KRIVOLINIJSKO KRETANJE TAČKE U RAVNI OPISANO U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU. JEDNAČINE KRETANJA. LINIJA PUTANJE. PUTANJA.
|
|
- Ἀλκαῖος Διαμαντόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 KRIVOLINIJSKO KRETANJE TAČKE U RAVNI OPISANO U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU. JEDNAČINE KRETANJA. LINIJA PUTANJE. PUTANJA. Jednačine ketanja x(t) i y(t) u potpunosti odeđuju sve pojmove vezane za kinematiku tačke kao što su: linija putanje, putanja (tajektoija), bzina, ubzanje i polupečnik kivine putanje. Funkcija, kiva ili pava, dobijena eliminacijom vemena t iz jednačina ketanja naziva se linijom putanje i nju ćemo u svakom pimeu ctati. U većini pimea linija putanje se svodi na oblik y(x) ili x(y) ili f(x,y)=. Podazumevaće se da tenutku započinjanja ketanja (početnom tenutku) odgovaa t= i da se pi ketanju veme t stalno povećava. Početni položaj tačke M, odeđen koodinatama x() i y(), odeđuje se stavljanjem nule umesto t u jednačine ketanja. Putanja je onaj deo linije putanje na kom tačka može da se nađe u vemenskom intevalu t. Taj deo je na slici pikazan debljom linijom.
2 VEKTORI BRZINE I UBRZANJA U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU I NJIHOVE PROJEKCIJE NA KOORDINATNE OSE. Vektoom položaja poketne tačke M naziva se vekto koji se poteže od koodinatnog početka do te tačke: t = OM t = x t i + y t = OM = x i + y ( ) ( ) ( ) ( ) j ( ) ( ) ( ) j Dakle, x(t) i y(t), osim što su jednačine ketanja, to su i pojekcije vektoa položaja i koodinate poketne tačke u nepoketnom xoy koodinatnom sistemu.
3 d Vs =, V ( t) = lim = = & ( t) t t t V - Sednja bzina u vemenskom intevalu s t - Jedinični vekto Vekto bzine V tangente na putanju ( t) poketne tačke u poizvoljnom tenutku vemena je pvi izvod po vemenu vektoa položaja ( t): V t = & t ( ) ( ) Za kivolinijsko ketanje pavac vektoa bzine poklapa sa pavcem tangente Zbog V ( t) = &( t), ( t) = x( t) i + y( t) j ičinjenice da su i i j konstantni vektoi, dobija se vekto bzine: V t = x& t i + y& t ( ) ( ) ( ) j Pojekcije vektoa vzine na koodinatne ose jednake su pvim izvodima po vemenu jednačina ketanja, odnosno koodinata poketne tačke u t x& t t = y& t nepoketnom xoy koodinatnom sistemu, dakle: ( ) = ( ), ( ) ( ) Intenzitet vektoa bzine: V = x& + y&, t V = x V x & + y& V y
4 V V dv d as =, a & & t t t a s - Sednje ubzanje u vemenskom intevalu ( t) = lim = = = V ( t) = & ( t) t - Jedinični n vekto nomale na putanju ( ) Vekto ubzanja a t poketne tačke u poizvoljnom tenutku vemena, jednak je pvom izvodu po vemenu vektoa bzine V ( t), odnosno, dugom izvodu po vemenu vektoa položaja ( t): a t = V & t = & t ( ) ( ) ( ) Za kivolinijsko ketanje, u opštem slučaju, vekto ubzanja je usmeen u konkavnu stanu putanje.
