Ειδικά Θέµατα Μηχανικής! (Μηχανική Σύνθετων Υλικών) Κεφάλαιο 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ειδικά Θέµατα Μηχανικής! (Μηχανική Σύνθετων Υλικών) Κεφάλαιο 1"

Transcript

1 Ειδικά Θέµατα Μηχανικής Μηχανική Σύνθτων Υλικών) Κφάλαιο

2 Σύνθτα υλικά: ποιά ίναι και πώς ίναι.. Στο πλαίιο της ανάλυης µηχανικής υµπριφοράς υνθέτων υλικών, θα πριοριθούµ την θώρηη δοµικών τοιχίων που χρηιµοποιούνται µορφή λπτών τρώων από πολυµρή πλατικά νιχυµένα µ µακριές υνχίς ίνς. Η υνήθως ορθότροπη τρώη lamina) ινώδους υνθέτου υλικού, η οποία µπορί να ίναι πίπδη ή καµπύλη, αποτλίται από υνχίς ίνς παράλληλς ή κατάλληλα διατταγµένς µταξύ τους και υγκρατούµνς δια του υνδτικού υλικού µήτρα). tructural composites /

3 Μακροκοπική µηχανική υµπριφορά τρώως ινώδους υνθέτου υλικού Τυπική διάταξη ινών διατοµή τρώης ΙΣΥ πάχος: µm Στρώη πολυµρούς νιχυµένου µ υνχίς ίνς lamina) Διακριτές φάις: ίνα µήτρα µm /

4 Στρώις υαλοϋφαµάτων ή µ ίνς carbon, aramid, κτλ. Plain weave up, down) glass fabric ) Filling yarn, running the width of a woven fabric at right angles to the warp weft direction ) warp direction ) Eight-harness satin weave up, 7 down) ) In the fabric industry, those fibers or threads in a woven fabric which run lengthwise, or which are parallel to the selvedge /

5 Πολύτρωτς διατάξις από UD τρώις EM photograph of a typical composite after exposure to water at K for one day c.9) subjected to of its UT [O. Gillat, L.J. Broutman, TP 8 978)] /

6 Στις πολύτρωτς διατάξις από UD τρώις η ανοµοιογένια του υνθέτου παίζι κυρίαρχο ρόλο τους παρατηρούµνους τρόπους ατοχίας Intraply crack matrix crack) Interply crack delamination) /

7 Και για µία τρώη UD, η ανοµοιογένια του υνθέτου πίπδο ίνας-µήτρας) παίζι κυρίαρχο ρόλο τους παρατηρούµνους µικροµηχανιµούς ατοχίας /

8 Typical microstructures of fractured specimens [A.G.Miller, A.L.Wingert, TP 9 979)] 7/

9 µακροκοπική υµπριφορά: το ύνολο των µέων φαινοµένων µηχανικών ιδιοτήτων της ορθοτρόπου τρώως ή του πολυτρώτου κλύφους αντιτοίχως Άρα, η τρώη θα θωρίται µακροκοπικώς ως οµογνές ανιότροπο υλικό υπόθη που πιραµατικώς υποτηρίζται ικανοποιητικά όον αφορά µγέθη γνικών µηχανικών ιδιοτήτων όπως οι τχνικές λατικές ταθρές ή οι τάις ατοχίας ) Οον αφορά την κατατατική χέη τάων-παραµορφώων του ανιότροπου ινώδους υνθέτου υλικού, αυτό θα θωρίται γραµµικώς λατικό µέο έως της ατοχίας του Νόµος Hooke: αξίωµα; η ιχύς του τηρίζται νργιακές αρχές; µπιρική χέη; 8/

10 Robert Hooke -7) De Potentia restitutivâ or Of pring 78) EIIINOTTUV E I I I N O T T U V UT TENIO I VI Η ηµρινή µορφή του νόµου Hooke καθώς και η έννοια του τανυτού τάης, ξιώις ιορροπίας, κ.τ.λ οφίλονται: Augustin auchy ) 9/

11 Ανιότροπο γραµµικώς λατικό µέο: Γνικυµένος νόµος Hooke:, i, j,k,l,..., kl kl, : υµµτρικοί τανυτές ης τάξης ji, όπου: ji u i,j u j,i ) u: διάνυµα µτατόπιης kl : ης τάξως τανυτής δυκαµψίας stiffness tensor) του µέου ανξάρτητς υνιτώς) Λόγω της υµµτρίας των τανυτών, : Η υµµτρία των τανυτών νδόως και δυκαµψίας υνπάγται πραιτέρω Αρα το πλήθος των ανξαρτήτων kl πριορίζται µίωη των ανξαρτήτων υνιτωών τους: Για το γραµµικώς λατικό µέο που θωρούµ υπάρχι βαθµωτή υνάρτηη δυναµικού, W λατικό δυναµικό ή πυκνότης νργίας παραµορφώων) η οποία ίναι θτικά οριµένη, δηλ. W> πάντοτ: lk jilk kl jikl kl : υµµτρικός - : υµµτρικός: klkl W kl : ης τάξως τανυτής νδόως compliance tensor) kl kl kl kl /

12 Ανιότροπο γραµµικώς λατικό µέο: Γνικυµένος νόµος Hooke: kl kl ή kl kl Πυκνότης νργίας παραµορφώων strain energy density): W W klkl kl kl Λόγω της υµµτρίας όλων των τανυτών, χρηιµοποιούνται υνιτώς µ υτολή δικτών και όλς οι ανωτέρω χέις γράφονται µητρωϊκή µορφή: i i j j, i, j,...,, ji ji ΠΡΟΣΟΧΗ.. τούς δίκτς /

13 Αναπτύοντας τον νόµο Hooke µητρωϊκή γραφή: ) *, - Η αντιτοιχία µταξύ φυικών δικτών και αυτών της υτολής: όχι τανυτικές υνιτώς, αλλά τχνικές διατµητικές παραµορφώις. Π.χ. γ /

14 ΥΠΕΝΘΥΜΙΣΗ: Γωµτρική ρµηνία υνιτωών τανυτού τάης x x x /

15 ΥΠΕΝΘΥΜΙΣΗ: Γωµτρική ρµηνία υνιτωών τανυτού µικρών παραµορφώων x L ζ/ h x δ, L ζ h δ/ x β γ π β, β rad) x /

16 Νόµος Hooke γιά το γνικώς ανιότροπο γραµµικό λατικό µέο: ) *, - ) *, - ή ανξάρτητς λατικές ταθρές: καµµία λατική υµµτρία: Τρικλινές λατικό µέο Αντιτοιχία υνιτωών λατικών µητρώων και τανυτών: m,n m,n όταν m XOR n όταν m,n όταν kl mn kl mn kl mn kl mn > > Υπνθύµιη: /

17 Τανυτικός νόµος: kl kl Παραµένι αναλλοίωτος kl kl Οι υνιτώς όµως των τανυτών αλλάζουν βάι του νόµου τανυτικού µταχηµατιµού: x x x α i kl kl α α x im im α α j α α im im jn jn α α jn jn mn mn α α kp kp α α lq lq mnpq mnpq i, j, k, l, m, n, p, q,, x όπου: α cos i, j), i, j,..., x Γιά τα υνηµίτονα κατύθυνης ιχύι ότι: α α ik jk δ x x Kronecker δέλτα: δ if if i i j j /

18 Εποµένως: Οταν ίναι γνωτές οι λατικές ταθρές κάποιου µέου, ως προς κάποιο ύτηµα υντταγµένων, τότ µπορούν ύκολα να υπολογιθούν µέω του τανυτικού µταχηµατιµού και γιά οποιοδήποτ άλλο Επίης: Οι χέις µταχηµατιµού τανυτικών υνιτωών ύκολα µτατρέπονται αντίτοιχς γιά τις µητρωϊκές υνιτώς ΕΛΑΣΤΙΚΗ ΣΥΜΜΕΤΡΙΑ: Ετω ότι λατικό µέο αναφέρται ως προς ύτηµα υντταγµένων x, x, x ) και ως προς το x x, x ), υµµτρικό ως προς το πρώτο η υµµτρία των δύο υτηµάτων αναφοράς θα ίναι ίδια µ αυτήν που παρατηρίται την δοµή του µέου). Οι διυθύνις των αξόνων x, x, x και x x, x, θα ίναι ιοδύναµς από πλυράς λατικών ιδιοτήτων και άρα ο γνικυµένος νόµος Ηooke θα ίναι ο ίδιος για τα δύο υµµτρικά υτήµατα το µητρώο ή θα έχι δηλ. τις ίδις υνιτώς ως προς τα δύο υτήµατα υντταγµένων). Υπάρχουν φυικά ξύλο, οτά, ιτοί) και ύνθτα υλικά FRP, knitted PM s) που παρουιάζουν µγάλη ποικιλία τύπων ανιοτροπίας. Οον αφορά τα Ι.Σ.Υ. που µλτούµ, µγαλύτρο νδιαφέρον παρουιάζουν τα µονοκλινή, ορθότροπα, γκαρίως ιότροπα και ιότροπα λατικά µέα 7/

