Dinamika rotacionog kretanja krutog tela.
|
|
- Ναζωραῖος Διδασκάλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Dnamka otaconog ketanja kutog tela. Delovanje sla momenata sla na kuto telo Čvsto (kuto) telo je sstem čvsto povezanh matejalnh tačaka (masa Δm 1, Δm,, Δm,, Δm n ) koje maju svaka svoju težnu (ΔQ 1, ΔQ,, ΔQ,, ΔQ n ), čj zb pedstavlja ukupnu težnu tela Q. Napadna tačka ezultante svh ovh sla težne koje deluju na pojednačne matejalne tačke je težšte tela. Bez obza na položaj tela, ona ostaje na stom mestu, kao da je sva masa skoncentsana u jednoj tačk, tzv. centu mase tela C. Težšte (tačka cg ) 105
2 Delovanje sla momenata sla na kuto telo. Centa mase je tačka koja epezentuje posečan položaj ukupne mase tela. Centa mase je tačka kaaktestčna za čvsto telo zloženo delovanju spoljašnje sle, koja se keće na st načn kao što se b se ketala matejalna tačka (mase jednake mas datog tela) pod dejstvom te ste ezultantne spoljašnje sle. U homogenom gavtaconom polju se težšte centa mase poklapaju. U pmeu, napadna tačka ezultantne sle na slkama (a) (b) se ne poklapa sa centom mase tela (spojena špkom zanemaljve mase) pod utcajem sle započnju otacono ketanje. Kada je napadna tačka sle u centu mase, kao na slc (c) sstem tela ne ota, već se keće tanslatono. 106
3 Delovanje sla momenata sla na kuto telo Svako ketanje kutog (čvstog) tela može se pedstavt kao kombnacja tanslatonog otaconog o og ketanja. Kod tanslatonog ketanja pave koje spajaju tačke u telu u toku ketanja ostaju same seb paalelne. Kod otaconog ketanja tačke u telu se keću po koncentčnm kužncama azlčth polupečnka. Na složeno ketanje kutog tela deluju sle moment sla. 107
4 Moment sle U pmeu na slc na vata koja mogu otat oko vetkalne ose deluje se slom F stog ntenzteta ustoj napadnoj tačk. Razlka je u pavcma delovanja sle u odnosu na vekto položaja (adjus vekto) ) napadne tačke sle. Najlakše je zaotat vata kada adjus vekto napadne tačke sle vekto sle zaklapaju pav ugao, a otacje vata nema kada se pavc ova dva vektoa poklapaju. 108
5 Moment sle Moment M sle F je vektosk pozvod adjus vektoa napadne tačke sle vektoa sle F. Jednca za moment sle je [Nm]. M = F sn θ θ = (, F) M = Ft = F d M = F Samo tangencjalna komponenta sle (F t ) uzokuje otacono ketanje kutog tela. 109 Jednca za moment sle u SI sstemu Njutn puta meta, al da se ne može zament Džulom, je je fzčk smsao momenta sle enegje (ada) btno azlčt:
6 Moment sle Tangencjalna komponenta sle F t koja stvaa moment sle M odgovoan za otacju kutog tela, ujedno daje tangencjalno ubzanje a t telu, čme se ugaona bzna ω stalno povećava. Dugm ečma, kuto telo ma neko ugaono ubzanje α. Za ugaono ubzanje α kutog tela odgovon su moment sla. Na velčnu ugaonog ubzanja α, međutm, utču ne samo moment sla, već masa tela, tačnje aspoed masa u kutom uo telu euuu odnosu osu na osu otacje. ed Tako je u dnamc otaconog ketanja defnsan tzv. moment necje I, velčna koja opsuje utcaj aspoeda masa u kutom telu na otacju, tj. na ugaono ubzanje. 110
7 Moment necje Za svaku matejalnu tačku u telu mase Δm koja se nalaz na astojanju od ose otacje, moment necje I je defnsan peko: I = Δm Sumanjem momenata necje I za sve matejalne tačke koje čne kuto telo, dobja se moment necje I tela u odnosu na datu osu otacje. Jednca za moment necje je [kgm ]. I = I = Δ m I = ρδv = ρ l ΔV 111