5 Zbog a ( t) = & ( t), ( t) = x( t) i + y( t) j ičinjenice da su i i j konstantni vektoi, dobija se vekto ubzanja: a( t) = && x( t) i + && y( t) j, odakle se vidi da su njegove pojekcije na koodinatne ose jednake dugim izvodima koodinata (jednačina ketanja) po vemenu: t & x t a t = & y t a = a + a a x ( ) = ( ), ( ) ( ) y Te pojekcije su, takođe, jednake pvim izvodima pojekcija bzine, kao funkcija vemena, po vemenu: a t = V& t, a t = V& t x ( ) ( ) ( ) ( ). x Na slici su nactani vektoi bzine i ubzanja u početnom M i poizvoljnom M položaju, koji odgovaaju početnom i poizvoljnom tenutku vemena, espektivno. Takodje su pikazane komponente vektoa V ( t) i a ( ). y y x y
6 Pime 1.1 Jednačine ketanja tačke u avni su x = t i y = t (t je u sekundama a x i y su u metima). Odediti liniju putanje i skiciati je? Odediti tajektoiju i oblast ketanja? Odediti i na putanji nactati bzinu u tenutku t=1s? Odediti ubzanje u poizvoljnom tenutku? Eliminacijom vemena t iz jednačina ketanja dobija se da je jednačina linije putanje paabola y = x Početni položaj: x ( ) =, y ( ) = (,) M Putanja (tajektoija) je samo desna gana paabole. Oblast ketanja: x, y
7 Pojekcije bzine i ubzanja u funkciji vemena dobijaju se peko izvoda od jednačina ketanja: x = t, y = t x& t =1 y &( t) = t, & x& ( t) =, & y& ( t) = ( ), Bzina u tenutku t=1s (pikazana je na slici sa pethodnog slajda) : x& ( 1 ) =1, y& ( 1 ) = V ( 1) = 1i + j, V ( 1) = 1 + = 5 m s Položaj u tenutku t=1s : x ( 1 ) =1, y ( 1) =1 M ( 1,1 ) Ubzanje u poizvoljnom tenutku: a t = j, a t = m s ( ) ( ) Vekto ubzanja je konstantan, paalelan sa y osom i usmeen naviše. Pime 1. Jednačine ketanja tačke u avni su x = + 3sin t i y = 1 cost (t je u sekundama a x i y su u metima). Odediti tajektoiju i skiciati je? Odediti oblast ketanja? Odediti i na putanji nactati bzinu i ubzanje u tenutku t = ( π 4) s? Jednačinu putanje dobićemo peueđenjem, kvadianjem pa sabianjem jednačina ketanja: y 1 ( ) ( ) x x x 1 = sin t, = cost + = 1 3 3
8 Jednačina elipse x xc x y + u b ( ) ( ) x =, y =1, C C C = 1 u=3 i b=. Oblast ketanja: 1 x 5, 1 y 3 Početni položaj: x ( ) =, y( ) = 1 M (, 1) x = + 3sin t y = 1 cos t Pojekcije bzine i ubzanja u funkciji vemena su: x& t = 6cos ( ) t ( t) = 4sin t ( t) = 1sin t ( t) = 8cos t y& && x && y Položaj, bzina i ubzanje u tenutku t = ( π 4) x ( π 4 ) = 5, y( π 4 ) = 1 x& ( π 4 ) = y& ( π 4 ) = 4 V ( π 4 ) = 4 j V ( π 4 ) = 4 m s & x& ( π 4) = 1 & y& ( π 4 ) = a( π 4) = 1i a ( π ) = 1 m 4 s
9 Pime 1.3 Jednačine ketanja tačke u avni su x = t 1 i y = t + (t je u sekundama a x i y su u metima). Odediti liniju putanje i skiciati je? Odediti tajektoiju i oblast ketanja? Odediti i na putanji nactati bzinu i ubzanje u tenutku t=1s? Eliminacije vemena t (odeđivanje jednačine linije putanje) y = t + t = y, x = t 1 = ( y ) 1 x = y 5 Početni položaj: = 1 = x ( ), y ( ) M ( 1, ) Tačka se keće stalno u jednom smeu (goe desno) pošto sa poastom vemena t, obe koodinate i x i y se stalno povećavaju. Zbog toga je tajektoija polupava (podebljani deo linije putanje) a oblast ketanja je x 1, y Položaj tačke u tenutku t=1s x 1 =1 ( 1 ) = 3 M 1,3 ( ), y ( ) y x