19 Μονοκλινές µέο Ετω λατικό ανιότροπο µέο από κάθ ηµίο του οποίου πρνά πίπδο µ την ιδιότητα: διυθύνις υµµτρικές ως προς αυτό ίναι λατικώς ιοδύναµς. Το ανωτέρω πίπδο ίναι πίπδο λατικής υµµτρίας. x Ετω πίπδο λατ.υµ. παράλληλο το x -x ) µπορί τότ να αποδιχθί ότι ο γνικυµένος νόµος Hooke παίρνι την µορφή: -, * ) x και άρα ο αριθµός των ανξαρτήτων µιώνται τα ίδια ακριβώς ιχύουν και για τις υνιτώς ) x ΠΡΟΣΟΧΗ.. Η υγκκριµµένη µορφή του µητρώου οφίλται το ότι πλέγη το πίπδο x-x) ως λατικό πίπδο υµµτρίας 8/

20 Ορθότροπο µέο Ετω λατικό ανιότροπο µέο από κάθ ηµίο του οποίου πρνούν δύο κάθτα µταξύ τους πίπδα λατικής υµµτρίας. Μπορί να αποδιχθί τότ ότι υπάρχι και τρίτο πίπδο λατικής υµµτρίας, κάθτο προς τα δύο προηγούµνα. Το τριορθογώνιο ύτηµα αξόνων που ορίζται από την τοµή των πιπέδων λατικής υµµτρίας ονοµάζται κύριο ύτηµα αξόνων ή ύτηµα υµµτρίας του µέου. ) *, - Ο αριθµός των ανξαρτήτων µιώνται 9 τα ίδια ακριβώς ιχύουν και για τις υνιτώς ) ΠΡΟΣΟΧΗ.. Η υγκκριµµένη µορφή του µητρώου ιχύι γιά το κύριο ύτηµα αξόνων x x x 9/

21 Τυπικό παράδιγµα ορθοτρόπου µέου : woven fabric Κύριο ύτηµα αξόνων ή υµµτρίας του µέου x x x /

22 Εγκαρίως ιότροπο µέο Το λατικό µέο µ ένα άξονα απίρου λατικής υµµτρίας: Αυτός για τον οποίο όλς οι κάθτς διυθύνις ίναι λατικά ιοδύναµς και άρα κάθ κάθτο αυτόν πίπδο έχι ιότροπς ιδιότητς άξονας απίρου λατικής υµµτρίας ) ) *, - Ο αριθµός των ανξαρτήτων µιώνται τα ίδια ακριβώς ιχύουν και για τις υνιτώς ) ΠΡΟΣΟΧΗ.. Η υγκκριµµένη µορφή του µητρώου ιχύι γιά το κύριο ύτηµα αξόνων x x x x x x θ θ /

23 Τυπικό παράδιγµα γκαρίως ιοτρόπου µέου x άξονας απίρου λατικής υµµτρίας x x x x x /

24 x x Ιότροπο πίπδο γκαρίως ιοτρόπου µέου x x θ ) ) /

25 Ιότροπο µέο / το λατικό µέο του οποίου όλς οι διυθύνις ίναι λατικά) ιοδύναµς. Εναλλακτικά, ιότροπο καλίται το µέο γιά το οποίο ο οποιοδήποτ τυχαίος µταχηµατιµός του υτήµατος υντταγµένων αφήνι αναλλοίωτς τις υνιτώς των λατικών µητρώων x x ) ) ) x x kl kl Κύριο ύτηµα αξόνων; x kl kl x

26 Συνοψίζοντας: ) ) ) τρικλινές, µονοκλινές, ορθότροπο, 9 γκαρίως ιότροπο, ιότροπο, τα ίδια ακριβώς ιχύουν και για τις υνιτώς / - ) ) /

Μηχανικές ιδιότητες συνθέτων υλικών: εφελκυσμός. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

Μηχανικές ιδιότητες συνθέτων υλικών: εφελκυσμός. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Μηχανικές ιδιότητς υνθέτων υλικών: φλκυμός Άλκης Παϊπέτης Τμήμα Επιτήμης & Τχνολογίας Υλικών ΑΝΑΚΟΙΝΩΣΗ Εκπόνηη διπλωματικών ργαιών την ΕΑΒ, Τανάγρα Αττικής. dispersion methodologies μ κοπό τη δημιουργία

Διαβάστε περισσότερα

Ειδικά Θέµατα Μηχανικής. (Μηχανική Σύνθετων Υλικών) Κεφάλαιο 2 (2.2)

Ειδικά Θέµατα Μηχανικής. (Μηχανική Σύνθετων Υλικών) Κεφάλαιο 2 (2.2) Ειδικά Θέµατα Μηχανικής Μηχανική Σύνθτων Υλικών Κφάλαιο. Λπτή τρώη ορθοτρόπου υλικού: πίπδη ένταη 5 5 5 oai ορθότροπο 5 5 iplae outofplae : Μητρώο ανηγµένης δυκαµψίας reduced tiffe D D D D ν ν ν ν / Λπτή

Διαβάστε περισσότερα

Ειδικά Θέµατα Μηχανικής! (Μηχανική Σύνθετων Υλικών) Κεφάλαιο 2 (2.1)

Ειδικά Θέµατα Μηχανικής! (Μηχανική Σύνθετων Υλικών) Κεφάλαιο 2 (2.1) Ειδικά Θέµατα Μηχαικής Μηχαική Σύτω Υλικώ Κφάλαιο. / Μηχαική υµπριφορά οροτρόπου µέου. onaxis ορότροπο offaxis ορότροπο Στο κύριο ύτηµα onaxis του οροτρόπου µέου οι υιτώς του λατικού µητρώου δόως ίαι 9

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΜΗΧΑΝΙΚΗ ΑΝΙΣΟΤΡΟΠΩΝ ΚΑΙ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΙΚΡΟΜΗΧΑΝΙΚΗ ΚΑΙ ΟΜΟΓΕΝΟΠΟΙΗΣΗ

ΚΕΦΑΛΑΙΟ 3 ΜΗΧΑΝΙΚΗ ΑΝΙΣΟΤΡΟΠΩΝ ΚΑΙ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΙΚΡΟΜΗΧΑΝΙΚΗ ΚΑΙ ΟΜΟΓΕΝΟΠΟΙΗΣΗ ΚΕΦΑΛΑΙΟ 3 ΜΗΧΑΝΙΚΗ ΑΝΙΣΟΤΡΟΠΩΝ ΚΑΙ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΙΚΡΟΜΗΧΑΝΙΚΗ ΚΑΙ ΟΜΟΓΕΝΟΠΟΙΗΣΗ 3. ΜΗΧΑΝΙΚΕΣ ΤΑΣΕΙΣ ΚΑΙ ΤΡΟΠΕΣ 3.. Η «Εντατική Κατάταη» ώματος Η ντατική κατάταη ένα ημίο M νός ώματος που υποβάλλται

Διαβάστε περισσότερα

Εργαστηριακές Σημειώσεις Ανελαστική Κάμψη Μεταλλικής Δοκού

Εργαστηριακές Σημειώσεις Ανελαστική Κάμψη Μεταλλικής Δοκού Εργατηριακές Σημιώις Ανλατική Κάμψη Μταλλικής Δοκού Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Πανπιτημιακός Υπότροφος) Ειαγωγή Δοκός καθαρή κάμψη (λατική υμπριφορά) Τρόπος που παραμορφώνται η δοκός λόγω κάμψης

Διαβάστε περισσότερα

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών

Υπενθυµίσεις Μηχανικής Παραµορφωσίµων Στερεών Παράρτηµα Υπνθυµίις Μηχανικής Παραµορφωίµων Στρών 1. ΤΑΣΕΙΣ Οι ξωτρικές δυνάµις που πιβάλλονται ένα ώµα µπορούν να χωριθούν δύο κατηγορίς, τις καθολικές δυνάµις και τις πιφανιακές δυνάµις. Οι καθολικές

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΕΣ ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ, ΛΕΠΤΟΤΟΙΧΑ ΚΕΛΥΦΗ

