5 DIFERENCIÁLNY POČET FUNKCIE DVOCH PREMENNÝCH

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "5 DIFERENCIÁLNY POČET FUNKCIE DVOCH PREMENNÝCH"

Transcript

1 5 DIFERENCIÁLNY POČET FUNKCIE DVOCH PREMENNÝCH 5. Oák Dfinj pojm fnkcia prmnných. Dfinj pojm hladinoá krika. Dfinj pojm parciáa driácia. Dfinj pojm úpý difrnciál. Dfinj pojm loká maimm fnkci prmnných. Dfinj pojm loká minimm fnkci prmnných. Sformlj o nnj podmink isnci lokáho rém fnkci prmnných. Sformlj o posačjúcj podmink isnci lokáho rém fnkci prmnných. 5. Základné pojm akých ž A B naýam kariánskm súčinom množín A B a onačjm A B. Dfinícia 5. Množin škých sporiadaných dojíc [ ] Dfinícia 5. Onačm R RR. Ak na R j pr každú dojic bodo A [ ] a B [ ] dfinoaná diaosť ρ ( a b ) ( a ) ( ρ ) b b R naýam Eklido koroý prisor E. b a a poom dojic Dfinícia 5. Fnkcia doch prmnných j prdpis f korý každém X M E priradí prá jdno R f X f. [ ] píšm ( ) albo ( ) Dfinícia 5. Množin M naýam dfiničným oborom fnkci f on. D ( f ). Ponámka Ak množina M ni j adaná ak pod (prirodným) dfiničným oborom fnkci f romim najäčši podmnožin R pr korú má daná fnkcia msl. Príklad 5. Nájdim dfiničný obor fnkci ( 9 ) Rišni:. 59

2 Fnkcia j dfinoaná pr bod [ ] spĺňajúc podmink 9 > 0 čiž < 9. Dfiničný obor fnkci j da núro krh so srdom bod [ 0 0] a polomrom r. Dfinícia 5.5 Množin H ( f ) { R X M f ( X )} fnkci f. naýam obor hodnô Dfinícia 5.6 Majm fnkci f ( ) hodnô H ( f ). Ak c H ( f ) poom množin bodo [ ] M hodnoa j roná čísl c čiž c f ( ) dfinoanú na množin M E s oborom korých fnkčná naýam hladinoá krika. Príklad 5. Určm hladinoé krik fnkci. Rišni: Ak c > 0 poom c. Hladinoé krik danj fnkci sú kržnic so srdom 0 0 a polomrom r c. bod [ ] 60

3 5. Parciá driáci Dfinícia 5.7 Majm fnkci f ( ) dfinoanú okolí bod [ ] Parciáo driácio fnkci ( ) f on. A f f Parciáo driácio fnkci ( ) ( ). A a a. f podľa prmnnj bod A naýam limi ( a ) f ( a a ) f lim a a f podľa prmnnj bod A naýam limi ( a ) f ( a a ) f lim a a f f A on. f. A Pri ýpoč parciáj driáci podľa hocikorj prmnnj pospjm ak ako kb drhá prmnná bola konšana. Príklad 5. Vpočíajm parciá driáci fnkci 5. Rišni: Dfinícia 5.8 Nch fnkcia f ( ) má okolí bod [ ] driáci A a a parciá f. Ak isj driácia fnkci f podľa prmnnj rsp. naýam f da krá podľa prmnnj j parciáa driácia drhého rád fnkci ( ) rsp. podľa prmnnj a prmnnj f on. A f f f. rsp. f Dfinícia 5.9 Nch fnkcia f ( ) má okolí bod [ ] driáci f. Ak isj driácia fnkci A A a a parciá f podľa prmnnj rsp. naýam j parciáa driácia drhého rád fnkci podľa prmnnj a prmnnj rsp. da krá podľa prmnnj f on. f A f rsp. A f f. 6

4 Príklad 5. Vpočíajm šk parciá driáci drhého rád fnkci 5. Rišni: ( 6 ) 6 ( 6 ) ( 5 ) 6 5 ( 5 ) 5 Ponámka Ak. a sú spojié na množin A poom na množin A plaí 5. Parciá driáci ložnj fnkci Majm danú fnkci f ( ) pričom ϕ ( ) ψ ( ). Ak majú fnkci f ϕ ψ spojié parciá driáci poom má spojié parciá driáci aj ložná fnkcia a plaí. Príklad 5.5 Vpočíajm. a ak sú dané fnkci 5 Rišni: ( ) ( 5) ( 5) ( ) 5 ( 5)( ). Ak mám f ( ) pričom ( ) ( ) poom d d d. d d d 6

5 d Príklad 5.6 Vpočíajm ak sú dané fnkci d. Rišni: d d d d d d. Ak mám f ( ) pričom ( ) d d poom d. d d Príklad 5.7 Vpočíajm ak sú dané fnkci d d d Rišni: d ( ). d. 5.5 Driácia implicinj fnkci Dfinícia 5.0 Nch ( ) fnkcia f ( ) aká ž pr šk dfiničného obor fnkci f ( ) plaí F [ f ( ) ] 0 poom fnkci f ( ) naýam fnkcio rčno implicin ronico ( ) 0 F j spojiá fnkcia doch prmnných. Ak isj spojiá F. Majm fnkci F ( ) dfinoanú okolí bod A [ 0 0 ]. Ak j fnkcia F ( ) okolí bod A [ 0 0 ] spojiá a má am spojié parciá driáci do drhého rád A pričom ( ) 0 f poom jj prú driáci rčím ako F F d 0 d F F 0 a pro F. F 6

6 Príklad 5.8 Vpočíajm pr fnkci 0. Rišni: F ( ) poom F F. 5.6 Úpý difrnciál Dfinícia 5. Majm fnkci f ( ) korá má bod [ ] parciá driáci. rád. Poom ýra df ( A X ) f f A a a spojié kd a a naýam úpým difrnciálom fnkci f bod A. Ponámka Môžm ho požiť pri približnom ýpoč hodno fnkci f bod X ( X ) f df ( A X ) f &. 5.7 Loká rém fnkci doch prmnných Dfinícia 5. Fnkcia f ( ) má bod A [ 0 0 ] D( f ) loká maimm (minimm) ak isj okoli bod A aké ž pr každý bod X [ ] D( f ) okolia bod A X A plaí f ( ) f ( ) rsp. ( ) f ( ) 0 0 f 0 0. Ponámka Ak má fnkcia njakom bod loká maimm albo minimm hoorím ž má om bod loká rém. Va 5. (Nná podminka isnci lokáho rém) Nch fnkcia f ( ) má bod [ ] driáci f f isjú ak sú ob roné nl. A 0 0 loká rém. Ak parciá Ponámka Bod A [ 0 0 ] korom parciá driáci sú roné nl naýam sacionárn bod. 6

7 Ponámka Sacionárn bod a bod korých parciá driáci nisjú sa naýajú kriické bod. Fnkcia môž mať loká rém kriickom bod. Va 5. (Posačjúca podminka isnci lokáho rém) Nch bod A [ 0 0 ] j sacionárnm bodom fnkci f ( ) f f f f isjú spojié parciá driáci drhého rád f f Onačm D a D f f a nch ňom. f. Ak plaí D > D 0 poom má fnkcia f ( ) bod A [ ] loká maimm. 0 < Ak plaí D > D 0 poom má fnkcia f ( ) 0 > A [ 0 0 ] loká minimm. Ak D 0 poom fnkcia f ( ) bod [ ] < A [ 0 0 ] sa naýa sdloý bod). 0 0 bod A 0 0 nmá rém (bod Príklad 5.9 Nájdim loká rém fnkci ( ) 8 6 Rišni: Prož f 6 f 6 sacionárn bod nájdm rišním súsa roníc. f 0 f 0. Rišním jo súsa dosáam da bod A [ 00 ] B. f. 65

8 Vžiím V 5. orím rém sacionárnch bodoch. f 6 f f f D A bod A ni j rém 6 0 Pr sacionárn bod A plaí: ( ) 6 < 0 a bod A j sdloý bod. Pr sacionárn bod B plaí: D ( B) 08 > 0 D ( ) 6 > 0 bod B j loká minimm a ( B) B f. 5.8 Viaané rém fnkci doch prmnných Majm fnkci f ( ) a hľadajm jj loká rém na množin M akých bodo [ ] D( f ) koré spĺňajú podmink ( ) 0 g. Takéo rém naýam iaané loká rém fnkci f ( ) ( ) 0 g naýam äba. a podmink. Ak sa äb ( ) 0 do fnkci f ( ). Ak sa äb ( ) 0 Lagrango fnkci g dá jdnonačn jadriť nikorá prmnná dosadím j a dosanm fnkci prmnnj (Mamaika ). g ndá jdnonačn jadriť žiadna prmnná osrojím a hľadám rém jo fnkci. ( ) f ( ) λ g( ) L Ponámka Erém Lagrangoj fnkci ( ) fnkci ( ) f. Sacionárn bod Lagrangoj fnkci ( ) L sú ároň aj rémami pôodnj L nájdm rišním roníc L 0 L 0. 0 L λ 66

9 Zár pr isnci iaaného lokáho rém sú ronaké ako pri lokách rémoch čiž Ak plaí D > D 0 poom má fnkcia L ( ) bod A [ ] 0 < iaané loká maimm. 0 0 Ak plaí D > D 0 poom má fnkcia L ( ) bod A [ ] 0 > iaané loká minimm. Ak D 0 poom fnkcia L ( ) bod [ ] < A [ 0 0 ] sa naýa sdloý bod). 0 0 A 0 0 nmá rém (bod Príklad 5.0 Nájdim iaané rém fnkci f ( ) ak 5. Rišni: Kďž fnkci g ( ) 0 ( 5 0) prdsajúcj äb nmôžm jdnonačn jadriť žiadn doch prmnných osrojím Lagrango fnkci L( ) λ.( 5) λ R a hľadám jj rém. Rišim súsa roníc L λ 0 L λ 0 L λ 5 0 Ak prj ronic jadrím drhj a dosadím ich do rj ronic dosanm 5 0. λ λ Rišním danj ronic dosanm λ ± a rčím sacionárn bod. Pr λ j A [ ] pr λ j B [ ]. Ďalj pospjm podobn ako Príklad 5.9. Vpočíam parciá driáci drhého rád a rčím ich hodno sacionárnch bodoch. L L L L λ 0 0 λ 67

10 0 D A bod 0 Pr sacionárn bod A dosáam: > 0 D ( ) > 0 A j iaané loká minimm a 5 f. Pr sacionárn bod B dosáam: D ( B) > 0 D ( ) < 0 bod B j iaané loká maimm a ( B) B f. 5.9 Úloh V úlohách rč dfiničný obor fnkci f ( ) a náorni ho grafick: ( ) 7. ( ) 8. ( ) 9. ( ) 0.. ( ) V úlohách 5 rč parciá driáci a fnkci f ( ) Výsldk: :. ( ) 68

11 69. 7 ( ) 7 ( ) 7. ( ) ( ) 5. ( ) ( ) ( ) ( ) 6. ( ) ( ) ( ) ( ) 5 5 ( ) ( ) ( )

12 ( ) ( ) 5. ( ) ( ) 6. 6 ( ) ( ) ( ) 8. ( ) ( ) 9. ( ) ( )

13 0. ( ).. ( ).. ( ) ( ) ( ) ( ) 5. ( ) ( ) ( ) 6. Dokáž ž fnkcia f ( ) hoj ronici 7. Dokáž ž fnkcia f ( ) ( ) f f ( f ) 0 f f. 8. Dokáž ž fnkcia f ( ) f hoj roniciam hoj ronici f f f f. f f. V úlohách 9-57 rč driáci d d ložnj fnkci f ( ). Výsldk:

14 ( ) ( ) ( ) V úlohách 58-6 rč driáci a ložnj fnkci ( ) f. Výsldk: ( ) ( ) ( ) ( ) ( ) ( ) 6. ( ) ( ) ( )

15 6. ( ) ( ) 6. ( ) ( ) V úlohách 6-0 rč kriické bod klasifikj ich ako loká maimá loká minimá a sdloé bod. Výsldk: 6. f ( ) lok. ma. [ 0 0] 65. f ( ) 0 lok. ma. [ 0 0] 66. f ( ) lok. min. [ 0 0] 67. f ( ) lok. min. [ 0 0] 68. f ( ) lok. min. [ 0] 69. f ( ) lok. min. [ 0 ] 70. f ( ) lok. ma. [ 0] 7. f ( ) 8 lok. min. [ ] 7. f ( ) 6 lok. ma. [ ] 7. f ( ) 5 5 lok. min. [ 55] 7. f ( ) 6 sdl. bod [ ] 75. f ( ) 0 lok. min. [ 86] 76. f ( ) 6 6 sdl. bod [ ] 7

16 77. f ( ) 6 lok. ma. [ ] 78. f ( ) 6 lok. ma. [ 0 0] 79. f ( ) lok. min [ 8] 80. f ( ) 8 5 sdl. bod [ 0 0] lok. min. [ 6 6] 8. f ( ) 8 6 sdl. bod [ 0 0] lok. min. [ ] 8. f ( ) sdl. bod [ 0 0] lok. ma. [ ] 8. f ( ) sdl. bod [ 7 ] lok. min. [ 9 ] 8. f ( ) 7 sdl. bod 5 5 sdl. bod 5 5 lok. min. 0 lok. ma f ( ) sdl. bod [ ] sdl. bod [ ] lok. min. [ ] lok. ma. [ ] 86. f ( ) 8 0 sdl. bod [ ] sdl. bod [ ] lok. min. [ ] lok. ma. [ ] 87. f ( ) o rém [ 0] lok. min. [ ] lok. min. [ ] 0 nim rohodnúť

17 88. f ( ) sdl. bod [ 0 0] lok. min. [ ] lok. min. [ ] 89. f ( ) ( ) lok. min. [ ] 90. f ( ) ( ) lok. min. [ 0] 9. f ( ) ( ) * f ( ) ( ) * f ( ) ( ) * f ( ) ( ) sdl. bod [ 0 0] lok. ma. [ ] sdl. bod [ 0 ] sdl. bod [ 0 ] lok. min. [ 0 0] sdl. bod [ 0 ] sdl. bod [ 0 ] lok. min. [ 0 0] sdl. bod [ 0 ] sdl. bod [ 0 ] lok. min. [ 0 0] 95. f ( ) 6 lok. ma. [ ] 96. f ( ) 8 8 lok. min. [ ] f ( ) 5 lok. min. [ 5 5] 98. f ( ) sdl. bod [ ] sdl. bod [ ] lok. min. [ ] lok. ma. [ ] 99. f ( ) lok. min. [ ] 75

18 8 00. f ( ) lok. min. [ ] sdl. bod 0. f ( ) lok. min. lok. min. 0. f ( ) ( ) V úlohách 0-5 rč iaané rém fnkci f ( ) g ( ). 0. f ( ) 76 ak 0 0. ( ) f ak 05. ( ) f ak 06. f ( ) ak 07. ( ) 8 f ak f ( ) 6 ak j daná äba Výsldk: lok. ma. [ 0 0] ak ( ) 5 5 lok. min. [ 0] f ak 0 0. f ( ) 6 ak 0. ( ) 8 5 f ak 0. ( ) 8 6 f ak 0. f ( ) ak 0. f ( ) ak 5. f ( ) ak 8 lok. min. [ 0 ] lok. ma. [ 0] lok. min. [ ] lok. ma. [ ] lok. min. [ 55] lok. ma. [ 0 0] lok. min. [ 6 6] lok. ma. [ 0 0] lok. min. [ ] lok. ma. [ 0 0] lok. min [ 0 0] lok. ma. [ ] lok. min. [ ] lok. ma. [ 5 ]

19 6. f ( ) ak 8 7. f ( ) ak 5 8. f ( ) 8 lok. min. [ 5 ] lok. min. [ ] ak 9. f ( ) ( ) ak 69 f ak 5. f ( ). * f ( ) ak ak lok. ma. [ ] lok. min. [ ] lok. ma. [ ] lok. min. [ 5 ] lok. ma. [ 5 ] lok. min. [ ] lok. ma. [ ] lok. min. [ ] lok. ma. [ ] lok. min. [ ] lok. min. [ ] lok. ma. [ ] lok. ma. [ ]. * ( ) f 8 ak lok. ma. [ 5 5] lok. ma. [ 5 5] lok. min. [ 5 5] lok. min. [ 5 5]. f ( ) 5. f ( ) ak ak lok. min. [ ] lok. ma. [ ] lok. min. [ ] lok. ma. [ ] V úlohách 6- nájdi úpý difrnciál fnkci. Výsldk: 6. f ( ) df ( ) d ( )d 77

20 7. f ( ) df ( ) d ( )d 8. f ( ) 9. f ( ) df ( 6 ) d ( 6 8 )d df d d 0. f ( ) ( ) df d d df d d 6 6. f ( ) 6. f ( ) df d d V úlohách -6 počíaj približn pomoco difrnciál ( ) -00 Výsldk: V úlohách 7-7 nájdi driáci implicinj fnkci ( ) 0. ( ) 6 0 Výsldk: 6 ( ) 78

21 . ( ) 0. ( ) ( )

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.

Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita. Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************

Διαβάστε περισσότερα

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

9 Neurčitý integrál. 9.1 Primitívna funkcia a neurčitý integrál. sa nazýva primitívnou funkciou k funkcii f ( x) každé x ( a,

9 Neurčitý integrál. 9.1 Primitívna funkcia a neurčitý integrál. sa nazýva primitívnou funkciou k funkcii f ( x) každé x ( a, Hí, P Pokorný, M: Maemaika pre informaikov a prírodné vedy 9 Neurčiý inegrál 9 Primiívna funkia a neurčiý inegrál Funkia F sa nazýva primiívnou funkiou k funkii f na inervale ( b) každé ( a, b) plaí F

Διαβάστε περισσότερα

, ktorú nazveme afinnou súradnicovou sústavou. Pomocou tejto trojice priradíme každému bodu X roviny E 2 jeho polohový vektor

, ktorú nazveme afinnou súradnicovou sústavou. Pomocou tejto trojice priradíme každému bodu X roviny E 2 jeho polohový vektor GEMETRICKÉ TRANSFRMÁCIE a TRIEDY SÚRADNICE BDU Základným útvarom gomtri j bod a prto j dôlžité opísať tnto gomtrický útvar pomocou čísl Najskôr sa budm aobrať rovinnou gomtriou a tda budm hovoriť o rovinnj

Διαβάστε περισσότερα

ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές

ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές κ.λ.π. ΔΙΑΝΥΣΜΑΤΑ Παράσταση διανύσματος ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΕΣ

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ ΚΑΤΑΛΟΓΟΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΗΛΕΚΤΡΟΝΙΚΟΥ ΤΕΣΤ ΙΚΑΝΟΤΗΤΩΝ ΓΙΑ ΤΙΣ ΘΕΣΕΙΣ ΩΡΟΜΙΣΘΙΟΥ ΠΡΟΣΩΠΙΚΟΥ ΒΟΗΘΟΙ ΤΗΛΕΞΥΠΗΡΕΤΗΣΗΣ (ΑΡ. ΠΡΟΚΗΡΥΞΗΣ: 2/2017) (ΛΕΥΚΩΣΙΑ

Διαβάστε περισσότερα

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 0 ΘΕΜΑ Α Α. Θεωρία σχολικού βιβλίου σελ. 53 (Απόδειξη) Α. Θεωρία σχολικού βιβλίου σελ. 9 (Ορισμός) Α3. Θεωρία σχολικού βιβλίου

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

ÏÑÏÓÇÌÏ ÇÑÁÊËÅÉÏ ( )( ) ( )( ) Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. w w + 1= + 1. α= α.

ÏÑÏÓÇÌÏ ÇÑÁÊËÅÉÏ ( )( ) ( )( ) Γ' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. w w + 1= + 1. α= α. Γ' ΤΑΞΗ ΓΕΝΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ ο Α Σχολικό βιβλίο σελ Β σελ Β σελ Γ α Λ β Σ γ Λ δ Λ ε Σ ΘΕΜΑ ο ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ + w z = w z w = + w z zw = + w w w + zw = z w( + z) = z z z

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013)

Hydromechanika II. Viskózna kvapalina Povrchové napätie Kapilárne javy. Doplnkové materiály k prednáškam z Fyziky I pre EF Dušan PUDIŠ (2013) Hyomechanika II Viskózna kvaaina Povchové naäie Kaiáne javy Donkové maeiáy k enáškam z yziky I e E Dušan PUDIŠ (013 Lamináne vs. Tubuenné úenie Pi úení eánej kvaainy ôsobia mezi voma susenými vsvami i

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο2) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ. ώ ό. ί ό ό 1, 1,2,, 1,,,,,,, 1,2,,, V ό V V. ή ό ί ά ύ. ό, ί ί ή έ ύ.

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο2) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ. ώ ό. ί ό ό 1, 1,2,, 1,,,,,,, 1,2,,, V ό V V. ή ό ί ά ύ. ό, ί ί ή έ ύ. ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ (Νο) ΧΡΗΣΙΜΕΣ ΣΧΕΣΕΙΣ έ ώ ό έ ώ 0,,,, i i i i i i ό i i i Έ ώ,,, ό,,, ί ώ ό. ί ό ό,,,,,,,,,,, V ό V 0 V 0,,, ύ ώ ό ή ό ό ή ό ί ά ύ ό, ί ί ή έ ύ ό ό, ί ί ή έ ύ ό ύ ό ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

έχει μοναδική ρίζα στο. β. Να δείξετε ότι για κάθε x. x 2

έχει μοναδική ρίζα στο. β. Να δείξετε ότι για κάθε x. x 2 . Έστω η συνάρτηση f: τέτοια ώστε για κάθε να ισχύει f(). α. Να δείξετε ότι η εξίσωση f() έχει μοναδική ρίζα στο. β. Να δείξετε ότι γ. Να δείξετε ότι η εξίσωση ρίζα στο. e για κάθε. t 3 63 e dt 7 έχει

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x.

Τελευταία Επανάληψη. την ευθεία x=1 και τoν x x. 2 1 x. Λύση. x 2 1 x 0, άρα. x 1 x. x x 1. γ) x 1 e x x 1 x e ln x 1 x f x. Δίνεται η συνάρτηση ln Τελευταία Επανάληψη α) Να βρείτε το πεδίο ορισμού της β) Να μελετήσετε την ως προς την μονοτονία της γ) Να βρείτε το πλήθος των ριζών της εξίσωσης e, δ) Να υπολογίσετε το εμβαδόν

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ

ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ Βαθμολόγιo για το ακαδ. έτος 2016-2017 και περίοδο ΕΞ(Χ) 2016-2017 Για το μάθημα ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ (12421) Διδάσκoντες:Χ.Αθανασιάδης,Ι.Εμμανουήλ,

Διαβάστε περισσότερα

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου u Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ u Μαθηµατική Ανάλυση της Διαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

DESKRIPTÍVNA GEOMETRIA

DESKRIPTÍVNA GEOMETRIA EKRIÍN GEERI meódy zobrzovni priesorových úvrov do roviny (premieni) mericé polohové vzťhy priesorových úvrov riešené v rovine bsh predmeu G Zobrzovcie meódy: olohové mericé úlohy: ongeov projeci Rezy

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ITU-R M MHz ITU-R M ( ) (epfd) (ARNS) (RNSS) ( /(DME) MHz (ARNS) MHz ITU-R M.

ITU-R M MHz ITU-R M ( ) (epfd) (ARNS) (RNSS) ( /(DME) MHz (ARNS) MHz ITU-R M. ITU-R M.64- (007-005-003) ITU-R M.64- MHz 5-64 (epfd) (RNSS) ().MHz 5-64 MHz 5-960 (RR) ( () (RNSS) ( /(DME) MHz 5-64 (RNSS) (TACAN) ( ITU-R M.639 MHz 5-64 WRC-000 ( (RNSS) (RNSS) () RNSS WRC-03 ( MHz

Διαβάστε περισσότερα

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.

Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14. Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje

Διαβάστε περισσότερα

Funkcie - základné pojmy

Funkcie - základné pojmy Funkcie - základné pojmy DEFINÍCIA FUNKCIE Nech A, B sú dve neprázdne číselné množiny. Ak každému prvku x A je priradený najviac jeden prvok y B, tak hovoríme, že je daná funkcia z množiny A do množiny

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh

Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II. Zbierka riešených a neriešených úloh Technická univerzita v Košiciach Fakulta elektrotechniky a informatiky MATEMATIKA II Zbierka riešených a neriešených úloh Anna Grinčová Jana Petrillová Košice 06 Technická univerzita v Košiciach Fakulta

Διαβάστε περισσότερα

1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a

1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a . ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a a ΑΘΡΟΙΣΜΑ ΔΙΑΔΟΧΙΚΩΝ ΔΙΑΝΥΣΜΑΤΩΝ:, ( ) 3 4 3 4 a a a a a 3 aaa3a4 a 3 a 4,,,,...,,,.,. .,,,, : () a ( ) () ( ) ( ) ( ) (3) 0 (4) (

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD:

HÀM NHIỀU BIẾN Lân cận tại một điểm. 1. Định nghĩa Hàm 2 biến. Miền xác định của hàm f(x,y) là miền VD: . Định nghĩa Hàm biến. f : D M (, ) z= f( M) = f(, ) Miền ác định của hàm f(,) là miền VD: f : D HÀM NHIỀU BIẾN M (, ) z= f(, ) = D sao cho f(,) có nghĩa. Miền ác định của hàm f(,) là tập hợp những điểm

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet

TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA 1. Funkcia jednej premennej a jej diferenciálny počet TECHNICKÁ UNIVERZITA V KOŠICIACH STROJNÍCKA FAKULTA MATEMATIKA časťa Funkcia jednej premennej a jej diferenciáln počet Dušan Knežo, Miriam Andrejiová, Zuzana Kimáková 200 RECENZOVALI: prof. RNDr. Jozef

Διαβάστε περισσότερα

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.: 5 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 6 και Φιλολάου : Τηλ.: 107601470-107600179 ΔΙΑΓΩΝΙΣΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 01 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ 1 ο Α. i) Θεωρία, σχολικό

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 28 ΜΑΙΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ. Άρα ο γ.τ. των Μ(z) είναι κύκλος µε κέντρο το Ο(0, 0) και ακτίνα ρ=1 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΥΤΕΡΑ 8 ΜΑΙΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΘΕΜΑ Α Α σελ. 53 Α σελ. 9 Α3 σελ 58 Α4 α) Σ β) Σ γ) Λ δ) Λ ε) Λ ΘΕΜΑ Β. Β. (z= yi) z z = 4 yi yi = 4 ( ) yi ( ) yi = 4 ( ) y ( ) y =

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky

NUMERICKÁ MATEMATIKA. Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ. Fakulta elektrotechniky a informatiky Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ NUMERICKÁ MATEMATIKA Fakulta elektrotechniky a informatiky Štefan Berežný Táto publikácia vznikla za finančnej podpory

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Χημεία Γ λυκείου θ ε τ ι κ ών σπο υ δ ών

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Χημεία Γ λυκείου θ ε τ ι κ ών σπο υ δ ών Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό 1 ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων «δυαδικό» Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 0 1 6 Χημεία Γ λυκείου θ ε τ ι κ ών σπο υ δ

Διαβάστε περισσότερα

Αθήνα, 1/07/2016 Αρ. Πρωτ. ΕΣΔΥ/οικ1813

Αθήνα, 1/07/2016 Αρ. Πρωτ. ΕΣΔΥ/οικ1813 www.esdy.edu.gr ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΥΓΕΙΑΣ Λ.ΑΛΕΞΑΝΔΡΑΣ 196, 115 21 Αθήνα Τ. +30 213 2010105, 106, 108 Φ. +30 210 6460658 Ε. education@esdy.edu.gr Διεύθυνση Γραμματείας / Γραφείο Εκπαίδευσης

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2 Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι: ΘΕΜΑ ο Γ' ΤΑΞΗ ΓΕΝΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ Α Έστω f µία συνεχής συνάρτηση σ ένα διάστηµα [α, β] Αν G είναι µία β παράγουσα της f στο [α, β], τότε f ( t) dt = G( β )

Διαβάστε περισσότερα

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X.

Tối ưu tuyến tính. f(z) < inf. Khi đó tồn tại y X sao cho (i) d(z, y) 1. (ii) f(y) + εd(z, y) f(z). (iii) f(x) + εd(x, y) f(y), x X. Tối ưu tuyến tính Câu 1: (Định lý 2.1.1 - Nguyên lý biến phân Ekeland) Cho (X, d) là không gian mêtric đủ, f : X R {+ } là hàm lsc bị chặn dưới. Giả sử ε > 0 và z Z thỏa Khi đó tồn tại y X sao cho (i)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε

Διαβάστε περισσότερα

Fakulta matematiky, fyziky a informatiky. Univerzita Komenského

Fakulta matematiky, fyziky a informatiky. Univerzita Komenského OBYČAJNÉ DIFERENCIÁLNE ROVNICE 2ročník Fakula maemaiky, fyziky a informaiky Univerzia Komenského Conens I Obyčajné diferenciálne rovnice a sysémy obyčajných diferenciálnych rovníc 2 II Vey o exisencii,

Διαβάστε περισσότερα

6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ. 6.1. Γενικά

6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ. 6.1. Γενικά 6. ΤΕΛΙΚΗ ΙΑΘΕΣΗ ΤΑΦΗ 6.1. Γενικά Είναι γεγονός ότι ανέκαθεν ο τελικός αποδέκτης των υπολειµµάτων της κατανάλωσης και των καταλοίπων της παραγωγικής διαδικασίας υπήρξε το περιβάλλον. Στις παλιότερες κοινωνίες

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 24 / 5 / 08 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ. Άρα ο γεωμετρικός τόπος του z είναι κύκλος με κέντρο Κ(0, 0) και ακτίνα ρ = 2

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 24 / 5 / 08 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ. Άρα ο γεωμετρικός τόπος του z είναι κύκλος με κέντρο Κ(0, 0) και ακτίνα ρ = 2 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 4 / 5 / 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο Α. Θεωρί σχολ. βιβλίο σελ. 35 Α. Θεωρί σχολ. βιβλίο σελ 9 Β. Σ, β Σ, γ Λ, δ Λ, ε Σ ΘΕΜΑ ο (i )z 6 i z 6 z 6 3 z 6 z. Έχουμε Άρ ο

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

Moguća i virtuelna pomjeranja

Moguća i virtuelna pomjeranja Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +

Διαβάστε περισσότερα

J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &

J! #$ %& ( ) ) )  *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) & J! "#$ %"& J ' ( ) ) ) " *+, -./0-, L *- /! /!+12,3-4 % +15,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/01 ',913-51:--

Διαβάστε περισσότερα

23. Zhodné zobrazenia

23. Zhodné zobrazenia 23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x

( ) ΘΕ ΑΝ4 / 2 0. α) β) f(x) f ( x) cos x Η ΑΝΕΠ Η Η Ν Ω Ν Ω ΑΘΗ Α ΑΝIV Ε ε ά ει Ν επ ε β ί 5 (3-9-5) Επώ : Ό α: ΑΝ Ν: ΘΕ ΑΝ Τα π α Chebyshev T ( ) α π ω μ ( ) y y y (,,, ) π [,] Η ω α α α π α μ / d d T ( ) Tm ( ) [ T ( )] Α απ f ( ) 3, [,], α

Διαβάστε περισσότερα

Japanese Fuzzy String Matching in Cooking Recipes

Japanese Fuzzy String Matching in Cooking Recipes 1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe

Διαβάστε περισσότερα

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1 Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος 014-15 ΜΑΝΩΛΗ ΨΑΡΡΑ Μανώλης Ψαρράς Σελίδα 1 Α ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΗ 1 η Να λυθούν γραφικά τα συστήματα: y y6 y 5 1 : 1 : 3 : y 6 0 y 5

Διαβάστε περισσότερα

XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA

XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA ό π ω ς ε γ κ ρ ί θ η κ ε α π ό τ ο δ ι ο ι κ η τ ι κ ό σ υ μ β ο ύ λ ι ο τ η ς ε τ α ι ρ ί α ς τ η ν 30 η Μ α ρ τ ί ο υ 2 0 1

Διαβάστε περισσότερα

Technická univerzita v Košiciach MATEMATIKA I

Technická univerzita v Košiciach MATEMATIKA I Tchická uivrzi v Košicich MTEMTIK I Vzorové rišé úlohy Blk Bculíková Gričová Košic Tchická uivrzi v Košicich MTEMTIK I Vzorové rišé úlohy Blk Bculíková Gričová Košic REENZOVLI: prof RNDr Jozf Džuri Sc

Διαβάστε περισσότερα

Trigonometrijski oblik kompleksnog broja

Trigonometrijski oblik kompleksnog broja Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.

Διαβάστε περισσότερα

FUNKCIE N REÁLNYCH PREMENNÝCH

FUNKCIE N REÁLNYCH PREMENNÝCH FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY UNIVERZITY KOMENSKÉHO V BRATISLAVE FUNKCIE N REÁLNYCH PREMENNÝCH RNDr. Kristína Rostás, PhD. PREDMET: Matematická analýza ) 2010/2011 1. DEFINÍCIA REÁLNEJ FUNKCIE

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÖÁÓÌÁ ÐÅÔÑÏÕÐÏËÇ ΧΗΜΕΙΑ ΘΕΜΑ Α ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. Α1. γ. Α2. β. Α3. δ. Α4. β

ÖÑÏÍÔÉÓÔÇÑÉÏ ÖÁÓÌÁ ÐÅÔÑÏÕÐÏËÇ ΧΗΜΕΙΑ ΘΕΜΑ Α ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. Α1. γ. Α2. β. Α3. δ. Α4. β ΘΕΜΑ Α Α. γ Α. β Α. δ Α4. β Α5. α) Θεώρηµα Arrhenius: ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ ) Βάσεις είναι οι ενώσεις που όταν διαλυθούν στο νερό δίνουν ΟΗ ) Οι βάσεις είναι ουδέτερα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΘΕΡΜΟΦΥΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΤΡΟΦΙΜΩΝ

ΚΕΦΑΛΑΙΟ 4 ΘΕΡΜΟΦΥΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΤΡΟΦΙΜΩΝ ΚΕΦΑΛΑΙΟ 4 ΘΕΡΜΟΦΥΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΤΡΟΦΙΜΩΝ Εισαγωγή Η µελέτη και ο σχεδιασµός όλων των διεργασιών των τροφίµων απαιτούν τη γνώση των θερµοφυσικών ιδιοτήτων τους. Τα τρόφιµα είναι γενικά ανοµοιογενή

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

!"# '1,2-0- +,$%& &-

!# '1,2-0- +,$%& &- "#.)/-0- '1,2-0- "# $%& &'()* +,$%& &- 3 4 $%&'()*+$,&%$ -. /..-. " 44 3$*)-),-0-5 4 /&30&2&" 4 4 -&" 4 /-&" 4 6 710& 4 5 *& 4 # 1*&.. #"0 4 80*-9 44 0&-)* %&9 4 %&0-:10* &1 0)%&0-4 4.)-0)%&0-44 )-0)%&0-4#

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε Deformae. Duljinska (normalna) deformaa. Kutna (posmina) deformaa. Obujamska deformaa Θ Tenor deformaa tenor drugog reda 9 podatakamjerna jedinia Simetrinost tenora deformaa 6 podataka 4. Duljinska deformaa

Διαβάστε περισσότερα

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B

1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B . písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c

Διαβάστε περισσότερα

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

επικινδυνότητας του ρυπαντικού φορτίου των

επικινδυνότητας του ρυπαντικού φορτίου των ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΣΠΑ 2007-2013 2013 - ΑΡΧΙΜΗ ΗΣ ΙΙΙ Υποέργο 15 Μοντέλο πολυπαραμετρικής εκτίμησης

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία, σελ 53, σχολικού βιβλίου Α Θεωρία, σελ 9, σχολικού βιβλίου Α3 Θεωρία, σελ 58, σχολικού βιβλίου Α4 α) Σ, β) Σ, γ) Λ, δ) Λ,

Διαβάστε περισσότερα

VaFu18-T List 1. Mocninové funkcie. RNDr. Beáta Vavrinčíková

VaFu18-T List 1. Mocninové funkcie. RNDr. Beáta Vavrinčíková VaFu8-T List Mocninové funkcie RNDr. Beáta Vavrinčíková U: V tejto téme sa budeme zaoberať jednou celou skupinou funkcií. Pripomeňme si, že funkcia popisuje určitú závislosť medzi dvoma veličinami. Na

Διαβάστε περισσότερα

VaFu02-T List 1. Graf funkcie. RNDr. Beáta Vavrinčíková

VaFu02-T List 1. Graf funkcie. RNDr. Beáta Vavrinčíková VaFu0-T List Graf funkcie RNDr. Beáta Vavrinčíková U: Vieme, že funkcia vjadruje určitú závislosť medzi dvoma veličinami. Akým spôsobom b mohla bť funkcia zadaná? Ž: Stretol som sa najmä srovnicami, napríklad

Διαβάστε περισσότερα