8 Moment necje Moment necje I je velčna analogna mas u dnamc tanslatonog ketanja. Moment necje je skalana velčna, mea netnost tela p otaconom ketanju. Masa je nezavsna osobna tela, a moment necje zavs od zboa ose otacje u odnosu na koju se posmata aspoed mase u telu. Moment necje za matejalnu tačku I = m Moment necje za kuto telo I = Δ m I = M 0 dm l I = ρ V 0 d V 11
9 Moment necje za azna geometjsk pavlna tela 113
10 Moment necje Štajneova teoema (teoema paalelnh osa) Ako telo u odnosu na osu otacje koja polaz koz njen centa masa ma moment necje I 0,tadaće u odnosu na blo koju dugu paalelnu osu, na astojanju d od pomenute ose, mat moment necjej I df defnsan elacjom: Pme I = I 0 + md Moment necje I 0 je u odnosu na osu koja polaz koz centa mase. mr I = + mr = 3 mr Moment necje I je u odnosu na osu koja je paalelna os otacje koz centa mase na astojanju d od nje. 114
11 Osnovna jednačna dnamke otaconog ketanja Za ugaono ubzanje α kutog tela odgovon su moment sla. Pema II Njutnovom zakonu, tangencjalna komponenta sle F t koja uzokuje tangencjalno a t ugaono ubzanje α čja je napadna tačka na astojanju od ose otacje (kak sle), stvaa moment sle M koj se može zazt u oblku koj sadž nfomacju o aspoedu masa uodnosuna osu otacje, tj. velčnu momenta necje I kutog tela: Pme otacje matejalne tačke: a = α F = m a = m α t M = F t t = m M = F sn θ t Moment necje za matejalnu tačku α I = m θ = (, F) II Njutnov zakon za otacju matejalne tačke oko nepoketne ose M = I α 115
12 Osnovna jednačna dnamke otaconog ketanja U kutom telu se delovanje unutašnjh sla f j = f j međusobno ponštava. Samo tangencjalne komponente spoljašnjh sla F t koje deluju na pojedne delće mase Δm kutog tela uzokuju otacono ketanje. Moment M takvh spoljašnjh sla se sabaju, čme se dobja ezultantn moment lj jh l k j k j b j M spoljašnjh sla, koj uzokuje ugaono ubzanje α. Pme otacje kutog tela: = = = M M Ft Δm α = Iα at = α Ft = Δm at = Δm α M = F sn θ θ = (, F) II Njutnov zakon za otacju kutog tela oko nepoketne ose M = I α 116
13 Knetčka enegja ad kod otaconog ketanja P otacj kutog tela (bez tanslatonog ketanja): v Δm v = Δm ω = = ω Ek Vš se sumanje knetčkh enegja za svak delć kutog tela: E R k = I ω P složenom ketanju kutog tela ukupna knetčka enegja je suma knetčkh enegja tanslatonog ketanja centa mase otaconog ketanja tela: mvc I ω Ek = + Ako se p otacj telo obne za ugao θ (u [ad]) pod utcajem momenta sle M, zvšen ad je dat peko: A = M θ 117
14 Moment kolčne ketanja L Moment kolčne ketanja L matejalne tačke oko nepoketne ose otacje je vektosk pozvod njenog vektoa položaja vektoa njene kolčne ketanja k: L = k = mv L = k sn θ = m vsn θ L = Iω (, v) = 90 v = ω L = m ω 118
15 Moment kolčne ketanja L Moment kolčne ketanja L kutog tela oko nepoketne ose otacje dobja se sumanjem momenata kolčneketanjazasvematejalnetačke koje čne telo: = = Δ = Δ = L L mv mv Δm ω = Iω L = Iω 119
16 Moment kolčne ketanja L Vemenska pomena momenta kolčne ketanja L matejalne tačke oko nepoketne ose otacje: dl d d( mv) dl = mv + = M dl M - ukupn moment spoljašnjh sla = v mv + F = 0 + M v - pefena bzna matejalne tačke 0 usled delovanja momenta sle M ( v,( mv)) = 0 Ovo je dug oblk II Njutnovog zakona za otacono ketanje analogja sa slom koja je jednaka bzn pomene kolčne ketanja kod tanslatonog ketanja tela: dk d( mv) = = ma = F Vemenska pomena momenta kolčne ketanja L kutog tela oko nepoketne ose otacje: dl d( Iω) dω = = I = Iα = M 10
17 Zakon odžanja momenta kolčne ketanja Zakon odžanja momenta kolčne ketanja u zolovanom sstemu: Ako je ezultanta momenata spoljašnjh sla, koje deluju na kuto telo uzokuju njegovo otacono ketanje, jednaka nul (M=0), tj.ako je sstem zolovan zatvoen, ugaono ubzanje je jednako nul (α=0 ω=const.), a moment kolčne ketanja L ma konstantnu vednost (konstantn ntenztet pavac): dl = M = Iα dl za M = 0 = 0 L = const. Analogja sa I Njutnovm zakonom dnamke, pema kome tela zadžavaju svoje stanje ketanja (movanja l pavolnjskog avnomenog ketanja) ukolko je ezultatntna sla koja na njega deluje jednaka nul: dk k d( mv ) ukolko je F = 0 a = 0 v = const. = = 0 mv = const. Ako kuto telo ota oko nepoketne ose otacje, moment kolčne ketanja L se može pedstavt kao: L = Iω = const. Zakon odžanja momenta kolčne ketanja je: U zatvoenom zolovanom sstemu ukupan moment mpulsa sstema L je konstantan, bez obza na pomene koje se mogu dešavat unuta sstema. Iω
18 Pme zakona odžanja momenta kolčne ketanja Rotacjačge Rotacja balstčkh pojektla Panlova stolca 1
19 Analogne velčne jednačne koje važe kod tanslatonog otaconog ketanja tanslatono ketanje otacono ketanje pomeaj, x bzna, v ubzanje, a dx v = d v a = ugaon pomeaj, θ ugaona bzna, ω ugaono ubzanje, α dθ ω = ω e = e dω d θ α = e = e = αe masa, m moment necje, I I = m kolčna ketanja, k sla, F knetčka enegja, E k snaga, P k = mv F = ma mv E k = d( mv) dk F = = moment kolčne ketanja, L moment sle, M otacona knetčka enegja, L = I ω M = Iα P = F v snaga, P P = M ω R E k E R k d( Iα) dl M = = = Iω
20 Statka čvstog tela Pme delovanja sla na kuto telo: a) delovanje jedne sle zazva samo pomeanje tela na jednu stanu; b) delovanje dve sle stog ntenzteta pavca, a supotnog smea daju ezultantnu slu koja je jednaka nul telo je u tanslatonoj u otaconoj avnotež; c) dl delovanje dve sle stog ntenzteta supotnog smea, čj se pavc ne poklapaju daju ezultantn moment, pod čjm utcajem telo počnje otacju telo nje u otaconoj avnotež. 14
21 Uslov avnoteže čvstog tela Za avnotežu je neophodno da se ponštavaju ne samo spoljašnje sle, već moment spoljašnjh sla. Uslov avnoteže čvstog (kutog) tela: Rezultantna spoljašnja sla koja deluje na telo teba da je jednaka nul. Rezultantn moment spoljašnjh sla oko blo koje ose otacje teba da je jednak nul. F = 0 M = 0 a = 0 v = const. α = 0 ω = const. Uslov avnoteže za sve pavce koodnatnog sstema: F = 0 F = 0 F = 0 x M x = 0 y M y = 0 z M z = 0 15
22 Uslov avnoteže čvstog tela Pme: 16
23 Postoj: a) stablna, b) lablna, c) ndfeentna avnoteža. Vste avnoteže. Stablnost. Pme lenj okačen o konac: a) težšte C je spod tačke vešanja; b) težšte C je znad tačke vešanja; c) težšte C tačka vešanja se poklapaju. Pema velčn potencjalne enegje koju telo poseduje u gavtaconom polju Zemlje: 17
Dinamika krutog tijela. 14. dio
Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (
- Rad je dejstvo sile duž puta tj. kvantitativno povezuje silu i pomeraj koji je ona izazvala
Rad - Rad je dejstvo sile duž puta tj. kvantitativno povezuje silu i pomeaj koji je ona izazvala Posmatajmo slučaj kada je sila konstantna po intenzitetu i pavcu. Rad je: A= A = Δ cosγ γ = (, Δ) Δ Skalani
SUČELJNI SISTEM SILA Ako se napadne linije svih sila koje sačinjavaju sistem seku u jednoj tački onda se takav sistem sila naziva sučeljnim sistemom.