ΓΕΝΙΚΕΥΜΕΝΕΣ ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ, ΛΕΠΤΟΤΟΙΧΑ ΚΕΛΥΦΗ 59 Κφάαιο 3 ΓΕΝΙΚΕΥΜΕΝΕΣ ΣΧΕΣΕΙΣ ΤΑΣΕΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ, ΛΕΠΤΟΤΟΙΧΑ ΚΕΛΥΦΗ 3.1 Ειαγωγή Στο κφάαιο αυτό πριγράφται η ντατική κατάταη δομικά τοιχία όγω διάτμηης (διατμητικές τάις και παραμορφώις), δίνονται

Διαβάστε περισσότερα

Σεισμολογία. Ελαστική Τάση, Παραμόρφωση (Κεφ.2, Σύγχρονη Σεισμολογία)

Σεισμολογία. Ελαστική Τάση, Παραμόρφωση (Κεφ.2, Σύγχρονη Σεισμολογία) Σειμολογία Ελατική Τάη, Παραμόρφωη (Κεφ., Σύγχρονη Σειμολογία) Τι είναι Σειμός O ειμός είναι η γένεη και μετάδοη ελατικών κυμάτων μέα από το φλοιό της γης, τα κύματα δημιουργούνται από τη διάρρηξη των

Διαβάστε περισσότερα

15. ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΕΛΑΣΤΟΠΛΑΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

15. ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΕΛΑΣΤΟΠΛΑΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Η Μέθοδος των Ππραµένων Στοιχίων Σηµιώις 5. ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΕΛΑΣΤΟΠΛΑΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Στο κφάλαιο αυτό πριγράφται ν υντοµία η πίλυη προβληµάτων παραµορφώιµων ωµάτων µ λατο-πλατική υµπριφορά, µέω της

Διαβάστε περισσότερα

Σχεδίαση µε τη χρήση Η/Υ

Σχεδίαση µε τη χρήση Η/Υ Σχδίαση µ τη χρήση Η/Υ Ε Φ Α Λ Α Ι Ο 1 0 Ο Σ Τ Ο Ι Χ Ε Ι Α Γ Ε Ω Μ Ε Τ Ρ Ι Α Σ Τ Ο Υ Χ Ω Ρ Ο Υ Ρ Λ Ε Ω Ν Ι Α Σ Α Ν Θ Ο Π Ο Υ Λ Ο Σ, Ε Π Ι Ο Υ Ρ Ο Σ Α Θ Η Γ Η Τ Η Σ Τ Μ Η Μ Α Ι Ο Ι Η Σ Η Σ Α Ι Ι Α Χ Ε Ι

Διαβάστε περισσότερα

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου)

Στοιχεία από τη Γεωμετρία του χώρου (αναλυτικά στο βιβλίο: Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου) Στοιχία από τη Γωμτρία του χώρου (αναλυτικά στο βιβλίο: Ευκλίδια Γωμτρία Α και Β Ενιαίου Λυκίου) Σχήματα των οποίων τα σημία δν βρίσκονται όλα στο ίδιο πίπδο ονομάζονται γωμτρικά στρά (π.χ. σφαίρα, κύλινδρος,

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ (YIELD CRITERIA)- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ

ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ (YIELD CRITERIA)- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ YIELD CRITERIA- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ Κριτήριο διαρροής είναι η µαθηµατική υνθήκη που περιγράφει την εντατική κατάταη ε ένα ηµείο της µάζας του υλικού, ώτε το ηµείο αυτό να υµβαίνει

Διαβάστε περισσότερα

Διαδικασία προσδιορισμού των καμπύλων σύγκλισης-αποτόνωσης (p - u) και των καμπύλων απόστασης συντελεστή αποτόνωσης (λ x)

Διαδικασία προσδιορισμού των καμπύλων σύγκλισης-αποτόνωσης (p - u) και των καμπύλων απόστασης συντελεστή αποτόνωσης (λ x) Διαδικαία προδιοριμού των καμπύων ύγκιης-αποτόνωης ( - ) και των καμπύων απόταης υνττή αποτόνωης ( x) Μ. Καββαδάς, Αναπ. Καηγητής ΕΜΠ. Δδομένα : (α) Γωμτρία: Ακτίνα ήραγγας : (κυκική ήραγγα) Σήραγγα μγάου

Διαβάστε περισσότερα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα

Γωνία που σχηματίζει η ε με τον άξονα. Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα ΕΥΘΕΙΑ Γωνία που σχηματίζι η μ τον άξονα. Έστω O ένα σύστημα συντταγμένων στο πίπδο και μια υθία που τέμνι τον άξονα στο σημίο Α. Α ω Α ω Τη γωνία ω που διαγράφι ο άξονας όταν στραφί γύρω από το Α κατά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ

ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ Μετάδοη Τάεων λόγω Επιβολής Φορτίων Σελίδα ΚΕΦΑΛΑΙΟ 8 ΜΕΤΑ ΟΣΗ ΤΩΝ ΤΑΣΕΩΝ ΛΟΓΩ ΕΠΙΒΟΛΗΣ ΕΞΩΤΕΡΙΚΩΝ ΦΟΡΤΙΩΝ 8. Ειαγωγή Ένα ύνηθες αποτέλεµα των έργων Πολιτικού Μηχανικού είναι η επιβολή φορτίων το έδαφος

Διαβάστε περισσότερα

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ

4.1 ΕΥΘΕΙΕΣ ΚΑΙ ΕΠΙΠΕ Α ΣΤΟ ΧΩΡΟ 1 4.1 ΥΙΣ ΚΙ Ι ΣΤΟ ΧΩΡΟ ΩΡΙ 1. Το πίπδο: ίναι έννοια πρωταρχική για τα µαθηµατικά δηλαδή έννοια που δν πιδέχται ορισµό. H ικόνα του πιπέδου ίναι γνωστή από την µπιρία µας. Την έχουµ ταυτίσι µ τη µορφή

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ IΙ ΕΦΕΛΚΥΣΜΟΣ ΘΛΙΨΗ ΡΑΒ ΩΤΩΝ ΦΟΡΕΩΝ Η περίπτωη του εφελκυμού και της θλίψης των ραβδωτών φορέων είναι ενδεικτική για την αφετηρία της μελέτης παραμορφώιμων τερεών. Πρόκειται για προβλήματα

Διαβάστε περισσότερα

Μηχανική Πετρωμάτων Τάσεις

Μηχανική Πετρωμάτων Τάσεις Μηχανική Πετρωμάτων Τάσεις Δρ Παντελής Λιόλιος Σχολή Μηχανικών Ορυκτών Πόρων Πολυτεχνείο Κρήτης http://minelabmredtucgr Τελευταία ενημέρωση: 28 Φεβρουαρίου 2017 Δρ Παντελής Λιόλιος (ΠΚ) Τάσεις 28 Φεβρουαρίου

Διαβάστε περισσότερα

Δδά Διδάσκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών Επιστημών, Σχολή Μηχανικών Μεταλλείων Μεταλλουργών

Δδά Διδάσκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών Επιστημών, Σχολή Μηχανικών Μεταλλείων Μεταλλουργών ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ Δδά Διδάκοντες: Δημήτριος Ρόζος, Επικ. Καθηγητής ΕΜΠ Τομέας Γεωλογικών

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΥΠΟΛΟΓΙΣΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ Μέρος» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 6-7 Μ. ΚΑΒΒΑΔΑΣ, Αναπλ. Καθηγητής

Διαβάστε περισσότερα

Μπορείτε να δείξετε ότι αυξανομένης της θερμοκρασίας το κλάσμα των μορίων του συστήματος που βρίσκεται στην βασική ενεργειακή κατάσταση θα μειώνεται;

Μπορείτε να δείξετε ότι αυξανομένης της θερμοκρασίας το κλάσμα των μορίων του συστήματος που βρίσκεται στην βασική ενεργειακή κατάσταση θα μειώνεται; Έστω μακροσκοπικό σύστημα αποτούμνο από μόρια τα οποία μπορούν να βρθούν σ ένα σύνοο μη κφυισμένων καταστάσων μ νέργια, όπου,, 2, 3, 4,. Σ προηγούμνο παράδιγμα δίξαμ ότι η κυρίαρχη διαμόρφωση νός τέτοιου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ

ΚΕΦΑΛΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΛΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΛΟΣ, ΕΠΙΚΟΥΡΟΣ ΚΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΛΑΡΙΣΑΣ Σχδίαση μ τη χρήση Η/Υ ΕΦΑΑΙΟ 12 Ο ΣΤΟΙΧΕΙΑ ΓΕΩΜΕΤΡΙΑΣ ΤΟΥ ΧΩΡΟΥ ΔΡ ΕΩΝΙΔΑΣ ΑΝΘΟΠΟΥΟΣ, ΕΠΙΟΥΡΟΣ ΑΘΗΓΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΗΣΗΣ ΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΕΡΓΩΝ ΤΕΙ ΑΡΙΣΑΣ Γωνίς πιπέδων: Η γωνία δυο τμνόμνων πιπέδων ορίζται

Διαβάστε περισσότερα

Ανοικτά και κλειστά σύνολα

Ανοικτά και κλειστά σύνολα 5 Ανοικτά και κλιστά σύνολα Στην παράγραφο αυτή αναπτύσσται ο µηχανισµός που θα µας πιτρέψι να µλτήσουµ τις αναλυτικές ιδιότητς των συναρτήσων πολλών µταβλητών. Θα χριαστούµ τις έννοις της ανοικτής σφαίρας

Διαβάστε περισσότερα

Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης.

Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δείκτη διάθλασης. Ο Διάθλαση μέσω οπτικού πρίσματος - Υπολογισμός δίκτη διάθλασης. 1 Σκοπός Ο δίκτης διάθλασης νός διαφανούς οπτικού μέσου ίναι ένα ιδιαίτρο σημαντικό φυσικό μέγθος στην οπτική. Ο δίκτης διάθλασης όχι μόνο

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α.

ΕΞΙΣΩΣΗ ΣΦΑΙΡΑΣ. είναι όλοι ίσοι και επιπλέον δεν υπάρχουν οι όροι xy, yz, zx. Γενικά µια εξίσωση της µορφής: 0 + Β + Α. Suies & Publishing ΣΟΛΩΜΟΥ 9 ΠΟΛΥΤΕΧΝΕΙΟ ΤΗΛ.:.38..57 www.arnοs.gr 3 Ο γωµτρικός τόπος των σηµίων που έχουν σταθρή απόσταση από το σηµίο,, του 3 ονοµάζται σφαίρα. Η σφαίρα µ κέντρο το,, και ακτίνα έχι

Διαβάστε περισσότερα

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση:

Νόμος του Gauss 1. Ηλεκτρική Ροή ( πλήθος δυναμικών γραμμών). είναι διάνυσμα μέτρου Α και κατεύθυνσης κάθετης στην επιφάνεια. Στην γενική περίπτωση: Νόμος του Gauss 1. Ηλκτρική Ροή ( πλήθος δυναμικών γραμμών). ( a) cosφ ( b) ίναι διάνυσμα μέτρου Α και κατύθυνσης κάθτης στην πιφάνια. Στην γνική πρίπτωση: d d d ( ) (πιφανιακό ολοκλήρωμα) Νόμος του Gauss

Διαβάστε περισσότερα

( ) y ) άγνωστη συνάρτηση, f (, )

( ) y ) άγνωστη συνάρτηση, f (, ) 6. Ι ΙΑΣΑΑ ΠΡΟΒΛΗΜΑΑ ΣΥΝΟΡΙΑΚΝ ΙΜΝ 6. Πρόβληµατα πδίου σ διαστάσις Η νότητα αυτή αναφέρται σ προβλήµατα πδίου, όπου άγνωστη συνάρτηση ίναι µία βαθµωτή συνάρτηση. α προβλήµατα αυτά έχουν σηµαντικές φαρµογές

Διαβάστε περισσότερα

S συµβολίζονται ως. Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούµενου σώµατος µε άλλα σώµατα),

S συµβολίζονται ως. Είδη φορτίων: (α) επιφανειακά (π.χ. λόγω επαφής του θεωρούµενου σώµατος µε άλλα σώµατα), ΑΝΑΛΥΣΗ ΤΩΝ ΤΑΣΕΩΝ Η έννοια του ελκυτή (tracto): M(υνιταµένη ροπή) F (υνιταµένη δύναµη) Θεωρείται παραµορφώιµο τερεό ε ιορροπία υπό εξωτερική φόρτιη (αποκλείονται ταχέως µεταβαλλόµενες φορτίεις και εποµένως

Διαβάστε περισσότερα

3.3 Η αρχή των Ήρωνος-Fermat

3.3 Η αρχή των Ήρωνος-Fermat Κφ. 3 Γνικές αρχές της κυματικής 3.3 Η αρχή των Ήρωνος-Fermat 3.3. H Ανάκλαη του φωτός, ο Ήρων ο Αλξανδρύς και η Αρχή του Ελαχίτου Δρόμου 3.3. Η διάθλαη του φωτός, ο Fermat και η Αρχή του Ελαχίτου Χρόνου

Διαβάστε περισσότερα

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων .

και ( n) 1 R. Αν ε > 0, επιλέγουµε για κάθε k 1 ένα καλύπτουµε τότε την ευθεία Α µε την ακολουθία των ορθογωνίων . 80 Σύνολα µέτρου µηδέν στον και ο χαρακτηρισµός του Lebesgue των iema ολοκληρωσίµων συναρτήσων 7. Ορισµός. Έστω για κάθ 0 Α, λέµ ότι το Α έχι διάστατο µέτρο µηδέν αν, > υπάρχι ακολουθία ανοικτών διάστατων

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ (YIELD CRITERIA)- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ

ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ (YIELD CRITERIA)- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ Καθ. Δ.. Μαωλάκος Τομέας Τχολογίας τω Κατργαιώ ΜΠ ΚΡΙΤΗΡΙΑ ΙΑΡΡΟΗΣ YIELD CRITERIA- ΝΟΜΟΙ ΡΟΗΣ- ΑΝΙΣΟΤΡΟΠΙΑ Κριτήριο διαρροής ίαι η µαθηµατική υθήκη που πριγράφι τη τατική κατάταη έα ηµίο της µάζας του

Διαβάστε περισσότερα

ιάθλαση µέσω οπτικού πρίσµατος - Υπολογισµός δείκτη διάθλασης

ιάθλαση µέσω οπτικού πρίσµατος - Υπολογισµός δείκτη διάθλασης Ο2 ιάθλαση µέσω οπτικού πρίσµατος - Υπολογισµός δίκτη διάθλασης 1. Σκοπός Ο δίκτης διάθλασης n νός διαφανούς οπτικού µέσου ίναι ένα ιδιαίτρο σηµαντικό µέγθος στην οπτική. Ο δίκτης διάθλασης όχι µόνο µταβάλλται

Διαβάστε περισσότερα

Κεφάλαιο 5 ΜΕΤΡΗΣΗ ΤΗΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΤΩΝ ΙΣΤΩΝ

Κεφάλαιο 5 ΜΕΤΡΗΣΗ ΤΗΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΤΩΝ ΙΣΤΩΝ Κεφάλαιο 5 ΜΕΤΡΗΣΗ ΤΗΣ ΣΥΝΘΕΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΤΩΝ ΙΣΤΩΝ 5.1. Ειαγωγή Στο κεφάλαιο αυτό γίνεται µία ύντοµη περιγραφή µερικών επιπλέον θεµάτων τα οποία οι βιοηλεκτρικές αρχές έχουν εφαρµογή. Τα θέµατα που περιγράφονται

Διαβάστε περισσότερα

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π.

6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. 6η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΜΕΤΑΔΟΣΗ ΤΑΣΕΩΝ ΣΤΟ ΕΔΑΦΟΣ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Γιώργος Μπελόκας, Υποψήφιος Διδάκτωρ Ε.Μ.Π. ΑΣΚΗΣΗ 1 Θα χρηιμοποιηθούν οι χέεις που προκύπτουν από τη θεώρηη γραμμικής ιότροπης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΣΚΗΣΕΙΣ ΛΥΜΕΝΕΣ 1 ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΣΚΗΣΕΙΣ ΜΕΡΣ 1ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ 1ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ νακφαλαίωση σημίο άπιρς υθίς από υθύγραμμο τμήμα Δ παράλληλα

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύσεις

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύσεις ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι - ΙΟΥΝΙΟΣ Θέµατα και Λύεις ΘΕΜΑ Υλικό ηµείο κινείται τον άξονα x ' Ox υπό την επίδραη του δυναµικού ax x V( x) = a x, a > α) Βρείτε τα ηµεία ιορροπίας και την ευτάθειά τους β) Για

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IΙ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΤΑΣΕΩΝ ΚΥΡΙΕΣ ΤΑΣΕΙΣ 1. Τάεις γύρω από ένα Σηµείο Όπως αναφέρθηκε ε προηγούµενη ενότητα, υχνά είναι πιο εύχρητο να αναλύονται οι τάεις γύρω από ένα ηµείο

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 3 Ευθεία - Επίπεδο ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ/2010-11 ΛΥΣΕΙΣ ΦΥΛΛΔΙΥ 3 Ευθία - Επίπδο ΣΧΛΗ ΠΛΙΤΙΚΩΝ ΜΗΧΝΙΚΩΝ/00-.(α) Τα διανύσματα Β = (,, ), Γ = (,, 3) ίναι μη συγγραμμικά και παράλληλα προς το πίπδο Π, νώ το σημίο (,,3) μ διάνυσμα θέσης r = (,,3) ίναι σημίο

Διαβάστε περισσότερα

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ

5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ ΜΑΘΗΜΑ : ΕΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 00 004 5η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος ιδάκτορας ΕΜΠ Λίγα «Θεωρητικά»!!! Η παρούα

Διαβάστε περισσότερα

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

4.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ Έστω A ένα υποσύνολο του Ονομάζουμ πραγματική συνάρτηση μ πδίο ορισμού το A, μια διαδικασία f, μ την οποία, κάθ στοιχίο A αντιστοιχίζται σ ένα μόνο πραγματικό αριθμό Το

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΛΙΚΩΝ IV. ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ. Ειαγωγή Η θωρία πλαικόηας αχολίαι µ ην υµπριφορά ων µαλλικών υλικών, όαν οι παραµορφώις ίναι πλέον αρκά µγάλς και ο νόµος ου Hooke παύι να

Διαβάστε περισσότερα

Κεφάλαιο 1: Οπτικές Ιδιότητες. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών

Κεφάλαιο 1: Οπτικές Ιδιότητες. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Σχολή Εφαροένν Μαηατικών και Φυικών Επιτηών Ενικό Μτόβιο Πολυτχνίο Διηλκτρικές Οπτικές Μαγνητικές Ιδιότητς Υλικών Κφάλαιο : Οπτικές Ιδιότητς Λιαροκάπης Ευύιος Άδια Χρήης Το παρόν κπαιδυτικό υλικό υπόκιται

Διαβάστε περισσότερα

C V C = 1. Πυκνωτές. Οι πυκνωτές έχουν πολλές χρήσεις λόγω του ότι αποτελούν αποθήκες ηλεκτρικού φορτίου και ηλεκτρικής δυναμικής ενέργειας.

C V C = 1. Πυκνωτές. Οι πυκνωτές έχουν πολλές χρήσεις λόγω του ότι αποτελούν αποθήκες ηλεκτρικού φορτίου και ηλεκτρικής δυναμικής ενέργειας. . Πυκνωτές Δύο αγωγοί που διαχωρίζονται από ένα μονωτή αποτλούν ένα πυκνωτή. Στην πράξη οι αγωγοί φέρουν ία και αντίθτα φορτία. Ορίζουμ αν χωρητικότητα νός πυκνωτή το ταθρό πηλίκο: ab F Οι πυκνωτές έχουν

Διαβάστε περισσότερα

ρ. Ευστρατία Μούρτου

ρ. Ευστρατία Μούρτου ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : 009-010 ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. 4 ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευτρατία

Διαβάστε περισσότερα

Ένα µεγάλο Ευχαριστώ στον καθηγητή µου κ. Σαλπιστή Χρήστο για την υποµονή του όλα αυτά τα χρόνια...

Ένα µεγάλο Ευχαριστώ στον καθηγητή µου κ. Σαλπιστή Χρήστο για την υποµονή του όλα αυτά τα χρόνια... Ένα µεγάλο Ευχαριτώ τον καθηγητή µου κ. Σαλπιτή Χρήτο για την υποµονή του όλα αυτά τα χρόνια... ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΗ ΤΗΣ ΜΕΘΟ ΟΥ ΜΕΤΡΗΣΗΣ ΜΕΤΡΟΥ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΜΕ ΤΗΝ ΒΟΗΘΕΙΑ ΥΠΕΡΗΧΩΝ ΠΑΤΕΡΑΚΗΣ Ε.

Διαβάστε περισσότερα

1. Η κανονική κατανοµή

1. Η κανονική κατανοµή . Η κανονική κατανοµή Η κανονική κατανοµή είναι η ηµαντικότερη κατανοµή πιθανοτήτων µε τις περιότερες εφαρµογές. Μελετήθηκε αρχικά από τον De Moire (667-754) και από τον Lple (749-87) οι οποίοι απέδειξαν

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος β) Υλικό σηµείο µάζας m κινείται στον άξονα Οx υπό την επίδραση του δυναµικού ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 1 ΘΕΜΑ 1 α) Υλικό ηµείο µάζας κινείται τον άξονα x Οx υπό την επίδραη του δυναµικού V=V(x) Αν για t=t βρίκεται τη θέη x=x µε ενέργεια Ε δείξτε ότι η κίνηή του δίνεται από

Διαβάστε περισσότερα

Φροντιστήριο 2 ο : Εισαγωγή στον διανυσµατικό λογισµό

Φροντιστήριο 2 ο : Εισαγωγή στον διανυσµατικό λογισµό Φροντιστήριο ο : Εισαγωγή στον διανυσµατικό λογισµό Βαθµωτά ή µονόµτρα µγέθη scls: Για να οριστούν τα µγέθη αυτά απαιτίται να δοθί µόνο το µέτρο τους πριλαµβανοµένης της µονάδας µέτρησης ιανυσµατικά µγέθη

Διαβάστε περισσότερα

Ενότητα 5: Απλή Γραµµική Παλινδρόµηση (Simple Linear Regression)

Ενότητα 5: Απλή Γραµµική Παλινδρόµηση (Simple Linear Regression) Ενότητα 5: Απλή Γραµµική Παλινδρόµηη mple Lear Regresso Κύριο πρόβληµα αυτή την νότητα αποτλί η διρύνηη της χέης µταξύ δυο scaled µταβλητών Χ, Υ π.χ. Χ: ηλικία και : πίη αίµατος. Το γνικό πρόβληµα πριγράφται

Διαβάστε περισσότερα

Απόκλιση και στροβιλισµός ενός διανυσµατικού πεδίου. R και ( ) y z z x x y

Απόκλιση και στροβιλισµός ενός διανυσµατικού πεδίου. R και ( ) y z z x x y 5 Απόκλιη και τροβιλιµός ενός διανυµατικού πεδίου Έτω F ένα C διανυµατικό πεδίο του R, δηλαδή υνάρτηη µε D ανοικτό το F = F, F, F. R και F : D R R Στο διανυµατικό πεδίο F αντιτοιχούµε ένα άλλο διανυµατικό

Διαβάστε περισσότερα

Κεφάλαιο 3: Αλληλεπίδραση Η/Μ ακτινοβολίας και Ύλης. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών

Κεφάλαιο 3: Αλληλεπίδραση Η/Μ ακτινοβολίας και Ύλης. Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Σχολή Εφαρμομένν Μαθηματικών και Φυικών Ειτημών Εθνικό Μτόβιο Πολυτχνίο Διηλκτρικές Οτικές Μαγνητικές Ιιότητς Υλικών Κφάλαιο 3: Αλληλίραη Η/Μ ακτινοβολίας και Ύλης Λιαροκάης Ευθύμιος Άια Χρήης Το αρόν

Διαβάστε περισσότερα

3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x)

3.3 Το συναρτησοειδές του Minkowski και μετρικοποιησιμότητα σε τοπικά κυρτούς χώρους. x y E (υποπροσθετικότητα ) ) και p( x) p( x) 4 3.3 Το συναρτησοιδές του Mikowski και μτρικοποιησιμότητα σ τοπικά κυρτούς χώρους. Υπνθυμίζουμ ότι αν E διανυσματικός χώρος, μια συνάρτηση : E R λέγται υπογραμμικό συναρτησοιδές αν (ι) ( λ) λ ( ) =, λ

Διαβάστε περισσότερα

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1)

ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1) ΚΕΦ 2 ο : H υθία στο πίπδο ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ( 2.1) Εξίσση γραµµής C του πιπέδου: Είναι µια ξίσση µ δύο αγνώστους x, που έχι τις ιδιότητς i) Oι συντταγµένς κάθ σηµίου της γραµµής C παληθύουν την ξίσση και

Διαβάστε περισσότερα

Κεφάλαιο 4: Πυροηλεκτρισμός, Πιεζο- ηλεκτρισμός, Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών

Κεφάλαιο 4: Πυροηλεκτρισμός, Πιεζο- ηλεκτρισμός, Λιαροκάπης Ευθύμιος. Διηλεκτρικές, Οπτικές, Μαγνητικές Ιδιότητες Υλικών Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μτσόβιο Πολυτχνίο Διηλκτρικές, Οπτικές, Μαγνητικές Ιδιότητς Υλικών Κφάλαιο 4: Πυροηλκτρισμός, Πιζο- ηλκτρισμός, Σιδηροηλκτρισμός Λιαροκάπης Ευθύμιος

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη. Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x,

Γ D µε αρχικό σηµείο το ( a, ( ) ( ) είναι µια άλλη και καταλήγει στο ( x, τότε (1) Γ ξεκινούν από το σηµείο (, ) και ( x, 69 Θα αποδείξουµε την υνέχεια- ως εφαρµογή του θεωρήµατος του Greenτην κατεύθυνη (ιι (ι του θεωρήµατος που χαρακτηρίζει τα υντηρητικά πεδία F : R R, όπου απλά υνεκτικός τόπος του R ( Θεώρηµα Αν R είναι

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 10: Παιχνίδια με ελλιπή πληροφόρηση. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής

ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 10: Παιχνίδια με ελλιπή πληροφόρηση. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 0: Παιχνίδια μ λλιπή πληροφόρηση Ρφανίδης Ιωάννης Άδις Χρήσης Το παρόν κπαιδυτικό υλικό υπόκιται σ άδις χρήσης Creative Commons. ια κπαιδυτικό υλικό, όπως ικόνς, που υπόκιται σ άλλου τύπου άδιας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1. Οι ϐασικές έννοιες. 1.1 Αόριστες έννοιες, αξιώµατα

ΚΕΦΑΛΑΙΟ 1. Οι ϐασικές έννοιες. 1.1 Αόριστες έννοιες, αξιώµατα ΚΕΦΛΙΟ 1 Οι ϐασικές έννοις 1.1 όριστς έννοις, αξιώµατα υτό ισχύι ακόµη και για το ίδιο µας το γώ : το αντιλαµβανόµαστ µόνον ως κδήλωση, όχι ως κάτι που µπορίνα υπάρχι καθ αυτό. Thomas Mann, Schopenhauer

Διαβάστε περισσότερα

Λύσεις σετ ασκήσεων #6

Λύσεις σετ ασκήσεων #6 ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ. Κοντογιάννης Πέμπτη 8 Μαΐου 07 Φυλλάδιο #4 Λύσις στ ασκήσων #6. Θόρυβος od. Έστω ότι ένα κανάλι έχι αλφάβητο ισόδου και αλφάβητο ξόδου το {0}. Όπως στο προηγούμνο στ η έξοδος του

Διαβάστε περισσότερα

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και

( ) ( ) ( ( )) (( ) ) ( t) ( t) ( ) ( ) Επικαµπύλια ολοκληρώµατα. σ = και την σ, δηλαδή την. συνεχής πραγµατική συνάρτηση. Έστω U R ανοικτό σύνολο και 9 Έτω U R ανοικτό ύνολο και Επικαµπύλια ολοκληρώµατα f : U R R C καµπύλη :[, ] U υνεχής πραγµατική υνάρτηη Θεωρούµε µια ώτε ( t) x( t), y( t), z( t) ύνθετη υνάρτηη fo :[, ] R t [, ] f x( t), y( t), z(

Διαβάστε περισσότερα

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ

5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ 5 5. ΘΕΩΡΙΑ ΕΙΓΜΑΤΟΛΗΨΙΑΣ ΠΛΗΘΥΣΜΟΣ ΚΑΙ ΕΙΓΜΑ. ΣΤΑΤΙΣΤΙΚΗ ΣΥΜΠΕΡΑΣΜΑΤΟΛΟΓΙΑ Στην πράξη θέλουµε υχνά να βγάλουµε υµπεράµατα για µια µεγάλη οµάδα ατόµων ή αντικειµένων. Αντί να µελετήουµε ολόκληρη την οµάδα,

Διαβάστε περισσότερα

Σχ. 1 Eναλλασσόμενες καταπονήσεις

Σχ. 1 Eναλλασσόμενες καταπονήσεις Πανεπιτήμιο Θεαλίας Διδάκων: Αλ. Κερμανίδης Σχεδιαμός Στοιχείων Μηχανών ε μεταβαλλόμενα φορτία Μεταβαλλόμενα με τον χρόνο φορτία χαρακτηρίζονται τα φορτία που μεταβάλλουν το μέγεθος ή την διεύθυνη τους

Διαβάστε περισσότερα

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις

Η θεωρία στην ευθεία σε ερωτήσεις - απαντήσεις Η θρία στην υθία σ ρτήσις - απαντήσις Τι ονομάζουμ ξίσση γραμμής Μια ξίσση μ δύο αγνώστους λέγται ξίσση μιας γραμμής C, όταν οι συντταγμένς τν σημίν της C, και μόνο αυτές, την παληθύουν Ποιό ίναι το βασικό

Διαβάστε περισσότερα

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β

6.3 Η ΣΥΝΑΡΤΗΣΗ f(x) = αx + β 1 6.3 Η ΣΥΝΡΤΗΣΗ f() = α + β ΘΕΩΡΙ 1. Η πρίφηµη γωνία ω Έστω υθία που τέµνι τον άξονα σ σηµίο. Στρέφουµ την ηµιυθία κατά θτική φορά µέχρι να πέσι πάνω στην. Η γωνία ω που διαγράφται λέγται γωνία που σχηµατίζι

Διαβάστε περισσότερα

ΣΕΤ ΑΣΚΗΣΕΩΝ

ΣΕΤ ΑΣΚΗΣΕΩΝ ΣΕΤ ΑΣΚΗΣΕΩΝ 4.4.07. α) Ποια ίναι η σχέση μταξύ των οικονομιών κλίμακας και αποδόσων κλίμακας; β) Πως μτράμ την έκταση των οικονομιών κλίμακας; ΛΥΣΗ α) Οι οικονομίς κλίμακας και οι αποδόσις κλίμακας ίναι

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Τάσεις και παραμορφώσεις γύρω από κυκλικές σήραγγες. Κατανομές τάσεων και παραμορφώσεων γύρω από κυκλική σήραγγα - Παραδοχές

ΔΙΑΛΕΞΗ 2 Τάσεις και παραμορφώσεις γύρω από κυκλικές σήραγγες. Κατανομές τάσεων και παραμορφώσεων γύρω από κυκλική σήραγγα - Παραδοχές ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΕΙΔΙΚΑ ΓΕΩΤΕΧΝΙΚΑ ΕΡΓΑ - Γεωτεχνική Σηράγγων» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 5-6 ΔΙΑΛΕΞΗ Τάεις και παραμορφώεις γύρω από κυκλικές ήραγγες 5.8.5 Κατανομές τάεων και

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions)

ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (Sampling Distributions) ΚΕΦΑΛΑΙΟ 0 ΔΕΙΓΜΑΤΙΚΕΣ ΚΑΤΑΝΟΜΕΣ (amplig Distibutios) Ένα χαρακτηριτικό των επιτημονικών μελετών τις οποίες απαιτείται η χρήη των διαδικαιών της Στατιτικής Συμπεραματολογίας είναι η ύπαρξη τυχαιότητας

Διαβάστε περισσότερα

Πίνακας Περιεχομένων. Πίνακας Περιεχομένων 1. Πίνακας Σχημάτων 5. Πίνακας Πινάκων 11. Πίνακας Συμβολισμών Συντομογραφιών 13

Πίνακας Περιεχομένων. Πίνακας Περιεχομένων 1. Πίνακας Σχημάτων 5. Πίνακας Πινάκων 11. Πίνακας Συμβολισμών Συντομογραφιών 13 Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πίνακας Σχημάτων 5 Πίνακας Πινάκων Πίνακας Συμβολιμών Συντομογραφιών Ειαγωγή Γενικότητες 5. Έννοιες από την μηχανική του υνεχούς μέου... 7.. Η χέη τάεων παραμορφώεων

Διαβάστε περισσότερα

Κεφάλαιο 12 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ

Κεφάλαιο 12 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ Κεφάλαιο 1 ΦΥΣΙΚΟ ΕΝΤΑΤΙΚΟ ΠΕΔΙΟ Ο προδιοριμός του φυικού εντατικού πεδίου έχει α κοπό να δώει αφενός μεν τη βαική γνώη για το πεδίο των τάεων, αφετέρου δε τη υγκεκριμένη γνώη των υνοριακών υνθηκών που

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 6) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΚΕΦΑΛΑΙΟ 2ο Διαφορικός Λογισμός (Νο 6) ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΚΕΦΑΛΑΙΟ ο Διαφορικός Λογισμός (Νο 6) Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θτική Τχνολογική Κατύθυνση ασκήσις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 2ο ΓΕΩΜΕΤΡΙΑ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΜΕΡΣ ο ΕΩΜΕΤΡΙ ΕΠΙΜΕΛΕΙ : ΥΕΡΙΝΣ ΣΙΛΗΣ ΜΘΗΜΤΙΚ ΥΜΝΣΙΥ ΘΕΩΡΙ ΜΕΡΣ ο : ΕΩΜΕΤΡΙ ΚΕΦΛΙ ο ΣΙΚΕΣ ΕΩΜΕΤΡΙΚΕΣ ΕΝΝΙΕΣ. Ποια η έννοια του σημίου,του υθυγράμμου τμήματος, τι ονομάζουμ άκρα του τμήματος,τι

Διαβάστε περισσότερα

S AB = m. S A = m. Υ = m

S AB = m. S A = m. Υ = m χολή αγρονόµων και τοπογράφων µηχανικών ο εξάµηνο Άκηη Απλοί γεωµετρικοί υπολογιµοί ίνεται το τετράπλευρο ΑΒΓ που φαίνεται το χήµα. Στο ύπαιθρο µετρήθηκαν οι οριζόντιες πλευρές (µήκη) ΑΒ και Α. Επίης είναι

Διαβάστε περισσότερα

Ι. Βαρδουλάκης (2008) Ιδεατή Πλαστικότητα, Κεφ. 1

Ι. Βαρδουλάκης (2008) Ιδεατή Πλαστικότητα, Κεφ. 1 ΕΝΤΑΣΗ ΚΑΙ ΑΝΤΟΧΗ ΕΝΤΑΣΗ ΚΑΙ ΑΝΤΟΧΗ 7. Η Μικροµηχανική Ερµηνεία του Τανυτή των Τάεων 9.. Η Αρχή των υνατών Έργων (Α..Ε.) τα κοκκώδη µέα 9.. Ο µικροµηχανικός οριµός της τάεως κατά Love 4. Οι Αναλλοίωτες

Διαβάστε περισσότερα

3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες.

3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητες. 32 3.2 Τοπικά κυρτοί χώροι-βασικές ιδιότητς. Στην παράγραφο αυτή πρόκιται να ισαγάγουμ μια σημαντική, ίσως την σημαντικότρη, κλάση τοπολογικών γραμμικών χώρων. Αυτή ίναι η κλάση των τοπικά κυρτών χώρων

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ

ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ ΠΡΟΒΛΗΜΑ ΡΟΗΣ ΥΠΕΡΑΝΩ ΤΟΠΙΚΗΣ ΑΝΥΨΩΣΕΩΣ Ενέργειας Η ανάλυη του προβλήµατος γίνεται µε την χρήη του διαγράµµατος Ειδικής (α) Υποκρίιµη ροή τα ανάντη επί Ήπιας Κλίεως Πυθµένα το Σχήµα 1 Έτω ότι οµοιόµορφη,

Διαβάστε περισσότερα

# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ

# Κάθε σημείο που οι συντεταγμένες του. Μεθοδολογία στην ευθεία γραμμή ΜΕΘΟΔΟΛΟΓΙΑ ΓΡΑΜΜΗ Μθοδολογία στην υθία γραμμή Κοινά σημία δύο γραμμών. Για να βρούμ τις συντταγμένς του σημίου δύο γραμμών, λύνουμ το σύστημα των ξισώσών τους. ΓΡΑΜΜΗ Μια ξίσωση της μορφής φ(χ,ψ)= λέγται ξίσωση μιας πίπδης

Διαβάστε περισσότερα

2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός

2 1 1+ ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ:2 ο - ΠΑΡΑΓΡΑΦΟΣ: 2.1 2.2. Γιάννης Ζαµπέλης Μαθηµατικός ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 4 5 Γιάννης Ζαµπέλης Μαθηµατικός 8575 Β (Αναρτήθηκ 8 4 ) ίνονται τα σηµία Α(,) και Β(5,6). α) Να βρίτ την ξίσωση της υθίας που διέρχται από τα σηµία Α και B.

Διαβάστε περισσότερα

ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ, ΘΕΩΡΟΥΜΕΝΗΣ ΩΣ ΜΕΣΟΥ ΜΕ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΙΣΟΤΡΟΠΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ, ΘΕΩΡΟΥΜΕΝΗΣ ΩΣ ΜΕΣΟΥ ΜΕ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΙΣΟΤΡΟΠΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΑΡΤΙΟΣ-ΑΠΡΙΛΙΟΣ 004 ΤΕΧΝΙΚΑ ΧΡΟΝΙΚΑ ΣΥΜΒΟΛΗ ΣΤΗ ΜΕΛΕΤΗ ΤΗΣ ΒΡΑΧΟΜΑΖΑΣ, ΘΕΩΡΟΥΜΕΝΗΣ ΩΣ ΜΕΣΟΥ ΜΕ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΙΣΟΤΡΟΠΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ, ΜΕ ΤΗ ΜΕΘΟ Ο ΤΩΝ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Έµφαη τα υπόγεια έργα Σ. ΚΟΖΑΝΗΣ

Διαβάστε περισσότερα

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1

ηµοκρίτειο Πανεπιστήµιο, Τµήµα ΜηχανικώνΠαραγωγής& ιοίκησης 1 Στατιτική υµπεραµατολογία για τη διαδικαία της ποιότητας Στο προηγούµενο κεφάλαιο κάναµε την παραδοχή και υποθέαµε ότι οι παράµετροι των κατανοµών των πιθανοτήτων άρα και οι παράµετροι της διαδικαίας ήταν

Διαβάστε περισσότερα

12.1 Σχεδιασμός αξόνων

12.1 Σχεδιασμός αξόνων 1.1 Σχεδιαμός αξόνων Επιδιώκοντας τον χεδιαμό αξόνων αναζητούμε τις διαμέτρους τα διάφορα ημεία αλλαγής διατομών ή επιβολής φορτίων και τα μήκη του άξονα που αντιτοιχούν τις διαμέτρους, την ακτίνα καμπυλότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9. Σχετική κίνηση

ΚΕΦΑΛΑΙΟ 9. Σχετική κίνηση ΚΕΦΑΛΑΙΟ 9 Σχετική κίνηη 1 Υλικό ηµείο µάζας m=1 κινείται πάνω ε επίπεδο Ο που περιτρέφεται γύρω από τον άξονα Ο µε γωνιακή ταχύτηταω = ωk, όπου ω=1/ s -1 Αν κάποια τιγµή το ώµα βρίκεται ε απόταη r=1 m

Διαβάστε περισσότερα

ΥΠΟ ΕΙΓΜΑΤΑ TRANSFER

ΥΠΟ ΕΙΓΜΑΤΑ TRANSFER ΥΠΟ ΕΙΓΜΑΤΑ TRANSFER Tα υποδίγµατα Transfer αποτλούν µία καλύτρη προσέγγιση στην κτίµηση µονοµταβλητών υποδιγµάτων, στο κφάλαιο αυτό παρουσιάζονται πρισσότρο αναλυτικά. REGRESSION ANALYSIS OF TIME SERIES

Διαβάστε περισσότερα

Ο νόμος του Ampère. Διαφορική μορφή του ν.ampère. B r. Παρ : To πεδίο Β δακτυλιοειδούς πηνίου. Εντός του πηνίου

Ο νόμος του Ampère. Διαφορική μορφή του ν.ampère. B r. Παρ : To πεδίο Β δακτυλιοειδούς πηνίου. Εντός του πηνίου Ο νόμος του Apèr Ο νόμος του Apèr Bis μ μ Ji Επιφάνια Bi μ π r ( π s B s r μ Η κυκλοφορία του μαγνητικού πδίου κατά μηκός μιάς κλιστής διαδρομής ισούται μ μ Ι, όπου Ι ίναι το ολικό σταθρό (χρονικά αμτάβλητο

Διαβάστε περισσότερα

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή

2 Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ. Εισαγωγή Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ Εισαγωγή Η ιδέα της χρησιμοποίησης νός συστήματος συντταγμένων για τον προσδιορισμό της θέσης νός σημίου πάνω σ μια πιφάνια προέρχται από την Γωγραφία και ήταν γνωστή στους αρχαίους

Διαβάστε περισσότερα

ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εξίσωση Schrıdinger. Χρησιµότητα Εξαγωγή της εξίσωσης Schrıdinger. Περιοχές κυµατοδήγησης οπτικού παλµού

ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ. Εξίσωση Schrıdinger. Χρησιµότητα Εξαγωγή της εξίσωσης Schrıdinger. Περιοχές κυµατοδήγησης οπτικού παλµού ΙΑΡΘΡΩΣΗ ΜΑΘΗΜΑΤΟΣ Εξίωη Schrıdinger Χρηιµότητα Εξαγωγή της εξίωης Schrıdinger Περιοχές κυµατοδήγηης οπτικού παλµού Αλληλεπίδραη µη γραµµικών φαινοµένων και διαποράς Αµελητέα η διαπορά και τα µη γραµµικά

Διαβάστε περισσότερα

Περίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους

Περίληψη Προηγούμενου Μαθήματος Κανάλια επικοινωνίας με θόρυβο και η χωρητικότητά τους ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Γ Κοντογιάννης Πέμπτη Μαΐου 7 Φυλλάδιο #3 Πρίληψη Προηγούμνου Μαθήματος Κανάλια πικοινωνίας μ θόρυβο και η χωρητικότητά τους Πώς πριγράφουμ ένα κανάλι πικοινωνίας; Τι θα πι «θόρυβος»;

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ Πριοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Α ΒΑΘΜΟΥ A. ΓΡΑΜΜΙΚΗ ΕΞΙΣΩΣΗ ΜΕ ΔΥΟ ΑΓΝΩΣΤΟΥΣ Γραμμική ξίσωση μ δύο αγνώστους ονομάζται κάθ ξίσωση της μορφής: α + βψ = γ (), μ α,β,γ π.χ. ψ =, =, ψ =, κλπ.

Διαβάστε περισσότερα

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα]

[Ολοκληρωτική μορφή του νόμου του Gauss στο κενό ή τον αέρα] Παν/μιο Πατρών Τμήμα Φυσικής. Μάθημα : Ηλκτρομαγνητισμός Ι (Υποχρωτικό 3 ου Εξαμήνου) ΠΝΕΠΙΣΤΗΜΙΟ ΠΤΡΩΝ - ΤΜΗΜ ΦΥΣΙΚΗΣ ΜΘΗΜ : HΛΕΚΤΡΟΜΓΝΗΤΙΣΜΟΣ Ι (Υποχρωτικό 3 ου Εξαμήνου) Διδάσκων :Δ.Σκαρλάτος, Επίκουρος

Διαβάστε περισσότερα

Θεώρηµα ( ) x x. f (x)

Θεώρηµα ( ) x x. f (x) Η ΣΥΝΡΤΗΣΗ f() = α + ΓΩΝΙ ΕΥΘΕΙΣ ΜΕ ΤΝ ΞΝ Η ΣΥΝΡΤΗΣΗ f() = α + Έστ ( ) µία υθία στ καρτσιανό πίπδ η πία τέµνι τν άξνα στ σηµί A. Γνία της υθίας ( ) µ τν άξνα λέγται η γνία πυ διαγράφι η ηµιυθία, αν στραφί

Διαβάστε περισσότερα

Ι. Βαρδουλάκης (2008) Ιδεατή Πλαστικότητα, Κεφ. 1

Ι. Βαρδουλάκης (2008) Ιδεατή Πλαστικότητα, Κεφ. 1 ΕΝΤΑΣΗ ΚΑΙ ΑΝΤΟΧΗ ΕΝΤΑΣΗ ΚΑΙ ΑΝΤΟΧΗ. Η Μικροµηχανική Ερµηνεία του Τανυτή των Τάεων 3.. Η Αρχή των υνατών Έργων (Α..Ε.) τα κοκκώδη µέα 3.. Ο µικροµηχανικός οριµός της τάεως κατά Love 8. Οι Αναλλοίωτες του

Διαβάστε περισσότερα

(4) γενικής λύσης το x με το -x. και θα έχουμε : y ομ (x)=c 1 (-x) -1 +c 2 (-x) 3

(4) γενικής λύσης το x με το -x. και θα έχουμε : y ομ (x)=c 1 (-x) -1 +c 2 (-x) 3 0 ΕΞΙΣΩΣΕΙΣ ΤΟΥ EULER Ορισμός : Οι γραμμικές διαφορικές ξισώσις, των οποίων οι συντλστές ίναι δυνάμις του βαθμού ίσου μ την τάξη της αντίστοιχης παραγώγου, ονομάζονται ξισώσις του Eule Πχ η ομογνής ξίσωση

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ 2 ΛΥΣΗ DOPPLER LASER ΨΥΞΗ ΚΑΙ ΟΠΤΚΕΣ ΜΕΛΑΣΣΕΣ

ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ 2 ΛΥΣΗ DOPPLER LASER ΨΥΞΗ ΚΑΙ ΟΠΤΚΕΣ ΜΕΛΑΣΣΕΣ ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ ΛΥΣΗ DOPPER ASER ΨΥΞΗ ΚΑΙ ΟΠΤΚΕΣ ΜΕΛΑΣΣΕΣ Το κλιδί σ αυτό το πρόβλημα ίναι το φαινόμνο Doppler (για την ακρίβια, το διαμήκς φαινόμνο Doppler): Η κυκλική συχνότητα μιας μονοχρωματικής

Διαβάστε περισσότερα

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Λεκτική Ανάλυση II

Γλώσσες Προγραμματισμού Μεταγλωττιστές. Λεκτική Ανάλυση II Γλώσσς Προγραμματισμού Μταγλωττιστές Λκτική Ανάλυση II Πανπιστήμιο Μακδονίας Τμήμα Εφαρμοσμένης Πληροφορικής Ηλίας Σακλλαρίου Δομή Ππρασμένα Αυτόματα Νττρμινιστικά Ππρασμένα Αυτόματα Μη-Νττρμινιστικά Ππρασμένα

Διαβάστε περισσότερα

ΕΠΙΠΕ Ο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ

ΕΠΙΠΕ Ο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ XΙ ΕΠΙΠΕ Ο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ ΙΑ ΟΣΗ ΕΠΙΠΕ ΟΥ ΚΥΜΑΤΟΣ ΣΕ ΜΗ ΑΓΩΓΙΜΑ ΜΕΣΑ ΧΙ. ΧΙ. ΧΙ.3 ΧΙ.4 Φαική ταθερά ιάοης κύµατος β Μονοιάτατη εξίωη Helmholt για τις υνιτώες των ιανυµάτων H και ( H ) επιπέου κύµατος

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα

ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές απεικονίσεις, Αλλαγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα 1 ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 6 / 010-11 ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ Γραμμικές αικονίσις, Ααγή βάσης, Ιδιοτιμές, Ιδιοδιανύσματα 1 Έστω η γραμμική αικόνιση T : μ T ( 1,1) = (, 0) και ( 0,1) ( 1,1) T = (α) Βρίτ τον ίνακα της

Διαβάστε περισσότερα

05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ.

05_01_Εκτίμηση παραμέτρων και διαστημάτων. Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. Ν161_Στατιτική τη Φυική Αγωγή 05_01_Εκτίμηη παραμέτρων και διατημάτων Γούργουλης Βαίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Για την περιγραφή μιας μεταβλητής, που μετριέται ε έναν πληθυμό ή ε ένα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο

ΚΕΦΑΛΑΙΟ 7. Ροπή και Στροφορµή Μέρος πρώτο ΚΕΦΑΛΑΙΟ 7 Ροπή και Στροφορµή Μέρος πρώτο Μέχρι εδώ εξετάαµε την κίνηη ενός υλικού ηµείου υπό την επίδραη µιας δύναµης. Τα πράγµατα αλλάζουν δραµατικά αν αντί υλικού ηµείου έχοµε ένα τερεό ώµα. Η µελέτη

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ

ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ 1 ΤΟΜΕΑΣ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΘΕΩΡΙΑΣ ΕΛΑΣΤΙΚΟΤΗΤΑΣ ΣΗΜΕΙΩΣΕΙΣ ( Κυρίως επιλεγµένα και ελεύθερα µεταφραµένα

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Δ. Καθ. Π. Κάπρος ΕΜΠ 2012

ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Δ. Καθ. Π. Κάπρος ΕΜΠ 2012 ΣΗΜΕΙΩΣΕΙΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Μέρος Δ Καθ. Π. Κάπρος ΕΜΠ 22 Mx MR MR Μγιστοποίηση Κέρδους Μονοπωλίου Συνάρτηση Εσόδου Συνάρτηση Κόστους C p p p MC R Μ γιστοποίηση κέρδους : p p D p p δδομένουότι η τιμή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΕΙΓΜΑΤΟΛΗΨΙΑΣ Β. Α. ΑΓΓΕΛΗΣ ΧΙΟΣ 009 ΠΕΡΙΕΧΟΜΕΝΑ. Ειαγωγή... 3. ιαιθητική ειγµατοληψία... 6 3. ειγµατοληψία Κατά Πιθανότητα...

Διαβάστε περισσότερα