neka je M blizu Kelerova mnogostrukost, čija je holomorfna sekciona krivina µ tačka po tačka konstantna Tada za sve W, X χ(m) važi P(JW, W, X, W, X ) + P(JW, W, JX, W, JX ) = = 2(JW µ)( W 2 X 2 + < W, X > 2 + < JW, X > 2 ) + 4 W 2 (< W, JX > X µ < W, X > JX µ)