ΟΙΚ 362 ΟΙΚΟΝΟΜΙΚΑ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ 1 η Σειρά Ασκήσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΟΙΚ 362 ΟΙΚΟΝΟΜΙΚΑ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ 1 η Σειρά Ασκήσεων"

Transcript

1 ΟΙΚ 6 ΟΙΚΟΝΟΜΙΚΑ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ η Σειρά Ασκήσεων. Έστω ότι η αοραία συνάρτηση ζήτησης ια κάοιο ααθό είναι: ( ) 70 Υοθέστε ότι υάρχει μία ειχείρηση στην αορά και η συνάρτηση κόστους της ειχείρησης είναι: ( α) c ( ) 6 β c 4 c ( ) ( ) ( ) ( ) 0 50 Για καθεμία αό τις αραάνω συναρτήσεις κόστους: Να υολοίσετε αλεβρικά και να αεικονίσετε διαραμματικά την τιμή και την οσότητα ισορροίας του ααθού, υοθέτοντας ότι η αορά είναι λήρως ανταωνιστική. Πόσα είναι τα κέρδη της ειχείρησης στην ανταωνιστική Να υολοίσετε αλεβρικά και να αεικονίσετε διαραμματικά την τιμή και την οσότητα ισορροίας του ααθού, υοθέτοντας ότι η αορά είναι μονοωλιακή. Πόσα είναι τα κέρδη της ειχείρησης στη μονοωλιακή Να υολοίσετε την ελαστικότητα της ζήτησης ως ρος την τιμή στη μονοωλιακή ισορροία. Στη συνέχεια, να υολοίσετε το δείκτη μονοωλιακής δύναμης της ειχείρησης κατά Lrnr. Να υολοίσετε το λεόνασμα του καταναλωτή, το λεόνασμα του αραωού και το συνολικό λεόνασμα στην ανταωνιστική ισορροία. Να υολοίσετε το λεόνασμα του καταναλωτή στη μονοωλιακή ισορροία. Οι καταναλωτές ωφελούνται ή ζημιώνονται σε σχέση με την ανταωνιστική Να υολοίσετε το λεόνασμα του αραωού στη μονοωλιακή ισορροία. H ειχείρηση ωφελείται ή ζημιώνεται σε σχέση με την ανταωνιστική Να υολοίσετε το συνολικό λεόνασμα στη μονοωλιακή ισορροία. Πόση είναι η μη αντισταθμιζόμενη αώλεια ου οφείλεται στο μονοώλιο;. Έστω ότι υάρχει μία ειχείρηση στην αορά ενός ααθού και η συνάρτηση κόστους της ειχείρησης είναι: c ( ) c, όου c> 0 (α) Υοθέστε ότι η αντίστροφη συνάρτηση ζήτησης του ααθού είναι: ( ) a, όου a, > 0 και a> c Να υολοίσετε αλεβρικά και να αεικονίσετε διαραμματικά την τιμή και την οσότητα ισορροίας του ααθού, υοθέτοντας ότι η αορά είναι λήρως ανταωνιστική. Πόσα είναι τα κέρδη της ειχείρησης στην ανταωνιστική Να υολοίσετε αλεβρικά και να αεικονίσετε διαραμματικά την τιμή και την οσότητα ισορροίας του ααθού, υοθέτοντας ότι η αορά είναι μονοωλιακή. Πόσα είναι τα κέρδη της ειχείρησης στη μονοωλιακή Έστω ότι η κυβέρνηση ειβάλλει στη μονοωλιακή ειχείρηση ένα φόρο >0 ανά μονάδα ροϊόντος. Να υολοίσετε τη νέα τιμή ( ) και τη νέα οσότητα ( ) ισορροίας με φορολοία. Στη συνέχεια, να δείξετε ότι: d < d [δηλαδή, να δείξετε ότι η μονοωλιακή ειχείρηση μετακυλύει το ήμισυ του φορολοικού βάρους () στους καταναλωτές με τη μορφή μιας υψηλότερης τιμής]. (β) Υοθέστε ότι η αοραία συνάρτηση ζήτησης του ααθού είναι: ( ), όου < Να δείξετε ότι, (δηλαδή να δείξετε ότι η ελαστικότητα της ζήτησης ως ρος την τιμή είναι σταθερή και ίση με ). Να υολοίσετε αλεβρικά και να αεικονίσετε διαραμματικά την τιμή και την οσότητα ισορροίας του ααθού, υοθέτοντας ότι η αορά είναι λήρως ανταωνιστική. Πόσα είναι τα κέρδη της ειχείρησης στην ανταωνιστική

2 Να υολοίσετε αλεβρικά και να αεικονίσετε διαραμματικά την τιμή και την οσότητα ισορροίας του ααθού, υοθέτοντας ότι η αορά είναι μονοωλιακή. Πόσα είναι τα κέρδη της ειχείρησης στη μονοωλιακή Έστω ότι η κυβέρνηση ειβάλλει στη μονοωλιακή ειχείρηση ένα φόρο >0 ανά μονάδα ροϊόντος. Να υολοίσετε τη νέα τιμή ( ) και τη νέα οσότητα ( ) ισορροίας με φορολοία. Στη συνέχεια, να δείξετε ότι: d > d + [δηλαδή, να δείξετε ότι η αύξηση της τιμής ου ληρώνουν οι καταναλωτές μετά την ειβολή του φόρου υερβαίνει το συνολικό φορολοικό βάρος ().]. (α) Έστω ότι η αντίστροφη συνάρτηση ζήτησης ια κάοιο ααθό είναι: ( ) a, όου a, > 0 Υοθέστε ότι υάρχει μία ειχείρηση στην αορά και η συνάρτηση κόστους της ειχείρησης είναι: c ( ) c, με 0 < c< a Να υολοίσετε αλεβρικά και να αεικονίσετε διαραμματικά την τιμή και την οσότητα ισορροίας του ααθού, υοθέτοντας ότι η αορά είναι λήρως ανταωνιστική. Πόσα είναι τα κέρδη της ειχείρησης στην ανταωνιστική Να υολοίσετε αλεβρικά και να αεικονίσετε διαραμματικά την τιμή και την οσότητα ισορροίας του ααθού, υοθέτοντας ότι η αορά είναι μονοωλιακή. Πόσα είναι τα κέρδη της ειχείρησης στη μονοωλιακή Έστω ότι η κυβέρνηση αρέχει στη μονοωλιακή ειχείρηση μια ειδότηση [0, c] ανά μονάδα ροϊόντος. Να υολοίσετε αλεβρικά τη νέα τιμή ισορροίας, τη νέα οσότητα ισορροίας και τα κέρδη της ειχείρησης στη νέα μονοωλιακή ισορροία ως συνάρτηση του. Να υολοίσετε το ύψος της ειδότησης (*) ου ααιτείται ώστε η νέα μονοωλιακή ισορροία με ειδότηση να είναι άριστη κατά Paro. Να αεικονίσετε τη νέα μονοωλιακή ισορροία (με άριστη ειδότηση) στο διάραμμα ου κατασκευάσατε αραάνω. Πόσα είναι τα κέρδη της ειχείρησης σε αυτή την ερίτωση; (β) (Γενίκευση) Έστω ότι η αντίστροφη συνάρτηση ζήτησης ια κάοιο ααθό είναι ( ), με ( ) < 0. Υοθέστε είσης ότι υάρχει μία ειχείρηση στην αορά και η συνάρτηση κόστους της ειχείρησης είναι c ( ), με c ( ) C( ) > 0. Να δείξετε ότι η ειδότηση (*) ου ααιτείται ώστε η μονοωλιακή ισορροία να είναι άριστη κατά Paro ροσδιορίζεται αό τη σχέση: * */, (όου * είναι η τιμή της ανταωνιστικής ισορροίας και υολοισμένη στο σημείο της ανταωνιστικής ισορροίας.) είναι η ελαστικότητα της ζήτησης ως ρος την τιμή