SUČELJNI SISTEM SIL ko se napadne lnje svh sla koje sačnjavaju sstem seku u jednoj tačk onda se takav sstem sla nazva sučeljnm sstemom.,, Pme. k j k j 6 k j 6 k j k j k j ( ) ( ) Pme. cos6, sn 6 cos, sn
Dinamika rotacije (nastavak)
Dnaka rotacje (nastaak) Naučl so: Moent sle: M r F II Njutno zakon za rotacju krutog tela oko nepokretne ose: Analogno sa: F a I je skalarna elčna analogna as predstalja nertnost tela prea rotacj. Zas
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
SLOŽENO KRETANJE TAČKE
SLOŽENO KRETANJE TAČKE DEFINISANJE SLOŽENOG KRETANJA TAČKE BRZINA TAČKE PRI SLOŽENOM KRETANJU a) Relativna bzina b) Penosna bzina c) Apsolutna bzina d) Odeđivanje zavisnosti apsolutne od elativne i penosne
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
1 Momenti inercije u odnosu na Dekartove koordinatne ose
M. Tadć, Predavanja z Fzke 1, ETF, grupa P3, X predavanje, 2017. 1 Moment nercje u odnosu na Dekartove koordnatne ose Pretpostavmo da telo prkazano na slc 1 ma sva tr prostorne dmenzje razlčte od nule.
Ubrzanje. Parametri ubrzanja: vreme zaleta put zaleta Koliko sekundi / metara je potrebno da bi se dostigla određena brzina?
Paamet ubzanja: veme zaleta put zaleta Kolko sekund / metaa je potebno da b se dostgla odeđena bzna? Važnost: gadska vožnja petcanje bezbednost Utcaj: dnamčke kaaktestke pogonskog motoa vozla boj penosnh
VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku.
VEKTOR OENT SILE Z TČKU Vekto momenta sile, koja dejstvuje na neku tačku tela, za poizvoljno izabanu tačku pedstavlja meu obtnog dejstva sile u odnosu na tu poizvoljno izabanu tačku. Ovde je tačka momentna
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. C. Složeno gibanje. Pojmovi: A. Translacijsko gibanje krutog tijela. 12.
Pojmo:. Vekor sle F (ranslacja). omen sle (roacja) Dnamka kruog jela. do. omen romos masa. Rad kruog jela A 5. Kneka energja k 6. omen kolna gbanja L 7. u momena kolne gbanja momena sle L f ( ) Gbanje
Mašinski fakultet, Beograd - Mehanika 1 Predavanje 1 1 MEHANIKA
Mašinski fakultet, Beogad - Mehanika 1 Pedavanje 1 1 MEHNIK Mehanika je nauka koja poučava opšte zakone mehaničkih ketanja i avnoteže mehaničkih objekata. Pod mehaničkim ketanjem podazumeva se pomena položaja
REDUKCIJA SISTEMA NA TAČKU KOORDINATNOG POČETKA Glavni vektor Glavni moment. = xi. F r. r = j. M i. M r
REUKCIJA ITEA NA TAČKU KOORINATNO POČETKA lvn vekto lvn moment O ) ( j ) ( j O k j k j j j j θ cos cosθ Pme. dt povoljn poston sstem sl speov (l.) sle su defnsne vektom: j k j k 4 j k j j j k k Pojekcje
Jasno je da je vektor količine kretanja tačke K r istog pravca i smera kao vektor brzine V r.
Kolčna keanja maejalne ačke Ako ačka mase m, u nekom enuku vemena, ma bnu V, onda je njena kolčna keanja K, u om enuku, jednaka povodu njene mase m bne V, dakle K = m V Jasno je da je veko kolčne keanja
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
. (2.116) v r. Prvi član s desne strane (2.119) je jednak nuli iz razloga što su vektori v = i p kolinearni: r r r. r d L0 =. (2.
48 DINAMIKA.9 Dinamika otacije.9. Momentna jednačina za mateijalnu tačku Posmatamo kivolinijsko ketanje mateijalne tačke, mase m, koja u datoj tački putanje ima bzinu v, vekto položaja u odnosu na efeentnu
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A
Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.
( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :
BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja
Kinetička energija: E
Pime 54 Za iem pikazan na lici odedii ubzanje eea mae m koji e keće naniže kao i ilu u užeu? Na homogeni doboš a dva nivoa koji e obće oko zgloba O dejvuje, zbog neidealnoi ležaja konanni momen opoa M
Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
Fizika. Mehanika Sadržaj. dr Fedor Skuban. I godina studija na Tehnološkom fakultetu u Novom Sadu. Departman za fiziku, PMF Novi Sad
d Fedo Skuban Fizika I godina studija na Tehnološkom fakultetu u Novom Sadu Depatman za fiziku, PMF Novi Sad Elementi vektoskog ačuna 4 Fizičke veličine. SI sistem jedinica 8 Osnovni pojmovi kinematike
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.
RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Elektrostatika. 1. zadatak. Uvodni pojmovi. Po iznosu sile F 12 i F 21 su jednake po iznosu:
Stanca:I lektostatka Coulombov zakon. Homogeno nehomogeno elektčno pole. lektčno pole nabene beskonačne avnne. lektčno pole točkastog naboa. lektčno pole vlo ugog avnog voča. lektčno pole nabene kugle.
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Kinematika rotacionog kretanja
Knematka rotaconog kretanja Tjelo rotra kada e ve tačke tjela kreću po kružnm putanjama čj centr leže na o rotacje. Rotacono kretanje kod kojeg je tangencjalna brzna kontantna nazva e unformno kružno kretanje.
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Trigonometrijski oblik kompleksnog broja
Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
1 Kinematika krutog tela
M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, IV predavanje, 2017. 1 Kinematika krutog tela Kruto telo je sistem materijalnih tačaka čija se međusobna udaljenost ne menja tokom vremena. Kruta tela
UNIVERZITET U NIŠU FAKULTET ZAŠTITE NA RADU U NIŠU TEHNIČKA MEHANIKA - PREZENTACIJA PREDAVANJA PREDAVANJE
UNIVERZITET U NIŠU FAKULTET ZAŠTITE NA RADU U NIŠU TEHNIČKA MEHANIKA - PREZENTACIJA PREDAVANJA - - 4. PREDAVANJE - Dr Darko Mhajlov, doc. 1. ČAS Sredšte (cetar) sstema paralelh sla; Težšte krutog tela;
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
Ekonometrija 5. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković
Ekoometja 5 Ekoometja, Osove studje Pedavač: Aleksada Nojkovć Stuktua pedavaja Klasč dvostuk (všestuk) lea egeso model - metod ONK. Petpostavke všestukog KLM. Koelacja u všestukom KLM. Oča kogova. Dvostuk
KRIVOLINIJSKO KRETANJE TAČKE U RAVNI OPISANO U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU. JEDNAČINE KRETANJA. LINIJA PUTANJE. PUTANJA.
KRIVOLINIJSKO KRETANJE TAČKE U RAVNI OPISANO U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU. JEDNAČINE KRETANJA. LINIJA PUTANJE. PUTANJA. Jednačine ketanja x(t) i y(t) u potpunosti odeđuju sve pojmove vezane
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.
Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Fizika za studente na Departmanu za matematiku i informatiku na PMF-u u Novom Sadu
d Fedo Skuban Fizika za studente na Depatmanu za matematiku i infomatiku na PMF-u u Novom Sadu Depatman za fiziku, PMF Novi Sad Fizičke veličine. SI sistem jedinica 4 Osnovni pojmovi kinematike 0 Bzina
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
Sistem sučeljnih sila
Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu
RAD, SNAGA I ENERGIJA
RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
VEŽBE Elektrostatika
VEŽBE Elektostatika Još jedna supepozicija Pime ti azličito naelektisana tela Odedite sme sile na naelektisanje q: Odedite sme sile na naelektisanje q: Elektično polje pikazano linijama sila stvaaju dva
UZDUŽNA DINAMIKA VOZILA
UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA
OSNOVI HEMIJSKE TERMODINAMIKE I TERMOHEMIJA OSNOVI HEMIJSKE TERMODINAMIKE Hemjska termodnamka proučava promene energje (toplotn efekat) pr odgravanju hemjskh reakcja. MATERIJA ENERGIJA? Energja je dskontnualna
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
MEHANIKA-V. Inercijalni i neinercijalni sistemi reference
4 MEHANIKA-V Inecijalni i neinecijalni sistemi efeence Fomulišući I Njutnov zakon ( Zakon inecije) koistili smo pojmove kao što su miovanje ili avnomeno ketanje Postavlja se pitanje koliko je opavdano
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
1.1 Određivanje položaja i trajektorije materijalne tačke 1 KINEMATIKA
11 deđivanje položaja i tajektoije mateijalne tačke 1 1 KINEATIKA 11 deđivanje položaja i tajektoije mateijalne tačke snovni zadatak fizike (ϕνσιξ pioda) je izučavanje osnovnih svojstava piode, a jedno
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
TERMALNOG ZRAČENJA. Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine. Ž. Barbarić, MS1-TS 1
OSNOVNI ZAKONI TERMALNOG ZRAČENJA Plankov zakon Stefan Bolcmanov i Vinov zakon Zračenje realnih tela Razmena snage između dve površine Ž. Barbarić, MS1-TS 1 Plankon zakon zračenja Svako telo čija je temperatura
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Dinamika Oblast mehanike koja proučava kretanje uzimajući u obzir uzroke kretanja i osobine tela koja se kreću. Dinamika
Oblast ehanike koja poučava ketanje uziajući u obzi uzoke ketanja i osobine tela koja se keću. Sila i asa (P 34) Njutnovi zakoni ehanike (P 35-37) Težina tela, gustina (P 38-40) specifična zapeina i gustina.
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet
Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri
Osnovni sklopovi pojačala sa bipolarnim tranzistorom
Osnovn sklopov pojačala sa bpolarnm tranzstorom Prrodno-matematčk fakultet u Nšu Departman za fzku dr Dejan S. Aleksd Elektronka dr Dejan S. Aleksd Elektronka - Pojačavač polarn tranzstor kao pojačavač
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Proračun AB stuba. Oblik izvijanja stuba kao i uslovi oslanjanja su jednaki u oba ortogonalna pravca pa se usvaja stub dimenzija b/h=60/60 cm.
Proračun AB stuba Potrebno je zvršt proračun stuba jednodrodne armrano-betonske hale dmenzja x49 metara. Poprečn ramov su formran na razmaku od 7 metara. Hala je u poslednja dva polja vsnsk pregrađena
ELEMENTI TEORIJE SKALARNIH I VEKTORSKIH POLJA
ELEMENTI TEORIJE SKALARNIH I VEKTORSKIH POLJA Skalano polje. Gadijent Posto u čijoj je svakoj tački M definisana funkcija U(x,y,z) = U(M) = U( ) ( je vekto položaja tačke M) zovemo skalano polje. U daljem
5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I
5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I ČISTO KOSO SAVIJANJE Pod pravim savijanjem podrazumeva se slučaj kada se ravan savijanja poklapa sa jednom od glavnih ravni
Aritmetički i geometrijski niz
Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.
VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su
ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK
OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja
KOPOLIMERIZACIJA. UGRADNJA VIŠE RAZLIČITIH MONOMERA u istu makromolekulu Je li stupnjevita polimerizacija tipa A 2. kopolimerizacija?
KOPOLIERIZIJ UGRDNJ VIŠE RZLIČITIH ONOER u stu maomoleulu Je l stunevta olmezaca ta oolmezaca? ltenauć (zmenčn) oolme KOPOLIERIZIJ POLIURETNI Stunevta oolmezaca: ugadna vše azlčth monomea ste unconalnost
Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:
Anene Transformacija EM alasa u elekrični signal i obrnuo Osnovne karakerisike anena su: dijagram zračenja, dobiak (Gain), radna učesanos, ulazna impedansa,, polarizacija, efikasnos, masa i veličina, opornos
FUNKCIJE UTJECAJA I UTJECAJNE LINIJE
FUNKCIJE UTJECJ I UTJECJNE LINIJE Funkcje ujecaja ujecajne lnje korse se kod proračuna konsrukcja na djelovanje pokrenh operećenja. Zadaak: odred onaj položaj pokrenog operećenja koj će da najnepovoljnj
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Elementi energetske elektronike
ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke