MATRICELE DE RIGIDITATE ALE ELEMENTELOR FINITE UZUALE SOLID BRICK, ÎNVELIŞ SHELL ŞI BARE BEAM
|
|
- ÔΠοσειδῶν Παπαφιλίππου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 5. MARICEE DE RIGIDIAE AE EEMEEOR FIIE UZUAE SOID RICK, ÎVEIŞ SHE ŞI ARE EAM Enu hxada cu o nodu (RICK) A. Caacc nca a nuu RICK (Fg..):. n oaac, dfn d o nodu I,, K,, M,, O, P ca bu dcaa în nu ca în Fg...a;. a gad d ba nod (G ), daă dcń X, Y ş Z (UX, UY, UZ);. a foa unu hxadu oaca ş oa f încăca cu foń a nodu; a Fg..: Enu RICK b 4. nu oa foo nu odaa ă D d nun nu aa oo ş oc donu d anaă, adcă ac n oa f conda unu dn c a gna u d n fn. Cu ajuou acu n fn o anaa oa coonn un ucu, f ba, ăc au bocu. ouş, dn condn a dnuno foa a a odo cu n fn, ac n fn fooş cu căd nu odaa ucuo conda bocu (adcă nă c dnun goc coaab); 5. aca d gda în coodona goba : K [ ] [ D][ ] dv, (.) V în ca: [ ] [ ][ ] ; (.) aca dao funcńo d foă, a xa aco d da : x [ ] x x (.)
2 FuncŃ d foă în coodona naua un: (.4a) ( )( ) ( )( ) ( )( ) 9 (.4b) aca d gda (aca) a aauu [D] [ ] ( )( ) c S E D (.5) 6. uua nu dnu RICK.. Da ga d n. u nuu fn, adcă nu obńna ac d gda o foo funcń d foă (.4a), au, nu cşa c, o foo ş funcń d foă (.4b), ca în ca înan d aaba aca d gda a nuu condnaă a gad d ba counăoa co o nodu;. odnu d nga a ac d gda a nuu, I (nu oga d fă ag auoa, au 4); C. Da d aau nuu. oduu d aca ongudna - E;. cofcnu u Poon - nu; (). cofcnu d daa că - α; (4). dnaa aauu -DES; (5). accańa gaaonaă - g au guaa cfcă - γ ρg. D. Da d încăcă. bocaj a anań în dcńa X X, ş în dcńa Y Y ş în dcńa Z - Z;. foń a nodu în dcńa X FX, Y - FY ş Z - FZ; (). daă u oc dcń; (4). au în nodu au în n; (5). foń d nń gna d câu gaańona (nu ca un nca ca da d na ρ, g dcńa ş nu gaań), au gna d şcaa d oań unfoă (nu ca bu ca axa d oań ş a unghuaă ω);
3 (6) un dbu na au conan fń nuu, ca dnfcă n nu d a a 6 ( Fg...a). Ac un (au foń dbu na) chaaă a nodu nuu cu foń concna ( Fg.. nu ca ngjaă on); E. Rua ana. daă noda - UX, UY ş UZ (noa ş DX, DY ş DZ);. nun în u goba d ax - SX, SY, SZ, SXY SYZ, SXZ, adcă nou co a nuno a nodu nuu, cu ş în cnu u, nun nca S, S, S ş unghu counăoa d ona ( Fg...b, în ca -au fgua doa nun noa). nun în-un nod coun a uo n nu uă ga. Pnu cocaa uao, d obc, cug a da nuno în nodu foond d od, ca a ă d făă a Ńn aa d ou no cn ncuă în ogau d cacu ( ańa 9.6.a). nun dn-un unc P a nuu dnă cu ańa: SX SY SZ [ D][ ]{ P U }. (.6) SXY SYZ SXZ S nńonaă că nu cacuu nuno în gna fooş aă hncă: nun dnă în unc Gau (und donaă că o d cacu a nuno un n) ş ao aca xandaă a nodu foond funcń d foă.4a. Pnu n hxadc uńn doona, adcă aoa d un cub, acc nun dna dc în nodu concd cu c xanda dn unc Gau. DfnŃ a a aa nu n fn ca fooc funcń d foă una (.4b). Pogau dun d aga oduu în ca cacuaă nun n. nun nca în nodu o cacua odaă cu cacuu nuno în n au nun coonn a nouu nun o da a nodu ş ao o cacua nun nca S > S > S în nodu. Pogau daă nun coonn ş ao cacuaă nun nca. nuna chana, on M - Sch dna cu aa (9..) (). dfoań cfc dn n, în-un unc P cacuaa cu ańa: { } [ ]{ P U } ε (.7) (4). acun dn gau cu xou.. Da gna d dca E. Da d aa MA MAI E nu. Da d oăń no PROP PROPI IPE I 4. Da d nodu I X Y Z X Y Z 5. Da d n EI I K M O P MA PROP
4 6. Da d încăcă cu foń în nodu F IF FX FY FZ G. Pogau d ucu RICK.EXE Ac oga a fo concu ă uc cu nońun (da) d a unc -E nncu în aan. Enu h cu o nodu (SHE) A. Caacc nca a nuu SHE (Fg..):. dfn d o nodu I,, K,, M,, O, P ca bu dcaa confo fgu. ş nă o foua oaacă;. a şa gad d ba nod (G 6), daă dcń X, Y ş Z (UX, UY, UZ) ş o în juu axo X, Y, Z (RoX, RoY, RoZ) aşa cu nă în fgua.;. a foa unu aua an oaca - conńnu în anu x a uu d fnńă oca ga d n, a goa conană, au o f d au cub. Enu oa f încăca cu foń ş on în nodu aoa a u d fnńă goba XYZ, cu ş cu un noa c şa fń aca cu -6. Fg..: Enu SHE Fg..: Gad d ba ş încăcă noda a nuu SHE Pun condă o dacă nă în n. Fouaa ocă a nuu condă uafańa dană ( Mdd ufac ) fc ană, dc aba d a ana noduc o în fouaa ac d gda. FaŃa oă (obńnuă n gua şuubuu d acaă nuoă I K - ) oaă dnua d fańă uoaă au o a fańa ngaă oaă dnua d fańă nfoaă au oo ; 4. nu oa foo nu odaa înşuo ş ăco d go conană ońun, adcă dn coonnńa uno ucu ondn aa dn ab, conda aa oo;
5 5. aca d gda în coodona oca obńn n uauna ac d gda d bană cu aca d gda d acă (încoo) ca în fgua.. S nńonaă că fouaa ac d gda bană nu conńn gad d ba ϕ ( dng d fd) aca fnd nodu în-un od aoxa n ndu ac [k ]. Maca d gda a nuu în coodona oca oa c boc [ k ] [ ] [ ] u [ ] { } [ ] [ ] [ ] k u k ϕ, (.) w ϕ x [ ] [ ] [ k ] ϕ în ca { u u u } ş.a..d. un gad d ba noda în u d fnńă oca x. u En Mbană En Pacă En Sh Fg..: Foaa nuu an Sh C ac nnu dn (.) obńn dn ań: k D dv, (.) ş [ ] D ş [ ] în ca [ ] daăo. [ ] [ ] V [ ] [ ][ ] β β β β β β β β β β β β β β β β β β β β β β β β β β β β k αev, (.) β β β β β β β β β β β β β β β β β β β β β β β β β β β β k D dv, (.4) [ ] [ ] V [ ] [ ][ ] obńn n daa funcńo d foă, aând în d aoxań câuu D un ac d gda a aauu, na a jo, a E oduu d aca ongudna, V ouu nuu fn,,. Maca [ ] k a fo aaă af încâ ă înău nguaaa ac [ ] β, a cofcnu α -a a 7 k ş ă oaă na şcă d co gd a a gad d ba o noa a nu fn. FuncŃ d foă un dfn în coodona naua ξ ş η: ( ξ) ( η) ( ξ η) ; 5 ( ξ )( η) ; 4 ( ξ) ( η) ( ξ η) ; 6 ( ξ) ( η ) ; 4 (.5)
6 ( ) ( ) ( ) ξ η η ξ 4 ; ( )( ) η ξ 7 ; ( ) ( ) ( ) ξ η η ξ 4 4 ; ( ) ( ) η ξ. Mac d gda (aca) a aauu un [ ] E D ; [ ] G G G E E E E D, (.6) în ca ( ) E G oduu d aca ana a aauu; cofcnu u Poon a 5,,; ax A un cofcn d cocń nu dbuńa aabocă a nuno d fofca ca condă conană goa nuu; A aa nuu fn. Aoxaa câuu daăo în nou no fn nu daă d bană, c acă fac cu ań: u u ; x w w u ϕ ϕ. (.7) Doac funcń d foă un dfn în coodona naua, daa în ao cu coodona x ş că fooa dao funcńo cou ş dc cacuu n acobanuu []. Dacă fooc noań [ ] ; η ξ η ξ b a, (.) aunc ac dao funcńo d foă uă dn { } [ ]{ } 6 6 x x d u a b b a γ ε ε ε ; (.9a) { } [ ]{ } x x x x d w a b b a b a ϕ ϕ γ γ γ ε ε ε, (.9b) în ca { } d ş { } d un coonn coo daa în coodona oca. Inga (.) ş (.4) anfoă în nga d uafańă doac ngaa dcńa (goa ăc) fac făă dfcuăń anac. ouş nga d uafańă în coodona naua fcuaă nuc foond ngaa Gau-gnd în n unc Gau.
7 Odaă cunocuă aca d gda în coodona oca oa dna aca d gda a nuu în coodona goba foond ańa d anfoa K k, (.) [ ] [ ] [ ] [ ] în ca aca d anfoa [ ] funcń d aca [ ] două d fnńă oca-goba λ a conuuo dcoa dn c n [ ] dag[ λ ],,, 6 ; [ λ ] n (.) n 6. în acaă uca nu dnu SHE dş în un oga d fă fouă, c dnua oa f aa.. Da ga d n. goa nuu fn, nu un n Sh în a doă ş nă ob a dfn go df în c au nodu I,, K, ;. odnu d nga nu cacuu nuc a ac d gda cu c două coonn bană ş acă, IM ş IP ca d guă ag, (nu oga d fă ag auoa au au cug a hnc ca d nga); C. Da d aau nuu. oduu d aca ongudna - E;. cofcnu u Poon - nu; (). cofcnu d daa că - α; (4). dnaa aauu -DES; (5). accańa gaaonaă - g au guaa cfcă - γ ρg. D. Da d încăcă. daă ş o u nu în u goba d coodona (au bocaj) a anań X, Y, Z ş oań XX, YY, ZZ;. foń a nodu în dcńa X FX, Y - FY ş Z FZ cu ş on în juu axo X MX, Y MY, Z MZ;. un dbu na (bna) au conan fń nuu, ca dnfcă n nu d a a 6 ( Fg..). Ac un chaaă nuc a nodu nuu cu foń concna confo ań { F } [ ] { }da A. (.) S nńonaă că acaă chaa (conă funcńo d foă) conduc a dbuń d foń noda ca aan a ba. S xu chaaa uno un conan un n dunghua nă în Fg..4; (4). daă u oc dcń; (5). au în nodu au în n; (6). foń d nń gna d şcaa accaă (au câu gaańona g), nu ca un nca ca da d na ρ, g dcńa ş nu accań, au gna d şcaa d oań unfoă, nu ca bu ca axa d oań ş a unghuaă ω;
8 Fg..4: Echaaa uno un n Sh dunghua E. Rua ana. daă noda - UX, UY, UZ (noa uno DX, DY ş DZ) ş o RX, RY, RZ (noa ş RoX, RoY, RoZ);. nun în u goba d ax - SX, SY, SZ, SXY SYZ, SXZ, adcă nou co a nuno a nodu nuu, cu ş în cnu u nu fń o, Mdd ş oo, nun nca S, S, S ş unghu counăoa d ona conuu dcoa. nun în-un nod coun a uo n nu uă ga. Pnu cocaa uao, d obc, cug a da nuno în nodu foond d od, ca a ă d făă a Ńn aa d ou no cn ncuă în ogau d cacu ( ańa 9.6.a). nun dn-un unc oaca (d coodona ξ, η ş ) a nuu dnă a înâ în u d coodona oca nu c două coonn d bană ş acă ( Fg..5) cu ań: { σ } { σ x σ τ x} [ D ]{ ε } ; (.a) { σ } { σ x σ τ x τ τ x} [ D ]{ ε } ε ş { } d ş { } uu d cuań) în daă oca { u } [ ]{ U }. Vco { d } ş { } couu { u }. în ca { } oca { }, (.a) ε dnă cu ań (.9) în ca co daăo noda în coodona d obńn n anfoaa daăo goba (ca un obńnu n oaa d un coonn a a) nun d bană b) nun d acă Fg..5: Coonn nuno oca ( în u d fnńă a nuu) nu nu SHE obńnu confo fouă oc nun oa în coodona oca obńn n uaun d fc, adcă { σ } { } { } σ σ în ca adunaa fac coonn. D obc nun cacuaă în-un nuă a d unc
9 (nodu nuu ş cnu ău) a d fń o, Mdd ş oo. S obă că dn cacu nun σ un nu, a nu cocń în faa d ooca ogau abu σ fańa în ca xă un acaă cu aań naă a o fańa ouă da nua nu fń ş. nun oca dn-un unc un anfoa în nun goba (în u d fnńă goba) foond ańa SX n n n σ x SY n n n σ SZ n n n σ (.4) SXY nn n n n n τ x SYZ n n n n n n τ SXZ n n n n n n τ x Pnu cşa c nun dnă d guă în unc Gau (und ao un c a bn a) ş ao aca xandaă a nodu foond funcń d foă 9.4. Pogau dun d aga oduu în ca cacuaă nun n: dc în nodu nuu au în unc Gau dn ca a ao nun xandaă a nodu. nun nca în nodu o cacua odaă cu cacuu nuno în n au nun coonn a nouu nun o da a nodu ş ao o cacua nun nca S > S > S în nodu. Pogau daă nun coonn ş ao cacuaă nun nca. nuna chana, on M - Sch dna cu aa (9..) (). dfoań cfc dn n în coodona oca, în-un unc oaca cacuaa cu ań (.9) ş ao o anfoa a nuno, da ogau a acaă aă nu a duc ouu uao. (4). acun dn gau cu xou. F. Sucua fşuu cu da d na :. Da gna d dca E. Da d aa MA MAI E nu. Da d oăń no PROP PROPI IM IP 4. Da d nodu I X Y Z XX YY ZZ X Y Z 5. Da d n EI I K M O P MA PROP 6. Da d încăcă cu foń în nodu F IF FX FY FZ MX MY MZ 7. Da d încăcă cu un n EP EIP FAA P P P P4
10 G. Pogau d ucu SHEw_.EXE Ac oga a fo concu ă uc cu nońun (da) d a unc -E nncu în aan. Enu fn ad S condă un n fn d gndă, d cńun oaca, da conană ung (Fg..). Aca dfn d două nodu d caă I ş în ca noduc c şa coonn a daăo (daă ş o) d gad d ba ş un nod d ona K, ca caă dcńa ncaă a cńun. Axa ba x, dfnă d a nodu I a nodu, a axa ncaă a cńun obńn condând u d fnńă caan d. Co şa gad d ba dn fca nod, odona UX, UY, UZ, RX, RY ş RZ cound foń ş on noda FX, FY, FZ, MX, MY ş MZ. În u d fnńă oca x dfnc fou a nu nuu,,, M, M ş M, o aunc când că nu dn Fg... Enu fn gndă a conbuń a cuańa d şca a ucu în aca d gda ş d aă. Fouaa gnaă a nuu, nu cacuu ac d gda cound gn ohnko, da oa f duă ş a fouaa Eu-nou, n ndu aauu K. Pnu fca n d gndă, caă, n ndu unu d oăń aoca cńun c, aa cńun A (A), on d nń nca I I ş I I ş onu connńona a ăuc I I cu ş cofcnń d fofca φ F ş φ F. Cofcnu d fofca dfn ca aou dn aa oaă ş aa d fofca, dc a ao uauna dob d nu u facou d fofca, ca ubuna. Dn coodona noduo I ş uă unga, a dacă Ńn aa ş d coodona noduu K dnă co onaa ba în ańu. Dn aau abu nuu d gndă uă oduu d aca ongudna E, cofcnu u Poon ş dnaa ρ. Fg..: Enu fn ad.
11 Maca d gda a nuu în fouaa ohnko (cu ncuda fcuu foń ăoa în cacuu daăo), în u d fnńă oca [], în ca EI 7 ( ) ( ) ( ) EI ; k, (.) EI ( ) ; ( ) ( ) ; EI ; ( 4 ) ( ) EI EA ; ; 4 GI ( 4 ) ( ) EI ; 6EI 5 ( ) ; 6EI 6 ( ) φ EI φ EI E ; ş G. GA GA ( ) Dacă condă fouaa Eu-nou (K ), aunc condă, au chan φ ş φ. Maca d aă nă două fouă ca dnfcă n aau M. Pnu fouaa ac d aă dagonaă (M ), în coodona oca, condă ρ A ρi în ca ; ; ([ ] ) dag, (.) ρ A. 4 Dacă aca d aă conă cu funcń d foă ac (M ), aunc în oga d fańă condă ş uă ;
12 , (.4) în ca ρ A ρi 6I ; ; ρ A 5 5A ; I ρ A A ; 9 6I ρ A 7 5A ; 6I 4 ρ A 4 A ; 6I I 5 ρ A ; 9 6I 6 ρ A ; 7 ρ A ; 5 5A A 7 5A 6I I ρ A ; I 9 ρ A ; I ρ A ; ρ A ; 4 A 5 5A 4 A 5 5A I ρ A. 4 A anfoaa aco în u d fnńă goba fac cu ań d anfoa K k ; M, (.5) în ca aca d anfoa conńn conuu dcoa,, n a unghuo foa d ax d coodona a co două d fnńă oca-goba ( Fg..), aanja af: Ax X Y Z x n n n Dacă aca conuuo dcoa, nuă ş aca d oań, noaă aunc aca d anfoa dn [ λ] n n, (.6) n dag( [ ] [ ] [ ] [ ] ) λ λ λ λ. (.7)
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
f(w) f(z) = C f(z) = z z + h z h = h h h 0,h C f(z + h) f(z)
Ω f: Ω C l C z Ω f f(w) f(z) z a w z = h 0,h C f(z + h) f(z) h = l. z f l = f (z) Ω f Ω f Ω H(Ω) n N C f(z) = z n h h 0 h z + h z h = h h C f(z) = z f (z) = f( z) f f: Ω C Ω = { z; z Ω} z, a Ω f (z) f
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n
Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,
ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002
ΒΙΟΛΟΓΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2002 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. Στις ερωτήσεις 1-2, να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-
!"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-
!!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8
Ζεύγη βάσεων ΓΕΝΕΤΙΚΗ. Γουανίνη Κυτοσίνη. 4α. Λειτουργία γενετικού υλικού. Φωσφοδιεστερικός δεσμός
εύγη βάσεων Αδενίνη Θυμίνη Γουανίνη Κυτοσίνη ΓΕΝΕΤΙΚΗ Φωσφοδιεστερικός δεσμός 4α. Λειτουργία γενετικού υλικού 1 ΛΕΙΤΟΥΡΓΙΑ ΓΕΝΕΤΙΚΟΥ ΥΛΙΚΟΥ Αντιγραφή (διπλασιασμός) DNA: DNA DNA Έκφραση γενετικής πληροφορίας:
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
Chapter 1 Fundamentals in Elasticity
D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -
v w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ
SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia
SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
ABCDA EF A A D A ABCDA CA D ABCDA EF
ABCDAEF BABC FDDDDABCBABAC BBCABCADB AADAABCDACAD ABBFADAABA ABBFA AAFAB ABCDAEF AAABBA AA CADA BABA AA DA ABCDAEF BABC FDDDDABCBABAC BBCABCADB AADAABCDACAD ABBFADAABA CAA BABADFAAFAB BCAFAB ABCDAEF AAABBA
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
PDF hosted at the Radboud Repository of the Radboud University Nijmegen
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³
http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ : Λογική στην Πληροφορική Δείγμα Ενδιάμεσης Εξέτασης Σκελετοί Λύσεων Άσκηση [0 μονάδες] α Να αναφέρετε τρεις μεθόδους μέσω των οποίων μπορούμε να αποφασίσουμε
,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )
!! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!
Προγνωστικές μέθοδοι με βάση αλληλουχίες DNA
Προγνωστικές μέθοδοι με βάση αλληλουχίες DNA Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus ΣΥΝΟΨΗ Εισαγωγή Αλυσίδες Markov και αλληλουχίες
ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ
Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
! " # " $ #% $ "! #&'() '" ( * / ) ",. #
Ψ ƒ! " # " $ #% $ "! #&'() '" ( * +",-.'!( / ) ",. # 0# $"!"#$%# Ψ 12/345 6),78 94. ƒ 9)")1$/):0;3;::9 >'= ( ? 9 @ '&( % A! &*?9 '( B+)C*%++ &*%++C 0 4 3'+C( D'+C(%E $B B - " % B
Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R)
Α Δ Ι Α - Φ 8 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 20 Δεκεμβρίου
Erkki Mäkinen ja Timo Poranen Algoritmit
rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.
Eaa S Pag can E Ccn Eq. (. q q k W/ K k W/ K A A 6 n as bu 6 s q lns s q T k T k Q.. Wall s aus n gvn Wall s aus a an C. 7 n, lf kc cs ( s sn kc cs ( s sn s f cs k sn cs k sn quan C ( s C ( s an ln 6 sn
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 7
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
MICROMASTER Vector MIDIMASTER Vector
s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.
!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*
!"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"
Q Q Q 2Q b a a b
"! $# % &'()!, "!*.- -0, *# 354 36 4*78 8 :9* :65;< 3= $>?3@ 89A 3; 4CB 8D E :F :G 3$>%H3Ï J @KLK@NMPO O@Ï 3Q S "-T O J3QL'0 U * S -TW 3Q@XYS -Z-TW Q@@[U%'0 * \ * S ]9C;C 8 D_a` 8 b;a b=dce b9 3Q@Q@ 65F
Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine
f : G G G = 7 12 = 5 / N. x 2 +1 (x y) z = (x+y+xy) z = x+y+xy+z+(x+y+xy)z = x+y+z+xy+yz+xz+xyz.
Σ.Παπαδόπουλος 1 1 Βασικές έννοιες ομάδας Εστω G ένα σύνολο με G. Μία πράξη στο G είναι μία συνάρτηση f : G G G. Αντί f(x, y) γράφουμε x y και αν δεν υπάρχει περίπτωση σύγχυσης xy. Είναι φανερό ότι σε
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.
SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care
JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama
MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
4 ο ΚΕΦΑΛΑΙΟ. Γ ε ν ε τ ι κ ή
4 ο ΚΕΦΑΛΑΙΟ Γ ε ν ε τ ι κ ή 1. Κύκλος της ζωής του κυττάρου 3ο Γελ. Ηλιούπολης επιμέλεια: Αργύρης Γιάννης 2 2. Μοριακή Γενετική i). Ροή της γενετικής πληροφορίας DNA RNA πρωτεΐνες νουκλεΐκά οξέα ή πρωτεΐνες
Vn 1: NHC LI MT S KIN TH C LP 10
Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà
½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ À ÛÑ ØÖ ØÛÒ ÇÖ Ó ÛÒÛÒ º½ ÇÖ ÑÓ ØÓÙ ÐÓÙ ³ ÌÓ ÐÓ ³ Ò ÒØÓÑÓ ÓÑÓ Ò Ñ Ñ ÒÓ ½ ÔÖÓØ Ó ÓÖ ¹ ÑÓ Ø Ò ÖÕ º ËØÓ Ñ Ð Ø ÖÓ Ñ ÖÓ ØÓÙ ÔÖ Ø ÔÓØ Ð Ñ Ø ÔÓÙ ÓÖÓ Ò ÓÖÓÙ ÙÒ Ù ÑÓ ÓÖ Ó ÛÒÛÒ Ø ØÖ ôòûò ÓÙ Ô
Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby
Gradual diversions of the Rio Pastaza in the Ecuadorian piedmont of the Andes from 1906 to 2008: role of tectonics, alluvial fan aggradation and ENSO events Carolina Bernal, Frédéric Christophoul, Jean-Claude
Les gouttes enrobées
Les gouttes enrobées Pascale Aussillous To cite this version: Pascale Aussillous. Les gouttes enrobées. Fluid Dynamics. Université Pierre et Marie Curie - Paris VI,. French. HAL Id: tel-363 https://tel.archives-ouvertes.fr/tel-363
ALFA ROMEO. Έτος κατασκευής
145 1.4 i.e. AR33501 66 90 10/94-01/01 0802-1626M 237,40 1.4 i.e. 16V AR33503 76 103 12/96-01/01 0802-1627M 237,40 1.6 i.e. AR33201 76 103 10/94-01/01 0802-1628M 237,40 1.6 i.e. 16V AR67601 88 120 12/96-01/01
Αλγεβρικές Δομές Ι. 1 Ομάδα I
Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση
Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.
(, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R
4. Zapiši Eulerjeve dinamične enačbe za prosto osnosimetrično vrtavko. ω 2
Mehanikateoretičnavprašanjainodgovori 1/12 Newtonovamehanika 1. Določiravninogibanjatočkevpoljucentralnesile. Ravninagibanjagreskozicentersileinimanormalovsmerivrtilne količine 2. Zapišiperiodogibanjapremočrtnegagibanjapodvplivompotenciala
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
Sisteme diferenţiale liniare de ordinul 1
1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2
Πανεπιστήμιο Αιγαίου Τμήμα Μαθηματικών
Πανεπιστήμιο Αιγαίου Τμήμα Μαθηματικών Προπτυχιακή εργασία: "Μια εισαγωγή στις μερικές διαφορικές εξισώσεις της μαθηματικής φυσικής" Ελεάνα Ζήκα Α.Μ.: 3/67 Επιβλέπων καθηγητής: Χουσιάδας Κωνσταντίνος Σάμος,
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
! " #! $ %! & & $ &%!
!" #! $ %!&&$&%! ! ' ( ')&!&*( & )+,-&.,//0 1 23+ -4&5,//0 )6+ )&!&*( '(7-&8 )&!&9!':(7,&8 )&!&2!'1;
Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα
x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Transformata Radon. Reconstructia unei imagini bidimensionale cu ajutorul proiectiilor rezultate de-a lungul unor drepte.
Problema Tranformaa Radon Reconrucia unei imaini bidimenionale cu auorul roieciilor rezulae de-a lunul unor dree. Domeniul de uilizare: Prelucrarea imainilor din domeniul medical Prelucrarea imainilor
TALAR ROSA -. / ',)45$%"67789
TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2
Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.
pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu
(subtree) (ancestors)
î Ï Ý û Âì ú ûñ Â Â Â î À SS " À Âê À ' Î ö,à.ý E = V 1 Ý,À ) û b Àã (E) ûñ Àã Â :Ýó (V,E 0 î üú À = n 1 Â : ÂÖ : = E = k 1 Ý V = Â : ÂÖ Âê k (Ó Âã ) û (free tree " ') ö À À Ýû é Â V = k + 1 Â : ÂÖ Ý.
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 7
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 12 Μαίου 2017 Ασκηση 1.
!"# $%&'()*% +,-.%&,/ 0) $.)&-.,* 1%(23-%/,*
!"#$%&'()*%+,-.%&,/0)$.)&-.,*1%(23-%/,*!"#$%&'()*+,&-%.#/,&012+ 3#4"/,&5&678&.&6!"#$%"&'&()%*#'+$%,#-."/0)#,%.$/ 1(#2+/)%34567 89:9;9?@@AB5B@4@5B 8C'(#C/)%*#'+$%,#-."/0)#,%.$/34567 D*/)$/E$&=)&F%+$&(/F
%78 (!*+$&%,+$&*+$&%,-. /0$12*343556
! %78 ( 9 :: "#$% $&'"(" )!*$&%,$&*$&%,-. /$*343556 $ $& %$&.;$& $(# $"*("$# $ "$?, !* $&,#$"&::> $&( &$#, #$&# $"#&"& @($&%%>A!" #$ % µ & ' (#$ )! ) * ' "!)!,-./.' ) " $ &
Πίνακας ρυθμίσεων στο χώρο εγκατάστασης
1/8 Κατάλληλες εσωτερικές μονάδες *HVZ4S18CB3V *HVZ8S18CB3V *HVZ16S18CB3V Σημειώσεις (*5) *4/8* 4P41673-1 - 215.4 2/8 Ρυθμίσεις χρήστη Προκαθορισμένες τιμές Θερμοκρασία χώρου 7.4.1.1 Άνεση (θέρμανση) R/W
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ
ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ (ΜΕΤΑΠΤΥΧΙΑΚΟ) 6 Νοεμβρίου 07 Αναλυτικές συναρτήσεις Άσκηση (i) Δείξτε ότι η συνάρτηση f(z) είναι αναλυτική σε χωρίο D του μιγαδικού επιπέδου εάν και μόνο εάν η if(z) είναι αναλυτική
]Zp _[ I 8G4G /<4 6EE =A>/8E>4 06? E6/<; 6008:6> /8= 4; /823 ;1A :40 >176/812; 98/< ;76//40823 E182/;G g= = 4/<1
! " #$ # %$ & ' ( ) *+, ( -+./0123 045067/812 15 96:4; 82 /178/? = 1@4> 82/01@A74; B824= 6/87 60/8567/; C 71 04D47/10; C 82/1 /
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
Μέγιστα & Ελάχιστα. ΗΥ111 Απειροστικός Λογισμός ΙΙ
ΗΥ-111 Απειροστικός Λογισμός ΙΙ Μέγιστα & Ελάχιστα 1 μεταβλητή: Τύπος Taylor Aν y=f(x) είναι καλή συνάρτηση f '( a) f ''( a) f ( a) f x f a x a x a x a R x 1!! n! n + 1 f ( c) n + 1 Rn ( x) = ( x a), a
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
Microscopie photothermique et endommagement laser
Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université
DNA. 2 η Βάση 3 η U C A G
DNA Ο Γενετικός κώδικας θα σας είναι χρήσιμος για να απαντήσετε ορισμένες από τις ερωτήσεις που ακολουθούν 1 η Βάση U C A G 2 η Βάση 3 η U C A G Βάση UUU φαινυλανανίνη UCU σερίνη UAU τυροσίνη UGU κυστεΐνη
Supplemental file 3. All 306 mapped IDs collected by IPA program. Supplemental file 6. The functions and main focused genes in each network.
LIST OF SUPPLEMENTAL FILES Supplemental file 1. Primer sets used for qrt-pcr. Supplemental file 2. All 1305 differentially expressed genes. Supplemental file 3. All 306 mapped IDs collected by IPA program.
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
2ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΟΡΙΝΘΟΥ Σχολικό έτος Ά τετράμηνο. Τάξη Β (ομάδα A) ΩΡΙΑΙΑ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 = 2
2ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΟΡΙΝΘΟΥ Σχολικό έτος 2012-2013 Ά τετράμηνο Τάξη Β (ομάδα A) ΩΡΙΑΙΑ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Α. Να αποδειξετε ότι αν M ( xm, y M) το μεσο του ευθυγραμμου τμηματος
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΜΑΘΗΜΑ: ΒΙΟΛΟΓΙΑ Ημερομηνία και Ώρα εξέτασης: Σάββατο, 22 Μαΐου 2010 07:30-10:30
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΜΑΘΗΜΑ : ΒΙΟΛΟΓΙΑ Ημερομηνία και Ωρα εξέτασης: Πέμπτη, 7 ΙΟΥΝΙΟΥ 2007 07:30 10:30
SIEMENS Squirrel Cage Induction Standard Three-phase Motors
- SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 9ο ΑΣΚΗΣΕΙΣ 801-900 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης
Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:
CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU
Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì
Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης
Chapter 2. Stress, Principal Stresses, Strain Energy
Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the
UNIVERSITÀ DEGLI STUDI DI BOLOGNA. DIPARTIMENTO DI INGEGNERIA ELETTRICA Viale Risorgimento n BOLOGNA (ITALIA) FOR THE CURRENT DISTRIBUTION
UVERSÀ DEG SUD D BOOGA DPAREO D GEGERA EERCA Vl Rogo - 36 BOOGA (AA AAYCA SOUOS FOR HE CURRE DSRBUO A RUHERFORD CABE WH SRADS. F. Bch Ac h gocl o of h ol co coffc og h of Rhfo cl vg. h olo fo h gl l c
tel , version 1-7 Feb 2013
!"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 Y% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής
( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]
1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter
ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ
taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά
March 14, ( ) March 14, / 52
March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt 2 ϕ = 0
u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = K K C(t) ϕ = ϕ 1 + C(t) dt Kt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