3 Λύσεις ης Σειράς Ασκήσεων. (α) c ( ) 6 ( *, *) (64,6) * 0 (, ) (,8) 04 9 /6.875 C( ) 6 /9 0,84 * 048 * 0 TS* < * 048, δηλαδή οι καταναλωτές ζημιώνονται. 04 > * 0, δηλαδή η ειχείρηση ωφελείται. TS 56 DW TS * TS 5 (β) c ( ) / ( *, *) (40,0) * 00 (, ) (4,46) 40 /.9 C( ) / 0,5

4 * 800 * 400 TS* < * 800, δηλαδή οι καταναλωτές ζημιώνονται. 70 > * 400, δηλαδή η ειχείρηση ωφελείται. TS 008 DW TS * TS 9 () c ( ) / ( *, *) (,58) * 4 ( ) (, ) 0.75, C( ) 0,8 * 7 * 84 TS* < * 7, δηλαδή οι καταναλωτές ζημιώνονται. 9.4 > * 84, δηλαδή η ειχείρηση ωφελείται. TS 449. DW TS * TS 6.8. (α) ( ) a ( *, *) ( a c, c), * 0 4

5 a c a+ c ( a c) (, ) (, ), 4 Η συνάρτηση κόστους ίνεται: c ( ) ( c+ ) a c a+ c+ ( a c ) (, ) (, ), 4, οότε: d <, ράματι. d (β) ( ), < ( *, *) ( c, c), * 0 c c c (, ) ( ),, Η συνάρτηση κόστους ίνεται: c ( ) ( c+ ), οότε: c (, ) ( ) ( c+ ), ( c+ ), d >, ράματι. d +. (α) ( *, *) ( a c, c), * 0 a c a+ c ( a c) (, ) (, ), 4 Η συνάρτηση κόστους ίνεται: c ( ) ( c ), οότε: a c+ a+ c ( a c+ ) (, ) (, ), 4 Πρέει: * * a c είναι η ααιτούμενη ειδότηση. Τότε: ( ) * a c, *, a c c (β) H συνάρτηση κόστους της ειχείρησης με ειδότηση είναι: c ( ) c( ) Άρα, η συνάρτηση οριακού κόστους με ειδότηση είναι: C ( ) c ( ) C( ) Η ανταωνιστική ισορροία ( *, *) ικανοοιεί τη συνθήκη: * C( *) () Η μονοωλιακή ισορροία με ειδότηση (, ) ικανοοιεί τη συνθήκη: R( ) C( ) C ( ) () S S *, * Πρέει: () Άρα: S S () () * () R( *) C( *) * *( + ) *, ράματι. 5

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ

Προτεινόμενα θέματα Πανελλαδικών εξετάσεων. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Προτεινόμενα θέματα Πανελλαδικών εξετάσεων Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης o ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ ΕΛΛΗΝΟΕΚΔΟΤΙΚΗ Ααντήσεις ΘΕΜΑ ο Α. Σχολικό βιβλίο, σελίδα 6. B. Σχολικό βιβλίο, σελίδες 97 και

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ Ελευθέριος Πρωτοαάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ ΑΣΚΗΣΗ ίνεται η συνάρτηση f µε f() = 5 4 +α, όου α R και το είναι ρίζα της εξίσωσης f() =. α) Να βρείτε το α R. β) Να λύσετε

Διαβάστε περισσότερα

Τα σώματα του σχήματος έχουν μάζες m = 1 kg και Μ = 2 kg και συνδέονται με νήμα.

Τα σώματα του σχήματος έχουν μάζες m = 1 kg και Μ = 2 kg και συνδέονται με νήμα. Ταλάντωση μετά αό κόψιμο του νήματος. Σώματα δεμένα με νήμα σε κατακόρυο ελατήριο. Τα σώματα του σχήματος έχουν μάζες = g και Μ = g και συνδέονται με νήμα. Το σώμα μάζας αέχει αό το δάεδο αόσταση H = 7

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόπουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ του Κώστα Βακαλόουλου ΠΡΟΒΛΗΜΑΤΑ ΕΥΡΕΣΗΣ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Α. ΕΙΣΑΓΩΓΗ Ολοκληρώνοντας το 1 ο κεφάλαιο στα Μαθηματικά της Γενικής Παιδείας

Διαβάστε περισσότερα

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000

Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 Θέµατα Μαθηµατικών Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Ζήτηµα ο Α. Αν η συνάρτηση f είναι αραγωγίσιµη σ ένα σηµείο x του εδίου ορισµού της να γραφεί η εξίσωση της εφατοµένης της γραφικής αράστασης της f

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ

ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ 1. Τι ονομάζουμε εριοδική συνάρτηση Μια συνάρτηση ƒ με εδίο ορισμού το Α λέγεται εριοδική όταν υάρχει ραγματικός αριθμός Τ, Τ > 0 τέτοιος ώστε για κάθε χ Α να ισχύει α) χ+τ Α, χ -

Διαβάστε περισσότερα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών) Ασκήσεις που παρουσιάστηκαν στο µάθηµα (2008-09)

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σπουδών) Ασκήσεις που παρουσιάστηκαν στο µάθηµα (2008-09) ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ Ηµιαγωγοί και Ηµιαγώγιµες οµές (7 ο Εξάµηνο Σουδών) Ασκήσεις ου αρουσιάστηκαν στο µάθηµα (8-9). Η σχέση διασοράς για τη ζώνη αγωγιµότητας Ε c c () ενός κυβικού ηµιαγώγιµου υλικού

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας,

1. Ένα σώμα εκτελεί ταυτόχρονα δύο απλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ ΜΕ ΤΗΝ ΙΔΙΑ ΚΥΚΛΙΚΗ ΣΥΧΝΟΤΗΤΑ. Ένα σώμα εκτελεί ταυτόχρονα δύο αλές αρμονικές ταλαντώσεις ίδιας διεύθυνσης και ίδιας συχνότητας, οι οοίες εξελίσσονται γύρω αό την ίδια θέση ισορροίας.