10 Pojekcije bzine i ubzanja u funkciji vemena su: x &( t) = 4t, y &( t) = t, & x& ( t) = 4, & y& ( t) = odakle se vidi da je vekto ubzanja tokom ketanja konstantan a ( t) = 4i + j = const. a ( t) = 4 + = 5 m s Bzina u tenutku t=1s x& ( 1 ) = 4, y& ( 1 ) = V ( 1) = 4i + j, V ( 1) = 5 m s Pime 1.4 Jednačine ketanja tačke u avni su x = sin t i y = cos t (t je u sekundama a x i y su u metima). Odediti liniju putanje i skiciati je? Odediti tajektoiju i oblast ketanja? Odediti bzinu i ubzanje u poizvoljnom tenutku? Odediti tenutak vemena t u kojem tačka pvi put menja sme ketanja? Za dobijanje jednačine linije putanje (odnosno, za eliminaciju vemena t iz jednačina ketanja) iskoistimo tigonometijske identitete pema kojima dobijamo da je linija putanje paabola: cost = cos t sin t, cos t = 1 sin t cost = 1 sin t y = 1 x Zbog 1 sint 1, 1 cos t 1 oblast ketanja je 1 x 1, 1 y 1
11 Tačka osciluje duž paabole a na mestima A i B menja sme ketanja. Pojekcije bzine i ubzanja u funkciji vemena su: x & t = cos t y& ( t) = sin t ( ), & x ( t) = sin t, && y( t) = 4cost Bzina u poizvoljnom tenutku: V t = cost i sin t ( ) j ( t) = cos t ( sin t) V + Ubzanje u poizvoljnom tenutku: a t = sint i 4cost ( ) j ( t) = sin t ( 4cost) a + Početni položaj: = = x ( ), y ( ) 1 (,1) M Zbog x& ( ) = 1 tačka je započela ketanje u desnu stanu. Na mestu pve pomene smea ketanja (A) bzina tačke jednaka je nuli: x& ( t ) = cos t =, y& ( t ) = sin t = t = ( π ) s
12 Tohoida. Cikloida Paametaske jednačine tohoide: (u pikazanoj vaijanati) x t = x = Vt + R sin ωt y ( ) M ( t) = y = R + R cosωt M C centa otoa (tačka koja se keće avnomeno pavolinijski, bzinom V) R polupečnik otoa (astojanje tačke M od tačke C), R = CM ω ugaona bzina otoa (konstanta) Tohoida Specijalni slučaj tohoide, za Rω = V, je ciklioda Bzina tačke M može se odediti peko pvog izvoda paametaskih jednačina: x& t = V + Rωcosωt y& ( ) ( t) = Rωsin ωt Ubzanje tačke M odeđuje dugi izvod: && x t = Rω sin ωt && y ( ) ( t) = Rω cosωt
13 Rω Ciklioda (Rω = V), i više tohoida (Rω > V). Na svakoj naednoj slici je veće. V
14 Cikloida dobijena kotljanjem bez klizanja kužnog diska po pavoj (x osi) Ovde je paameta, ne veme t, već ugao otacije diska ϕ. C centa diska (tačka koja se keće pavolinijski) R polupečnik diska R = CM Paametaske jednačine cikloide: (u pikazanoj vaijanati) x ϕ = x = Rϕ + Rsin ϕ y ( ) M ( ϕ) = y = R + Rcosϕ M Zbog kotljanja bez klizanja dužina duži A P jednaka je dužini kužnog luka AP, što je Rϕ. Bzina se može odediti peko pvog izvoda: x& = Rϕ & + Rϕ& cosϕ y& = Rϕ& sin ϕ
15 Kivolinijska koodinata. Jedinični vektoi tangente i nomale. Vekto bzine izažen peko njegove pojekcije na tangentu i njegov intenzitet. U piodnom koodinatnom sistemu koodinata koja u potpunosti odeđuje položaj tačke je kivolinijska (piodna, lučna) koodinata s(t). Međusobno upavni jedinični vektoi ovog koodinatnog sistema su t i n Jedinični vekto tangente t ima sme poasta koodinate s(t), dok je, njemu upavni, jedinični vekto nomale n uvek usmeen u konkavnu stanu putanje. Vekto bzine: V = Vtt, V = ± Vt d ds V =, d = dst, V = t, V = st & Vt = s& V = st & Tangencijalno i nomalno ubzanje Vekto ubzanja a u ovom koodinatnom sistemu ima oblik a = att + ann Pojekcije ubzanja na tangentu i nomalu at i an nazivaju se tangencijalnim i nomalnim ubzanjem. a = a t + a n
16 V = st & Difeencianjem ovog izaza po vemenu dobija se: dv a = = && st + s& t & Za dobijanje t & izazimo t i n peko i i j t = cosθi + sin θj, n = sin θi + cosθj d t& = t = sin θ θ& i + cosθ θ& j t& = θ& sin θi + cosθj = θ& & & n = θ ( ) t n U gonjem izvođenju koiščeni su: činjenica da su i i j konstantni i sledeći identiteti: d d dθ θ cosθ = cosθ = sin θ θ& d d d, sin θ = sin θ = cosθ θ& dθ dθ Sada, izaz za vekto ubzanja a = && st + s& t & postaje a = && st + s&& θn, što daje da tangencijalno i nomalno ubzanje odeđuju izazi: ( t) & s ( t), t = s& t θ& t a t = ( ) ( ) ( ) a n
17 Odedimo θ&, kako bi dobili konačni izaz za = &s θ & : a n & d θ dθ ds dθ θ = = = s& = ds ds s& R k & = θ s& R k gde je, na osnovu slike, koišćena jednakost: Rk - polupečnik kivine putanje R k dθ = ds dθ ds = 1 R k Konačno, pošto je s & = V, tangencijalno i nomlno ubzanje odeđuju fomule: a t ( t) =& s& ( t), a t ( t) = V& ( t), ( t) Polupečnik kivine u nekoj tački putanje pedstavlja polupečnik kuga koji najbolje apoksimia beskonačno malu okolinu te tačke. a n = V R ( t) ( t). k
18 Odeđivanje polupečnika kivine putanje (kinematički način) Ovde se podazumeva definisanje pocedue za odeđivanje polupečnika kivine putanje (samim tim, nomalnmog i tangencijalnog ubzanja) u nekom tenutku vemena, ako su poznate jednačine ketanja x(t) i y(t) u xoy koodinatnom sistemu. V ( ) ( t) V an t = Rk = R t a k ( ). n Intenzitet bzine i njegov kvadat su: ( ) ( ) ( ) Nomalno ubzanje odeđuje fomula an = a a t xx yy gde je: a = & x + & y, a t V& &&& + &&& = = V Gonja fomula može se izvesti sledećim difeencianjem po vemenu: d V = x& + y& VV& = xx &&& + yy &&& at V t = x& t + y& t, V = x& + y&
19 Pime 1.5 U pimeu 1.1 odediti polupečnik kivine putanje na mestu koje odgovaa tenutku vemena t=1 s. S obziom da je u tom tenutku vemena x & = 1m s, y& = m s, V = 5 m s, & x& =, && y = m s tangencijalno ubzanje iznosi xx &&& + yy &&& a t = = V S obziom da je u tom tenutku a x + y = = && & 4 5 m nomalno ubzanje iznosi 16 m an = a at = 4 =, 5 5 s pa je taženi polupečnik kivine V R = = = m 5. m k a 5 59 n ( ) m s s,
20 Pime 1.6 U pimeu 1. odediti polupečnik kivine putanje na mestu koje t = π 4 odgovaa tenutku vemena ( ) s S obziom da je u tom tenutku vemena x & =, y& = 4 m s, V = 4 m s, && x = 1 m s, & y =, tangencijalno ubzanje iznosi a t xx &&& + yy &&& = = V S obziom da je u tom tenutku a x + y = 1 + = 1 m s = && & nomalno ubzanje iznosi m an = a at = 1 = 1 s pa je taženi polupečnik kivine V 4 4 R = = = m 1. m k a n, Do zaključka da je at =, a = an = 1 m s itd. moglo se doći i na osnovu same slike
21 Pime 1.7 U pimeu 1.4 odediti polupečnik kivine putanje na mestu koje odgovaa početnom tenutku vemena t= s. S obziom da je u tom tenutku vemena x & = 1 m s, y& =, V = 1m s, & x& =, && y = 4 m s, tangencijalno ubzanje iznosi xx &&& + yy &&& a t = =. V S obziom da je u tom tenutku a = && x + & y = + 4 = 4 m s nomalno ubzanje iznosi m an = a at = 4 = 4, s pa je taženi polupečnik kivine R V 1 1 a 4 4 m k = = = n. I ovde se moglo doći do zaključka da je, a t = itd. na osnovu same slike
22 Pavolinijsko ketanje tačke U dinamici se pi pavolinijskom ketanju mateijalne tačke uvek jedna osa (na pime x) usvaja u pavcu ketanja dok je ona duga (y osa) upavna na pavac ketanja. Izložimo kinematiku takvog ketanja kao specijalni sličaj ketanja tačke u yox avni, Vektoe bzine i ubzanja su V ( t) = x& ( t) i, a( t) = && x( t) i, i ukoliko nisu nula vektoi, moaju imati pavac ketanja (pavac x ose). Pojekcije ovih vektoa na y osu moaju biti jednake nuli y& ( t) =, & y& ( t) =, što daje i jednakost ( t) = const. y = Intenziteti vektoa su: V = x&, a = & x x( t) je jednačina (zakon) ketanja Čestoće se za pavolinijsko ketanje tačke umesto x( t) koistiti i duge slovne oznake, kao na pime s( t), y, u, z,..., ali suština je ista. I tada će se bzine dobijati peko pvih izvoda tih koodinata a ubzanja peko dugih.
23 Pime x t = t + t t 18 i ubzanje u funkciji vemena i nactati 3 Za pavolinijsko ketanje tačke jednačina (zakon) ketanja je ( ) (t je u [s], x je u [m]). Odediti bzinu vektoe bzine i ubzanja u tenucima t =, t 6 i t 9 funkcije x ( t), x( t), x( t), s( t), & & t =? i na kom mestu x( t ) =? 1 x& t = 1+ t t 6 1 && x t = 1 3 Pojekcija bzine je ( ) a pojekcija ubzanja ( ) t V 1 = ( t) i a( t)? = tačka menja sme ketanja? sekundi? Nactati Odediti u kom tenutku vemena
24 Uvstimo sada u izaze za t, t i & x& t umesto vemena t vednosti, 6 i 9 kako bi dobili položaj, bzinu i ubzanje u tim vemenskim tenucima: x x x ( ) x& ( ) ( ) ( ) =, x& ( ) = 1 m s, && x( ) = 1 m s, x( 6) = 1 m, x& ( 6) = 1 m s, && x( 6) ( 9) = 9 m, x& ( 9) = 3.5 m s, && x( 9) = m s. = 1 m s,
25 Za t = ketanje je ubzano Za t = 6s ketanje je uspoeno Za t = 9s ketanje je ubzano ali se tačka keće u supotnom smeu od poasta x koodinate Tačka menja sme ketanja u tenutku t kada joj je bzina jednaka nuli, tj. 1 x& ( t ) = 1+ t t = t = , t 6,873 s x( t ) = 1, 455 m 6
26 Zakoni kod jednolikog i jednako pomenljivog pavolinijskog ketanja tačke Jednoliko (avnomeno) pavolinijsko ketanje x & = V = const. dx = V - difeencijalna jednačina x( ) = - početni uslov x( t) = V t - Zakon ketanja (Zakon puta) Jednako (avnomeno) pomenljivo pavolinijsko ketanje Ovde je a (ubzanje, uspoenje) konstantno Neka su početni uslovi: & x& = a > (jednako ubzano), a-ubzanje ili x ( ) =, x &( ) = V & x& = a < (jednako uspoeno), a-uspoenje dx& & x = = a = const. x &( t) = V + at -Zakon bzine } jednako ubzano t dx = ( V + at) x( t) = V t + a -Zakon puta dx& & x = = a = const. x& ( t) = V at -Zakon bzine } jednako uspoeno t dx = ( V at) x( t) = V t a -Zakon puta
27 Zakoni kod jednolikog i jednako pomenljivog kivolinijskog ketanja tačke Jednoliko (avnomeno) kivolinijsko ketanje s & = V = const. ds = V - difeencijalna jednačina s( ) = - početni uslov s( t) = V t - Zakon ketanja (Zakon puta) Jednako (avnomeno) pomenljivo kivolinijsko ketanje Početni uslovi: Ovde je a (tangencijalno ubzanje/uspoenje) konstantno T s ( ) =, ( ) & s& = a T > (jednako ubzano), a T - tangencijalno ubzanje ili s & = V & s& = at < (jednako uspoeno), a T - tangencijalno uspoenje ds& & s = = a = const. } T s& ( t) = V + att -Zakon bzine jednako ubzano t ds = ( V + att) s( t) = V t + a T -Zakon puta ds& & s = = at = const. s& ( t) = V att t ds = ( V att) s( t) = V t a T -Zakon bzine } jednako uspoeno -Zakon puta
28 Jedinični vektoi, jednačine ketanja i komponente bzine i ubzanja u polanom koodinatnom sistemu Polane koodinate tačke su: i ϕ Jednačine ketanja su: t i ϕ t ( ) ( ) Jedinični vektoi adijalnog i cikulanog pavca su: i c. Oni su zbog pomene ugla ϕ pomenljivi i za nalaženje njihovih izvoda po vemenu izazimo ih peko jediničnih vektoa i i j : = cosϕ i + sin ϕ j, c = sin ϕ i + cosϕ j & = ϕ& sin ϕ i + ϕ& cosϕ j d( cosϕ) d( cosϕ) dϕ = = sin ϕ ϕ& & dϕ = ϕ& ( sin ϕ i + cosϕ j ) & = ϕ& c c& = ϕ& ϕ i ϕ& ϕ j d( sin ϕ) d( sin ϕ) dϕ cos sin = = cosϕ ϕ& dϕ c& = ϕ& cosϕ i + sin ϕ j & ( ) c = ϕ&
29 Vekto položaja: = OM = Pvi izvod vektoa položaja daje vekto bzine i njegove komponente u adijalnom i cikulanom pavcu a samim tim i njegove pojekcije na adijalni i cikulani pavac: d = V = & + & V = & + ϕ& c V = &, Vc = ϕ& Pvi izvod vektoa bzine daje vekto ubzanja i njegove komponente u adijalnom i cikulanom pavcu a samim tim i njegove pojekcije na adijalni i cikulani pavac: d V = & a = && a = + ϕ& c + && ϕc + a = && ( ϕ& ) ( && ϕ + ϕ&& ) c + ϕ& ( ϕ& ) (&& ϕ& ) + ( ϕ && + && ϕ) c + && a = & ϕ&, ac = ϕ && + & ϕ& + d c + ϕ& c&
SLOŽENO KRETANJE TAČKE
SLOŽENO KRETANJE TAČKE DEFINISANJE SLOŽENOG KRETANJA TAČKE BRZINA TAČKE PRI SLOŽENOM KRETANJU a) Relativna bzina b) Penosna bzina c) Apsolutna bzina d) Odeđivanje zavisnosti apsolutne od elativne i penosne
VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku.
VEKTOR OENT SILE Z TČKU Vekto momenta sile, koja dejstvuje na neku tačku tela, za poizvoljno izabanu tačku pedstavlja meu obtnog dejstva sile u odnosu na tu poizvoljno izabanu tačku. Ovde je tačka momentna
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
1.1 Određivanje položaja i trajektorije materijalne tačke 1 KINEMATIKA
11 deđivanje položaja i tajektoije mateijalne tačke 1 1 KINEATIKA 11 deđivanje položaja i tajektoije mateijalne tačke snovni zadatak fizike (ϕνσιξ pioda) je izučavanje osnovnih svojstava piode, a jedno
5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA
5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,
RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.
RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
ELEMENTI TEORIJE SKALARNIH I VEKTORSKIH POLJA
ELEMENTI TEORIJE SKALARNIH I VEKTORSKIH POLJA Skalano polje. Gadijent Posto u čijoj je svakoj tački M definisana funkcija U(x,y,z) = U(M) = U( ) ( je vekto položaja tačke M) zovemo skalano polje. U daljem
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
MEHANIKA-V. Inercijalni i neinercijalni sistemi reference
4 MEHANIKA-V Inecijalni i neinecijalni sistemi efeence Fomulišući I Njutnov zakon ( Zakon inecije) koistili smo pojmove kao što su miovanje ili avnomeno ketanje Postavlja se pitanje koliko je opavdano
. (2.116) v r. Prvi član s desne strane (2.119) je jednak nuli iz razloga što su vektori v = i p kolinearni: r r r. r d L0 =. (2.
48 DINAMIKA.9 Dinamika otacije.9. Momentna jednačina za mateijalnu tačku Posmatamo kivolinijsko ketanje mateijalne tačke, mase m, koja u datoj tački putanje ima bzinu v, vekto položaja u odnosu na efeentnu
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
VEŽBE Elektrostatika
VEŽBE Elektostatika Još jedna supepozicija Pime ti azličito naelektisana tela Odedite sme sile na naelektisanje q: Odedite sme sile na naelektisanje q: Elektično polje pikazano linijama sila stvaaju dva
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Kinetička energija: E
Pime 54 Za iem pikazan na lici odedii ubzanje eea mae m koji e keće naniže kao i ilu u užeu? Na homogeni doboš a dva nivoa koji e obće oko zgloba O dejvuje, zbog neidealnoi ležaja konanni momen opoa M
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
UNIVERZITETSKA KNJIGA kinematika ISAK KARABEGOVIĆ. Bihać, p p
UNIVERZITETSK KNJIG kinematika ISK KREGOVIĆ 1 t a a t p a n p n a a co ihać, 4. U N I V E R Z I T E T S K K N J I G KINEMTIK II IZDNJE Tehnički fakultet, ihać, 4. UNIVERZITET U IHĆU TEHNIČKI FKULTET IHĆ
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
- Rad je dejstvo sile duž puta tj. kvantitativno povezuje silu i pomeraj koji je ona izazvala
Rad - Rad je dejstvo sile duž puta tj. kvantitativno povezuje silu i pomeaj koji je ona izazvala Posmatajmo slučaj kada je sila konstantna po intenzitetu i pavcu. Rad je: A= A = Δ cosγ γ = (, Δ) Δ Skalani
Fizika za studente na Departmanu za matematiku i informatiku na PMF-u u Novom Sadu
d Fedo Skuban Fizika za studente na Depatmanu za matematiku i infomatiku na PMF-u u Novom Sadu Depatman za fiziku, PMF Novi Sad Fizičke veličine. SI sistem jedinica 4 Osnovni pojmovi kinematike 0 Bzina
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Izvod po pravcu i vektor gradijenta. Seminarski rad A M271
Izvod po pavcu i vekto gadijenta Seminaski ad A M71 Student Mijana Eić 398/10 Mento d Jelena Aleksić Novi Sad, 011/01 Sadžaj 1Uvod 1 Izvod po pavcu 3Vekto gadijenta 7 31 Osobine gadijenta 9 3 Vekto gadijenta
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
1 Ubrzanje u Dekartovom koordinatnom sistemu
M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, II predavanje, 2017. 1 Ubrzanje u Dekartovom koordinatnom sistemu Posmatrajmo materijalnu tačku koja se kreće po trajektoriji prikazanoj na slici 1.
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
8 Funkcije više promenljivih
8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:
ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
Mašinski fakultet, Beograd - Mehanika 1 Predavanje 1 1 MEHANIKA
Mašinski fakultet, Beogad - Mehanika 1 Pedavanje 1 1 MEHNIK Mehanika je nauka koja poučava opšte zakone mehaničkih ketanja i avnoteže mehaničkih objekata. Pod mehaničkim ketanjem podazumeva se pomena položaja
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor
I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
1 Vektor ubrzanja u prirodnom koordinatnom sistemu
M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, III predavanje, 2017. 1 Vektor ubrzanja u prirodnom koordinatnom sistemu Posmatrajmo trajektoriju materijalne tačke prikazanu na slici 1. Smatramo
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Analitička geometrija
1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Fizika. Mehanika Sadržaj. dr Fedor Skuban. I godina studija na Tehnološkom fakultetu u Novom Sadu. Departman za fiziku, PMF Novi Sad
d Fedo Skuban Fizika I godina studija na Tehnološkom fakultetu u Novom Sadu Depatman za fiziku, PMF Novi Sad Elementi vektoskog ačuna 4 Fizičke veličine. SI sistem jedinica 8 Osnovni pojmovi kinematike
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.
Matematika 4 zadaci sa pro²lih rokova, emineter.wordpress.com Pismeni ispit, 26. jun 25.. Izra unati I(α, β) = 2. Izra unati R ln (α 2 +x 2 ) β 2 +x 2 dx za α, β R. sin x i= (x2 +a i 2 ) dx, gde su a i
VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su
ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk
Sistem sučeljnih sila
Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Dinamika krutog tijela. 14. dio
Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (
OTPORNOST MATERIJALA
3/8/03 OTPORNOST ATERIJALA Naponi ANALIZA NAPONA Jedinica u Si-sistemu je Paskal (Pa) Pa=N/m Pa=0 6 Pa GPa=0 9 Pa F (N) kn/cm =0 Pa N/mm =Pa Jedinična površina (m ) U tečnostima pritisak jedinica bar=0
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
MEHANIKA MATERIJALNE ČESTICE
ELEKTROTEHNIČKI AKULTET SARAJEVO INŽENJERSKA IZIKA I --pedavanja za 3. sedmicu nastave MEHANIKA MATERIJALNE ČESTICE.3.3 Kužno ketanje/gibanje Kada ubzanje mateijalne tačke nema isti pavac kao bzina, već
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
4 Numeričko diferenciranje
4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)
PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE
Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih
KUPA I ZARUBLJENA KUPA
KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.
J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e