Διαβάστε περισσότερα

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΩΡΙΑ 1. Ορισµός Έστω µία συνάρτηση f µε εδίο ορισµού Α και A Θα λέµε ότι η f είναι εριοδική όταν υάρχει ραγµατικός αριθµός Τ > 0 έτσι ώστε για κάθε Α να ισχύει : i)

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΤΡΕΧΟΝΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ

ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΤΡΕΧΟΝΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ: ΚΥΜΑΤΑ ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΑ ΤΡΕΧΟΝΤΑ ΜΗΧΑΝΙΚΑ ΚΥΜΑΤΑ. Αν γνωρίζουμε την εξίσωση της αομάκρυνσης ενός αρμονικού κύματος μορούμε να βρούμε την εξίσωσης της ταχύτητας

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝ Γ ΛΥΚΕΙΟΥ ΟΡΙΑ - ΣΥΝΕΧΕΙΑ 1 Να υολογίσετε τα όρια: 9 i) ii) ( ) 9 iii) 1 1 1 iv) 7 10 5 15 t t t 1 v) vi) t (t )(t ) 1 1 9 i) (ημ συν) ) 1 7 συν vii) 1 ημ viii) 1 5 i) ii) ημ 6 1 009, άν

Διαβάστε περισσότερα

ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ

ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ ΤΟ ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟ ΣΩΜΑ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΝΗΜΑΤΟΣ. Σώμα μάζας m = kg, είναι δεμένο στο άκρο οριζόντιου ελατηρίου με το άλλο άκρο του σε ακλόνητο τοίχο) και αό την άλλη άκρη είναι δεμένο με νήμα τεταμένο με

Διαβάστε περισσότερα

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0

(Μονάδες 8) β) Αν τα διανύσµατα 2α+β. (Μονάδες 7) ΛΥΣΗ α β = α β συν α ɵ, β, 3 2 2α+β κα+β 2α+β κα+β = 0 2κα + 2α β+ κα β+β = 0 ΚΕΦΑΛΑΙΟ: ο - ΠΑΡΑΓΡΑΦΟΣ:.5 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 05 Γιάννης Ζαµέλης Μαθηµατικός 855 B (Αναρτήθηκε 08 4 ) ίνονται τα διανύσµατα ακαι µε ( α, ) = και α =, = α) Να ρείτε το εσωτερικό γινόµενο α (Μονάδες 8)

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίλα σε κάθε αριθµό το γράµµα ου αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

3x 2x 1 dx. x dx. x x x dx.

3x 2x 1 dx. x dx. x x x dx. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση (Υολογισμός του f () d Βσιζόμενος σε Ιδιότητες Ή στην Αρχική της f, η οοί Βρίσκετι ό Κνόνες Πργώγισης) Ν υολογίσετε το ολοκλήρωμ ( + ) d (Θέμ Β) Άσκηση (Υολογισμός του f () d

Διαβάστε περισσότερα

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy

xsin ydxdy (α) Εάν το χωρίο R είναι φραγμένο αριστερά και δεξιά από τις ευθείες x=α και x=β και από πάνω και κάτω από τις καμπύλες dr = dxdy ΔΙΠΛΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Εφαρμογή Να υολογιστεί το ολοκλήρωμα : cos sin dd Ολοκληρώνουμε ρώτα ως ρος θεωρώντας το σαν σταθερά (αρατηρούμε ότι το «εσωτερικό» ολοκλήρωμα είναι ως ρος, δηλαδή ρώτα εμφανίζεται το

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου

Ελευθέριος Πρωτοπαπάς. Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Ελευθέριος Πρωτοαάς Εκφωνήσεις και λύσεις των ασκήσεων της Τράεζας Θεμάτων στην Άλγεβρα Β Γενικού Λυκείου Δεκέμβριος 04 Περιεχόµενα o Θέμα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα Θέµα Σελίδα 6950 8 6954 9

Διαβάστε περισσότερα

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ

ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΚΑΤΑΝΑΛΩΤΕΣ, ΠΑΡΑΓΩΓΟΙ ΚΑΙ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΓΟΡΩΝ Κεφάλαιο 7 Οικονοµικά της ευηµερίας! Τα οικονοµικά της ευηµερίας εξετάζουν τους τρόπους µε τους οποίους η κατανοµή των πόρων επηρεάζει την ευηµερία

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΟΜΑ Α Α κ ΙΑΓΩΝΙΣΜΑ Α Α. 1. Να χαρακτηρίσετε Σωστή ή Λάθος καθεµία από τις παρακάτω προτάσεις. α. Η αύξηση του εισοδήµατος των καταναλωτών θα αυξήσει και τη ζήτηση για

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρμόζουμε τις ιδιότητες των ορίων. Ουσιαστικά κάνουμε αντικατάσταση. lim 3x 4x + 8 = 3 1 4 1 + 8 = 3+ 4 + 8 = 9

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρμόζουμε τις ιδιότητες των ορίων. Ουσιαστικά κάνουμε αντικατάσταση. lim 3x 4x + 8 = 3 1 4 1 + 8 = 3+ 4 + 8 = 9 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ υ ΜΑΘΗΜΑΤΟΣ. Να βρείτε τα αρακάτω όρια: α. ( 4 8) + 6 + 8 0 Αλές εριτώσεις Εφαρμόζυμε τις ιδιότητες των ρίων. Ουσιαστικά κάνυμε αντικατάσταση. α. 4 + 8 4 + 8 + 4 + 8 9 8 0 8 4 0 0 + 6

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑΝΑΛΗΠΤΙΚA ΔΙΑΓΩΝΙΣΜΑΤΑ ΕΠΙΜΕΛΕΙΑ: ΝΙΚΟΛΑΟΣ Χ. ΤΖΟΥΜΑΚΑΣ ΟΙΚΟΝΟΜΟΛΟΓΟΣ Κεφάλαιο 1 ο : Βασικές Οικονομικές Έννοιες Επαναληπτική άσκηση στο Κεφάλαιο 1 Δίνεται ο παρακάτω πίνακας

Διαβάστε περισσότερα

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά.

σώμα από τη θέση ισορροπίας του με οριζόντια ταχύτητα μέτρου 4 m/s και με φορά προς τα δεξιά. ΕΙΣΑΓΩΓΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΕ ΕΛΑΤΗΡΙΑ. Ένα σώμα μάζας m = kg βρίσκεται άνω σε λείο δάεδο και είναι δεμένο στο ένα άκρο οριζόντιου ελατηρίου σταθεράς k = N/m, το άλλο άκρο του οοίου είναι στερεωμένο σε κατακόρυφο

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική ερίοδος 05 Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 700 Διάρκεια: ώρες Ύλη: Ταλαντώσεις Καθηγητής: Ονοματεώνυμο: ΘΕΜΑ Α Στις ημιτελείς

Διαβάστε περισσότερα

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας,

ΣΕΙΡΕΣ FOURIER. ο µετασχηµατισµός αυτός δίνεται από την σχέση x = ). Έτσι, χωρίς βλάβη της γενικότητας, ΣΕΙΡΕΣ FOURIER. Η ροσέγγιση συναρτήσεων µέσω ολυωνύµων, την οοία µελετήσαµε στην ροηγούµενη Ενότητα, αρά την αοτελεσµατικότητα και την, σχετική, αλότητά της, αοδεικνύεται ανεαρκής για την εριγραφή/ροσέγγιση

Διαβάστε περισσότερα

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( ) 9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν

Διαβάστε περισσότερα

ιδακτικές προσεγγίσεις του προβλήµατος της σύγκρισης των αριθµών e π και π e στα πλαίσια της Ανάλυσης

ιδακτικές προσεγγίσεις του προβλήµατος της σύγκρισης των αριθµών e π και π e στα πλαίσια της Ανάλυσης ΕΥΚΛΕΙ ΗΣ γ, Τεύχος 60-61, 2003 Ειµόρφωση ιδακτικές ροσεγγίσεις του ροβλήµατος της σύγκρισης των αριθµών και στα λαίσια της Ανάλυσης ηµήτρης Ντρίζος, Γιάννης Τυρλής Μαθηµατικοί.Ε., Μ..Ε.(M.Ed.) τµ. Μαθ/κών

Διαβάστε περισσότερα

Τα Οφέλη του Διεθνούς Εμπορίου και οι Επιπτώσεις ενός Εισαγωγικού Δασμού

Τα Οφέλη του Διεθνούς Εμπορίου και οι Επιπτώσεις ενός Εισαγωγικού Δασμού Τα Οφέλη του Διεθνούς Εμπορίου και οι Επιπτώσεις ενός Εισαγωγικού Δασμού - Σύμφωνα με την αρχή του συγκριτικού πλεονεκτήματος, οι χώρες που αντιμετωπίζουν διαφορετικό κόστος ευκαιρίας στην παραγωγή τωναγαθώνμπορούνναωφεληθούναπότηνεξειδίκευσηκαιτο

Διαβάστε περισσότερα

Μηχανικές Ταλαντώσεις

Μηχανικές Ταλαντώσεις Μηχανικές Ταλαντώσεις . Περιοδικά φαινόµενα - Γραµµική αρµονική ταλάντωση Περιοδικά ονοµάζονται τα φαινόµενα ου εαναλαµβάνονται µε τον ίδιο τρόο σε ίσα χρονικά διαστήµατα. Π.χ. οµαλή κυκλική κίνηση, χτύοι

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ 2004

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ 2004 ΑΡΧΕΣ ΟΙΟΝΟΜΙΗΣ ΘΕΩΡΙΑΣ ΛΥΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΗΣ ΙΑ ΟΛΕΣ ΤΙΣ ΑΤΕΥΘΥΝΣΕΙΣ 2004 ΕΦΩΝΗΣΕΙΣ ΟΜΑ Α Α ια τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι

Διαβάστε περισσότερα

κινητού και να βρούµε ποιο από τα δυο προηγείται, πρέπει να ακολουθήσουµε τα εξής βήµατα:

κινητού και να βρούµε ποιο από τα δυο προηγείται, πρέπει να ακολουθήσουµε τα εξής βήµατα: Ποιο µέγεθος ροηγείται ανάµεσα σε δυο µεγέθη ου αρουσιάζουν διαφορά φάσης µεταξύ τους Προκειµένου να καθορίσουµε τη διαφορά φάσης ανάµεσα σε δύο φυσικά µεγέθη ενός κινητού και να βρούµε οιο αό τα δυο ροηγείται,

Διαβάστε περισσότερα

Διάκριση Τιμών 2 ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) - Η διάκριση τιμών 3 ου βαθμού προϋποθέτει ότι η μονοπωλιακή

Διάκριση Τιμών 2 ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) - Η διάκριση τιμών 3 ου βαθμού προϋποθέτει ότι η μονοπωλιακή Διάκριση Τιμών ου Βαθμού: Μη Γραμμική Τιμολόγηση (Nonlinear Pricing) -H διάκριση τιμών 1 ου βαθμού προϋποθέτει ότι η μονοπωλιακή επιχείρηση γνωρίζει τις ατομικές συναρτήσεις ζήτησης όλων των καταναλωτών.

Διαβάστε περισσότερα

Μοριακά φαινόµενα µεταφοράς σε διαλύµατα βιολογικών υγρών

Μοριακά φαινόµενα µεταφοράς σε διαλύµατα βιολογικών υγρών Μοριακά φαινόµενα µεταφοράς σε διαλύµατα βιολογικών υγρών Το ιξώδες και η σηµασία του Οι ελκτικές δυνάµεις van der Waals, οι οοίες αντιτίθενται στη σχετική µετατόιση γειτονικών µορίων, είναι υεύθυνες για

Διαβάστε περισσότερα

Πλεόνασμα του Καταναλωτή, Πλεόνασμα του Παραγωγού και η Αποτελεσματικότητα της Ανταγωνιστικής Αγοράς - Η αλληλεπίδραση της συνολικής ζήτησης και της

Πλεόνασμα του Καταναλωτή, Πλεόνασμα του Παραγωγού και η Αποτελεσματικότητα της Ανταγωνιστικής Αγοράς - Η αλληλεπίδραση της συνολικής ζήτησης και της Πλεόνασμα του Καταναλωτή, Πλεόνασμα του Παραγωγού και η Αποτελεσματικότητα της Ανταγωνιστικής Αγοράς - Η αλληλεπίδραση της συνολικής ζήτησης και της προσφοράς προσδιορίζει την τιμή και την ποσότητα ισορροπίας

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α

ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α ΠΡΟΤΕΙΝΟΜΕΝΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟ ΜΑΘΗΜΑ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ Α Στις προτάσεις, από Α.1. μέχρι και Α.5., να γράψετε τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό την ένδειξη Σωστό, αν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑΔΑ ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

4.3 ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ

4.3 ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ ΜΡΟΣ Β 4. ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ 81 4. ΟΓΚΟΣ ΠΡΙΣΜΑΤΟΣ ΚΑΙ ΚΥΛΙΝΔΡΟΥ Μονάδες μέτρησης όγκου Ως µονάδα µέτρησης όγκου θεωρούµε έναν κύο µε ακµή µήκους 1 µέτρο(m). Ο όγκος του ισούται µε 1 κυικό µέτρο

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική ερίοδος 05-6 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 7-0-05 Διάρκεια: ώρες Ύλη: Κρούσεις - Ταλαντώσεις Καθηγητής: Ονοματεώνυμο:

Διαβάστε περισσότερα

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25

Διάλεξη 6. Μονοπωλιακή Συμπεριφορά VA 25 Διάλεξη 6 Μονοπωλιακή Συμπεριφορά VA 25 1 Πώς πρέπει να τιμολογεί ένα μονοπώλιο; Μέχρι στιγμής το μονοπώλιο έχει θεωρηθεί σαν μια επιχείρηση η οποία πωλεί το προϊόν της σε κάθε πελάτη στην ίδια τιμή. Δηλαδή

Διαβάστε περισσότερα

1 ου πακέτου. Βαθµός πακέτου

1 ου πακέτου. Βαθµός πακέτου ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Ακαδηµαϊκό έτος 2011-2012 Τµήµα Οικονοµικών Επιστηµών Χειµώνας-Άνοιξη Μάθηµα: ηµόσια Οικονοµική ιδασκαλία: Βασίλης Θ. Ράπανος Γεωργία Καπλάνογλου Μετά και το 4 ο πακέτο, πρέπει να στείλετε

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 1, Στρόβολος 3, Λευκωσία Τηλ. 357-37811 Φαξ: 357-3791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 13 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Πέμτη, 3/5/13

Διαβάστε περισσότερα

2.5 Τιµολόγηση Συµβολαίων Μελλοντικής Εκπλήρωσης και ικαιωµάτων Προαίρεσης επί Χρη- µατοοικονοµικών Περιουσιακών Στοιχείων

2.5 Τιµολόγηση Συµβολαίων Μελλοντικής Εκπλήρωσης και ικαιωµάτων Προαίρεσης επί Χρη- µατοοικονοµικών Περιουσιακών Στοιχείων Η Αγορά Ξένου Συναλλάγµατος 6.5 ιµολόγηη Συµβολαίων Μελλοντικής Εκλήρωης και ικαιωµάτων Προαίρεης εί Χρη- µατοοικονοµικών Περιουιακών Στοιχείων ιµολόγηη υµβολαίων µελλοντικής εκλήρωης * : όου: F0, 0 0

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ Α

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ Α Για τις προτάσεις από Α1 μέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς και δίπλα σε κάθε αριθμό τη λέξη Σωστό, αν η πρόταση είναι σωστή, και

Διαβάστε περισσότερα

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

3.5 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1. ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ασκσεις σχολικού βιβλίου σελίδας 88-89 A Oµάδας 1.i) Να λύσετε την εξίσωση ηµx = 0 ηµx = 0 ηµx = ηµ0 x = k + 0 x = k + 0, k Z Σηµείωση: Οι λύσεις αυτές διαφορετικά

Διαβάστε περισσότερα

(Μονάδες 15) (Μονάδες 12)

(Μονάδες 15) (Μονάδες 12) ΑΛΓΕΒΡΑ Β Λυκε ί ου τ ράε ζ αθε μάτ ων( 1ηέ κδοση) θέ μαδε ύτ ε ροκαιτ έ τ αρτ ο Κόμβ οςατ σι οούλου01415 δης Ει μέ λε ι α:εμμανουήλκ.σκαλί Αντ ώνηςκ.αοστ όλου Άσκηση 1 α) Να κατασκευάσετε ένα γραμμικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α

ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και A5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό,

Διαβάστε περισσότερα

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας

1. Τριγωνομετρικοί αριθμοί οξείας γωνίας v.5 «Αυτό το ρόβλημα, τούτ η μεγάλη συμφορά για να λυθεί χρειάζεται, δίχως αμφιβολία, όως κοιτάζω α τη δική σου την λευρά, να δεις κι εσύ α τη δική μου τη γωνία».. Τριγωνομετρικοί αριθμοί οξείας γωνίας

Διαβάστε περισσότερα

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ. 1.53 Α. Υλικό σηµείο 1 εκτελεί Α.Α.Τ. Τη χρονική στιγµή t = 0 το υλικό σηµείο

ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ. 1.53 Α. Υλικό σηµείο 1 εκτελεί Α.Α.Τ. Τη χρονική στιγµή t = 0 το υλικό σηµείο ΣΥΝΘΕΣΗ ΛΝΩΣΕΩΝ.5. Υλικό σηµείο εκτελεί... η χρονική στιγµή t = 0 το υλικό σηµείο βρίσκεται στη θέση µε αοµάκρυνση x = +, ενώ ο ρυθµός µεταβο- λής της κινητικής του ενέργειας τη στιγµή αυτή είναι θετικός.

Διαβάστε περισσότερα

ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013

ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013 12 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΟΘ : ΘΕΜΑΤΑ ΑΣΚΗΣΕΙΣ ΕΞΕΤΑΣΕΩΝ 2000 2013 ΚΕΦΑΛΑΙΟ 5ο (µε 2ο, 3ο και 4ο) ΗΜΕΡΗΣΙΑ 9/2000 ΗΜΕΡΗΣΙΑ 6/2000 ΕΣΜΕΣ 2000 ΕΣΜΕΣ 1998 28. ίνονται οι συναρτήσεις ζήτησης και προσφοράς

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑΔΟΣ ΠΕ 04 ΦΥΣΙΚΩΝ ΕΙΔΙΚΟΤΗΤΑ ΦΥΣΙΚΩΝ. EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο: Φυσική»

ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2002 ΚΛΑΔΟΣ ΠΕ 04 ΦΥΣΙΚΩΝ ΕΙΔΙΚΟΤΗΤΑ ΦΥΣΙΚΩΝ. EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο: Φυσική» ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 00 ΚΛΑΔΟΣ ΠΕ 04 ΦΥΣΙΚΩΝ ΕΙΔΙΚΟΤΗΤΑ ΦΥΣΙΚΩΝ EΞΕΤΑΣΗ ΣΤΗΝ ΠΡΩΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ «Γνωστικό Αντικείμενο:

Διαβάστε περισσότερα

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

(α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως: http://elearn.maths.gr/, maths@maths.gr, Τηλ: 6979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΔΕΟ -: Άσκηση I. (α) Από τους κανόνες σύνθετης παραγώγισης δύναμης συναρτήσεως και λογαρίθμου συναρτήσεως:

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΟΛΩΝ ΤΩΝ ΘΕΜΑΤΩΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΘΕΜΑΤΑ 16968, 1765, 17656, 17663, 17664, 17681, 1769, 17699, 17704, 1775, 17736, 17739, 17741 ΘΕΜΑΤΑ 4 17837, 17838,

Διαβάστε περισσότερα

www.onlineclassroom.gr

www.onlineclassroom.gr ΜΕΡΟΣ Β Ερωτήσεις πολλαπλών επιλογών Στις παρακάτω 10 ερωτήσεις, να γράψετε τον αριθμό της κάθε ερώτησης στην εργασία σας και δίπλα του το γράμμα που αντιστοιχεί στη σωστή απάντηση. Η κάθε σωστή απάντηση

Διαβάστε περισσότερα

Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι

Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι Θ.Ε. ΔΕΟ 13 Ποσοτικές Μέθοδοι 2η Γραπτή Εργασία: ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΗ 1 (Μονάδες 23) Το συνολικό κόστος μιας επιχείρησης είναι TC=550 ευρώ όταν η παραγωγή είναι Q=100 τεμάχια και το σταθερό κόστος είναι FC=50

Διαβάστε περισσότερα

Οικονομική της Διοίκησης Ι. Μια σειρά από Διαλέξεις- ενότητα -3- Γ. Ξανθός

Οικονομική της Διοίκησης Ι. Μια σειρά από Διαλέξεις- ενότητα -3- Γ. Ξανθός Οικονομική της Διοίκησης Ι Μια σειρά από Διαλέξεις- ενότητα -3- Γ. Ξανθός Έννοιες (1): Μέση και Οριακή Παραγωγικότητα ( σε συνέχεια της ενότητας -2-) Παραγωγικότητα είναι λέξη μαγική? Οι οικονομολόγοι

Διαβάστε περισσότερα

εάν είναι ο µοναδικός πωλητής του προϊόντος Το προϊόν της, δεν έχει στενά υποκατάστατα.

εάν είναι ο µοναδικός πωλητής του προϊόντος Το προϊόν της, δεν έχει στενά υποκατάστατα. Μονοπώλιο Μια επιχείρηση θεωρείται ότι ένα µονοπώλιο, εάν είναι ο µοναδικός πωλητής του προϊόντος Το προϊόν της, δεν έχει στενά υποκατάστατα ρ ης, χ. Πως δηµιουργούνται τα µονοπώλια Ο βασικός λόγος ύπαρξης

Διαβάστε περισσότερα

ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗ ΘΕΩΡΙΑ-ΜΑΘΗΜΑ ENATO ΤΙΜΕΣ & ΠΑΡΑΓΩΓΗ ΣΤΟ ΜΟΝΟΠΩΛΙΟ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Ακαδηµαϊκό Έτος 2011-2012 ΕΠΙΧ Μικροοικονοµική ιαφάνεια 1 Χαρακτηριστικά του

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ηµήτρης Αθανασίου Φυσικός ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΣΥΝΘΕΣΗ ΤΑΛΑΝΤΩΣΕΩΝ Ερωτήσεις ολλαλής ειλογής.περιοδικά

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ 2005

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ 2005 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Γ ΛΥΚΕΙΟΥ 2005 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό,

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΤΩΝ ΕΠΙΛΟΓΩΝ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ I

ΘΕΩΡΙΑ ΤΩΝ ΕΠΙΛΟΓΩΝ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ I ΘΕΩΡΙΑ ΤΩΝ ΕΠΙΛΟΓΩΝ ΤΟΥ ΚΑΤΑΝΑΛΩΤΗ I Τέσσερα σηµαντικά στοιχεία: Το εισόδηµα του καταναλωτή Οι τιµές των αγαθών Οι ροτιµήσεις των καταναλωτών Η υ όθεση ότι ο καταναλωτής λαµβάνει α οφάσεις ου µεγιστο οιούν

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΟΜΑΔΑ Α ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας, δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 Μάθηµα: ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ Ηµεροµηνία και ώρα εξέτασης: ευτέρα, 9 Ιουνίου 2008

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 22/01/2012 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 22/01/2012 ΑΠΑΝΤΗΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / Γ ΛΥΚΕΙΟΥ ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 22/01/2012 ΑΠΑΝΤΗΣΕΙΣ ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α.1 μέχρι και Α.5 να γράψετε τον αριθμό της καθεμιάς και δίπλα

Διαβάστε περισσότερα

ΕΑΠ / ΘΕ ΠΛΗ22 ΒΑΣΙΚΑ ΖΗΤΗΜΑΤΑ ΙΚΤΥΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΝΑΛΛΑΚΤΙΚΟ Ι ΑΚΤΙΚΟ ΥΛΙΚΟ ΣΤΙΣ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ (DRAFT)

ΕΑΠ / ΘΕ ΠΛΗ22 ΒΑΣΙΚΑ ΖΗΤΗΜΑΤΑ ΙΚΤΥΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΝΑΛΛΑΚΤΙΚΟ Ι ΑΚΤΙΚΟ ΥΛΙΚΟ ΣΤΙΣ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ (DRAFT) ΕΑΠ / ΘΕ ΠΛΗ ΒΑΣΙΚΑ ΖΗΤΗΜΑΤΑ ΙΚΤΥΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΝΑΛΛΑΚΤΙΚΟ Ι ΑΚΤΙΚΟ ΥΛΙΚΟ ΣΤΙΣ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ (DRAT Νικόλαος ηµητρίου ρ.ηλεκτρολόγος Μηχανικός ΣΕΠ, ΘΕ ΠΛΗ ΕΑΠ/ΠΛΗ αό 75 ΕΙΣΑΓΩΓΗ... 4 ΣΧΕ ΙΑΣΗ ΚΥΜΑΤΟΜΟΡΦΗΣ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΚΤΟ. Ερωτήσεις

ΚΕΦΑΛΑΙΟ ΕΚΤΟ. Ερωτήσεις ΚΕΦΑΛΑΙΟ ΕΚΤΟ 1. 0) ζ ( ) ε. (ιιι) β. (ιν) β και δ. (ν) β. Ερωτήσεις Ασκήσεις 1. Από τις αγοραίες συναρτήσεις ζήτησης και προσφοράς προκύπτει η τιιιή ισορροπίας του αγαθού: Qs = Qd => 4 + 4Ρ = 180-18Ρ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013. Ηµεροµηνία: Κυριακή 21 Απριλίου 2013 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013. Ηµεροµηνία: Κυριακή 21 Απριλίου 2013 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 1 Αριλίου 013 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις αό Α1-Α4 να γράψετε στο τετράδιο

Διαβάστε περισσότερα

Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η πρόταση είναι

Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η πρόταση είναι ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α1 µέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ - ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ: ΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ http://mathhmagic.blogspot.com/ Οι τριγωνομετρικοί αριθμοί (Εαναλητικά) Ε ί εδη γωνία είναι η κλίση µεταξύ δυο

Διαβάστε περισσότερα

1. Επιλογή Διαφημιστικής Δαπάνης στη Μονοπωλιακή Αγορά

1. Επιλογή Διαφημιστικής Δαπάνης στη Μονοπωλιακή Αγορά 1. Επιλογή Διαφημιστικής Δαπάνης στη Μονοπωλιακή Αγορά 1Α. Δελεαστική Διαφήμιση στη Μονοπωλιακή Αγορά - Έστω ότι η αγορά ενός αγαθού είναι μονοπωλιακή και η διαφήμιση του προϊόντος είναι δελεαστική δηλαδή

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ 2008

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ 2008 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΙΛΟΓΗΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α Α Για τις προτάσεις από Α.1 µέχρι και Α.5 να γράψετε στο τετράδιό σας τον αριθµό της καθεµιάς και δίπλα σε κάθε αριθµό τη λέξη Σωστό, αν η πρόταση

Διαβάστε περισσότερα

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις

Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις Μία σύντομη εισαγωγή στην Τριγωνομετρία με Ενδεικτικές Ασκήσεις. Ονομασίες Ορισμοί Ο τριγωνομετρικός κύκλος έχει ακτίνα R. Αρχή μέτρησης των τόξων (γωνιών) είναι το Α, είτε κατά τη θετική φορά (αριστερόστροφα)

Διαβάστε περισσότερα

Η ΖΗΤΗΣΗ, Η ΠΡΟΣΦΟΡΑ ΚΑΙ Η ΑΓΟΡΑ

Η ΖΗΤΗΣΗ, Η ΠΡΟΣΦΟΡΑ ΚΑΙ Η ΑΓΟΡΑ Η ΖΗΤΗΣΗ, Η ΠΡΟΣΦΟΡΑ ΚΑΙ Η ΑΓΟΡΑ Στις σύγχρονες δυτικές κοινωνίες, αραγωγή αγαθών κυρίως µέσω του µηχανισµού της αγοράς ΑΓΟΡΑ (market): Ένα σύνολο διακανονισµών µε τους ο οίους αγοραστές και ωλητές έρχονται

Διαβάστε περισσότερα

Εξετάσεις Θεωρίας και Πολιτικής Διεθνούς Εμπορίου Ιούλιος 2007. Όνομα: Επώνυμο: Επιθυμώ να μην περάσω το μάθημα εάν η βαθμολογία μου είναι του

Εξετάσεις Θεωρίας και Πολιτικής Διεθνούς Εμπορίου Ιούλιος 2007. Όνομα: Επώνυμο: Επιθυμώ να μην περάσω το μάθημα εάν η βαθμολογία μου είναι του Εξετάσεις Θεωρίας και Πολιτικής Διεθνούς Εμπορίου Ιούλιος 2007 Α Όνομα: Επώνυμο: Αριθμός Μητρώου: Έτος: Επιθυμώ να μην περάσω το μάθημα εάν η βαθμολογία μου είναι του 1. Η χώρα Α έχει 10.000 μονάδες εργασίας

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΙΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΑ Α Στις παρακάτω προτάσεις, από Α1 μέχρι και Α5 να γράψετε στο τετράδιό σας τον αριθμό της καθεμίας και δίπλα του τη λέξη «Σωστό», αν η πρόταση

Διαβάστε περισσότερα

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος

1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η απόσταση του σώµατος 1. Ένα σώµα ταλαντώνεται κατακόρυφα στο άκρο ενός ελατηρίου. Η αόσταση του σώµατος αό το έδαφος (σε cm), δίνεται αό την συνάρτηση f(t)=1ηµ t +13, όου t ο χρόνος σε ώρες. α) Να βρείτε την ερίοδο της ταλάντωσης.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 22 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑ 22 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ ΜΑΘΗΜΑ.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ορισµός της συνέχειας Πράξεις µε συνεχείς συναρτήσεις Συνέχεια συνάρτησης σε διάστηµα Θεωρία Ασκήσεις. Ορισµός Συνάρτηση f λέγεται συνεχής σε σηµεί όταν f () = f ( ).

Διαβάστε περισσότερα

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Κεφάλαιο 2ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Κεφάλαιο ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Ερωτήσεις του τύου «Σωστό - Λάθος». * Αν = α + βi, α, β R και = 0, τότε α = 0 και β = 0. Σ Λ. * Αν = α + βi και αβ 0, τότε = α β i. Σ Λ. * Αν = κ + λi κ, λ R, τότε Re () =

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας

1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Εφαρμογές Θεωρίας 1. Κατανομή πόρων σε συνθήκες στατικής αποτελεσματικότητας Έστω ότι η συνάρτηση ζήτησης για την κατανάλωση του νερού ενός φράγματος (εκφρασμένη σε ευρώ) είναι q = 12-P και το οριακό κόστος

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ (2009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ (2009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ (009) ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ ΟΜΑΔΑ Α Α.1. Σωστό. Α.. Λάθος. Ο πληθωρισμός πλήττει όλα τα άτομα που το χρηματικό τους εισόδημα είναι σταθερό ή αυξάνεται

Διαβάστε περισσότερα

5 Ταλαντώσεις. Ταλαντώσεις - κυμάνσεις. Ταλάντωση ορισμός Σύστημα μάζας ελατηρίου Απλό εκκρεμές Φυσικό εκκρεμές Βηματισμός

5 Ταλαντώσεις. Ταλαντώσεις - κυμάνσεις. Ταλάντωση ορισμός Σύστημα μάζας ελατηρίου Απλό εκκρεμές Φυσικό εκκρεμές Βηματισμός 5 Ταλαντώσεις Ταλάντωση ορισμός Σύστημα μάζας ελατηρίου Αλό εκκρεμές Φυσικό εκκρεμές Βηματισμός Μαρία Κατσικίνη aii@auh.gr uer.auh.gr/aii Ταλαντώσεις - κυμάνσεις Ταλάντωση είναι μια εριοδική κίνηση, δηλαδή

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΕΠΑ.Λ. (ΟΜΑ Α Β ) 2010 ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση

Διαβάστε περισσότερα

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P

Α 5 5 Β 8 2. β) Qd = Qd+15%Qd= 10-P +0,15*(10-P)=10-P+1,5-1,5P=11,5-1,15P ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΚΕΦΑΛΑΙΟ 2 Να λυθούν οι παρακάτω ασκήσεις: 1. Αν η τιµή των Ιταλικών επίπλων µειωθεί τι θα συµβεί στη ζήτηση α) των Ιταλικών επίπλων και β) των Ελληνικών επίπλων. 2. Αν η τιµή του υγραερίου

Διαβάστε περισσότερα

2 η ενότητα ΤΑ ΤΡΑΝΖΙΣΤΟΡ ΣΤΙΣ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ

2 η ενότητα ΤΑ ΤΡΑΝΖΙΣΤΟΡ ΣΤΙΣ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ ρ. Λάμρος Μισδούνης Καθηγητής 2 η ενότητα ΤΑ ΤΡΑΝΖΙΣΤΟΡ ΣΤΙΣ ΥΨΗΛΕΣ ΣΥΧΝΟΤΗΤΕΣ T.E.I. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. 1 Περιεχόμενα 2 ης ενότητας Στην δεύτερη ενότητα θα ασχοληθούμε με

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1

ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ. Κεφάλαιο 8. Οικονομικά των Επιχειρήσεων. Ε. Σαρτζετάκης 1 ΔΙΑΦΟΡΙΣΜΟΣ ΤΙΜΩΝ Κεφάλαιο 8 Ε. Σαρτζετάκης Διαφορισμός τιμών Τιμολόγησηότανηεπιχείρησηέχειισχυρήθέσηστηναγορά: διαφορισμός τιμών Οι επιχειρήσεις οι οποίες έχουν σε κάποιο βαθμό δύναμη σε κάποια αγορά

Διαβάστε περισσότερα

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ

ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΟΜΑ Α Α κ ΙΑΓΩΝΙΣΜΑ Β Α.1. Να χαρακτηρίσετε ΣΩΣΤΗ ή ΛΑΘΟΣ καθεµία από τις παρακάτω προτάσεις. Α.1.1. Η ουσία του οικονοµικού προβλήµατος των κοινωνιών οφείλεται στην έλλειψη χρηµατικού

Διαβάστε περισσότερα

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN

3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HECKSCHER-OHLIN 3. ΠΟΡΟΙ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ: ΥΠΟΔΕΙΓΜΑ HESHER-OHIN Υπάρχουν δύο συντελεστές παραγωγής, το κεφάλαιο και η εργασία τους οποίους χρησιμοποιεί η επιχείρηση για να παράγει προϊόν Y μέσω μιας συνάρτησης παραγωγής

Διαβάστε περισσότερα

"ΦΥΣΙΚΕΣ ΜΕΘΟΔΟΙ" ΕΠΙΛΥΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ

ΦΥΣΙΚΕΣ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ "ΦΥΣΙΚΕΣ ΜΕΘΔΙ" ΕΠΙΛΥΣΗΣ ΜΘΗΜΤΙΚΩΝ ΠΡΛΗΜΤΩΝ Ελατήρια σταερής τάσης (Constnt tension springs) Ένα ελατήριο του οοίου η τάση είναι ανεξάρτητη αό την ειμήκυνση ή τη συσείρωσή του ονομάζεται ελατήριο σταερής

Διαβάστε περισσότερα

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ

Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ ΚΕΦΑΛΑΙΟ ΤΕΤΑΡΤΟ Η ΠΡΟΣΦΟΡΑ ΤΩΝ ΑΓΑΘΩΝ 1. Εισαγωγή Όπως έχουμε τονίσει, η κατανόηση του τρόπου με τον οποίο προσδιορίζεται η τιμή ενός αγαθού απαιτεί κατανόηση των δύο δυνάμεων της αγοράς, δηλαδή της ζήτησης

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÓÕÍÅÉÑÌÏÓ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÓÕÍÅÉÑÌÏÓ ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ / ΕΠΙΛΟΓΗΣ Ηµεροµηνία: Παρασκευή 17 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΟΜΑ Α ΠΡΩΤΗ Α.1 Να χαρακτηρίσετε τις προτάσεις που ακολουθούν,

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική

Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Πρόγραμμα Σπουδών: Διοίκηση Επιχειρήσεων & Οργανισμών Θεματική Ενότητα: ΔΕΟ 34 Οικονομική Ανάλυση & Πολιτική Γραπτή Εργασία # 4 (Δημόσια Οικονομική) Ακαδ. Έτος: 2006-7 Οδηγίες

Διαβάστε περισσότερα

ΟΜΑ Α ΠΡΩΤΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΟΜΑ Α ΠΡΩΤΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΤΕΤΑΡΤΗ 25 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΓΙΑ ΟΛΕΣ ΤΙΣ ΚΑΤΕΥΘΥΝΣΕΙΣ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΛΟΓΟΙ ΥΠΑΡΞΗΣ ΤΟΥ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΚΑΙ ΘΕΩΡΙΑ ΑΠΟΛΥΤΟΥ ΚΑΙ ΣΥΓΚΡΙΤΙΚΟΥ ΠΛΕΟΝΕΚΤΗΜΑΤΟΣ

ΕΝΟΤΗΤΑ 1: ΛΟΓΟΙ ΥΠΑΡΞΗΣ ΤΟΥ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΚΑΙ ΘΕΩΡΙΑ ΑΠΟΛΥΤΟΥ ΚΑΙ ΣΥΓΚΡΙΤΙΚΟΥ ΠΛΕΟΝΕΚΤΗΜΑΤΟΣ Πρόκειται για τµήµα των σηµειώσεων (περίπου το 20%) για το test δεξιοτήτων στην ύλη της διεθνούς οικονοµικής ΕΝΟΤΗΤΑ 1: ΛΟΓΟΙ ΥΠΑΡΞΗΣ ΤΟΥ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΚΑΙ ΘΕΩΡΙΑ ΑΠΟΛΥΤΟΥ ΚΑΙ ΣΥΓΚΡΙΤΙΚΟΥ ΠΛΕΟΝΕΚΤΗΜΑΤΟΣ

Διαβάστε περισσότερα

Άριστες κατά Pareto Κατανομές

Άριστες κατά Pareto Κατανομές Άριστες κατά Pareto Κατανομές - Ορισμός. Μια κατανομή x = (x, x ) = (( 1, )( 1, )) ονομάζεται άριστη κατά Pareto αν δεν υπάρχει άλλη κατανομή x = ( x, x ) τέτοια ώστε: U j( x j) U j( xj) για κάθε καταναλωτή

Διαβάστε περισσότερα

Προσφορά και Ζήτηση Υπηρεσιών Υγείας

Προσφορά και Ζήτηση Υπηρεσιών Υγείας Προσφορά και Ζήτηση Υπηρεσιών Υγείας ΤΟ ΟΙΚΟΝΟΜΙΚΟ ΠΡΟΒΛΗΜΑ Τι θα παραχθεί Πως θα παραχθεί Σε τι ποσότητα Μέθοδοι και διαδικασίες παραγωγής Μελέτες για τον προσδιορισμό των αναγκών Προσδιορισμός Αναγκών

Διαβάστε περισσότερα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα Θέμ: Ολοκληρώμτ Υολογισμός ολοκληρωμάτων Μέθοδοι ολοκλήρωσης Εμβδά Η συνάρτηση ου ορίζετι ό ολοκλήρωμ Ενλητικές σκήσεις ολοκληρωμάτων ΥΠΟΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΜΕ ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα