FIZIKA JONIZOVANIH GASOVA
|
|
- Ανδώνιος Ελευθερίου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 FIZIKA JONIZOVANIH GASOVA Prof. dr Momčilo Pjović 1. POREKLO NAELEKTRISANIH ^ESTICA U GASU Gasovi pod normalnim uslovima sadr` voma mali broj nalktrisanih ~stica i zbog toga n provod lktri~nu struju. Nalktrisan ~stic s mogu pojaviti u gasu zahvaljuju}i jonizacionim procsima izazvanim prvnstvno ultraljubi~astim zra~njm Sunca, zatim kosmi~kim i radioaktivnim zra~njm okolin. Zahvaljuju}i tom u atmosfrskom vazduhu ima oko 10 jonskih parova u kubnom santimtru, {to j procntualno zanmarljivo malo u odnosu na broj nutralnih ~stica (atoma i molkula), tako da j vazduh dobar izolator. Tk kod vlikih intnzitta jonizuju}g zra~nja, kada s stvara vliki broj nalktrisanih ~stica, gas po~inj da s pona{a kao provodnik i tada, ako s nadj u lktri~nom polju, kroz njga } t}i lktri~na struja. Kada s gas zagrj do visokih tmpratura, zbog vlik brzin haoti~nog krtanja njgovih atoma ili molkula, u njihovim mdjusobnim sudarima takodj dolazi do jonizacij. Poznato j da s nalktrisana tla koja s nadju u blizini plamna vrlo brzo razlktri{u. Procsi jonizacij gasa uvk su pra}ni i procsima nstajanja nalktrisanih ~stica, naj~{} rkombinacijom, ali isto tako i difuzijom, a u slu~aju toka struj, nutralizacijom na lktrodama. Pod odrdjnim uslovima uspostavlja s ravnot`a broja procsa jonizacij i rkombinacij. Zahvaljuju}i ovoj dinami~koj ravnot`i u gasu stalno postoji nka koncntracija nalktrisanih ~stica oba znaka. Pod kocntracijom s podrazumva broj ~stica odrdjn vrst u jdinici zaprmin (n - koncntracija lktrona, n j - koncntracija jona i n o - koncntracija nutralnih ~stica). Dinami~ka ravnot`a s rmti kada s promni makar jdan od uslova, na primr intnzitt jonizuju}g zra~nja, pritisak gasa i sli~no. U staklnoj cvi u kojoj s nalazi gas pod sni`nim pritiskom t}i } lktri~na struja izmdju dv lktrod ako s on priklju~ na izvor napona i ako postoji jonizuju}i agns zahvaljuju}i kom s stvaraju nalktrisan ~stic. Kod slabijih lktri~nih polja, ako s ukloni izvor jonizacij struja prstaj da t~. U tom slu~aju govori s o nsamostalnom lktri~nom pra`njnju kroz gas. Kod jakih lktri~nih polja javljaju s i nki dodatni procsi multiplikacij indirktno izazvanih lktri~nim poljm, tako da struja t~ i posl uklanjanja spolja{njg izvora jonizacij. U tom slu`aju s govori o samostalnom pra`njnju, koj s u zavisnosti od uslova dli na tinjavo i lu~no. Drug vrst samostalnog pra`njnja koj s javljaju spadaju u jdnu od navdn dv. Tako na primr, varnica j kratkotrajni lktri~ni luk, dok korona spada u grupu tinjavih pra`njnja. Procsi pri kojima nastaju i nstaju nalktrisan ~stic u gasu su mnogobrojni. U prgldu vrsta tih procsa koji sldi nisu nabrojani svi procsi, v} samo oni koji su najzna~ajniji. Va`no j napomnuti da s pri jonizaciji molkula (atoma) gasa stvaraju ngativni lktroni i pozitivni joni i oni su najva`niji sastavni lmnti jonizovanog gasa. Molkuli nkih gasova (na primr, kisonika i SF 6 ) imaju osobinu da zahvataju slobodn lktron pri ~mu s stvaraju ngativni joni. Ti s gasovi zbog toga nazivaju lktrongativnim. 1
2 1.1 PROCESI JONIZACIJE-STVARANJE NAELEKTRISANIH ^ESTICA Da bi kvant zra~nja ili nka ~stica pri intrakciji sa atomom ili molkulom gasa mogla da izazov jonizaciju (ili pobudjivanj) mora da ima nrgiju koja j jdnaka ili v}a od nrgij jonizacij (ili pobudjivanja) atoma ili molkula sa kojim intraguj, tj.: E h ν, ~stica U i ( U x ), gd j U i potncijal jonizacij, a U x potncijal kscitacij. Oznak koj } biti kori{}n imaju sld}a zna~nja: hν - kvant lktromagntnog zra~nja - lktron A, B - atom (ili molkul) A +, B + - jdnostruko jonizovan atom (pozitivan jon) A *, B * - pobudjn atom Jonizacija zra~njm + Dirktna: h ν + A A + * Stpnasta: hν + A A * + A + ( hν ) A + 2( ) Enrgtskim ~sticama (nalktrisanim) Trmalna jonizacija + Dirktna: + A A A + A 2A + * Stpnasta: + A A + * A + A A + A A + A Stvaranj nalktrisanih ~stica na lktrodama Fotolktronska misija: h ν + lktroda + Skundarna misija jonima: A + lktroda Trmolktronska misija: toplota + lktroda Emisija pod djstvom polja: l. polj + lktroda 1.2 PROCESI NESTAJANJA NAELEKTRISANIH ^ESTICA Procsi suprotni procsima navdnim pod brojm , i nazivaju s procsi rkombinacij nalktrisanih ~stica i mogu s odigrati u jonizovanom gasu prko dva procsa. 2
3 Radijativna rkombinacija + * A + A ( A ) + hν Rkombinacija pri sudaru tri ~stic + A + + ( A) A + ( A) Kod radijativn rkombinacij vi{ak nrgij s oslobadja u obliku kvanta, dok s pri sudarnim rkombinacionim procsima vi{ak nrgij prdaj tr}oj ~stici. 2. TRANSPORTNI PROCESI U JONIZOVANOM GASU Pord haoti~nog trmalnog krtanja, nalktrisan ~stic u jonizovanom gasu mogu da imaju i usmrnu komponntu brzin. Do pojav usmrnog krtanja mo` do}i zbog prisustva lktri~nog polja, a takodj i zbog pojav gradijnta koncntracij lktrona ili jona. U jonizovanom gasu oba ova uzroka javljaju s istovrmno. Naim, spolja{nj lktri~no polj uslovljava prostornu raspodlu nalktrisanh ~stica i prouzrokuj na taj na~in pojavu gradijnta koncntracij. Postojanj gradijnta koncntracij, sa drug stran, zbog razli~it koncntracij nalktrisanih ~stica prouzrokuj pojavu lktri~nog polja. Bz obzira na uzrok svog nastanka, usmrno krtanj nalktrisanih ~stica prdstavlja lktri~nu struju USMERENO KRETANJE ELEKTRONA U ELEKTRI^NOM POLJU- DRIFT U slabo jonizovanom gasu (kada j mali broj nalktrisanja u gasu) lktroni s u toku svog haoti~nog krtanja sudaraju, uglavnom, sa nutralnim atomima. Svaki lktron za vrm izmdju dva sudara biva ubrzan od spolja{njg lktri~nog polja, tako da lktronski gas kao clina dobija nku usmrnu brzinu u pravcu polja. Prtpostavlja s da lktron u svakom sudaru izgubi usmrnu komponntu brzin i da j ubrzanj koj mu polj saop{tava E/m. Po{to s radi o jdnako ubrzanom krtanju, za vrm t izmdju dva sudara lktron prdj u pravcu polja put E 2m t x = 2. (1) Ako s prtpostavi da svi lktroni imaju brzinu jdnaku srdnjoj trmalnoj brzini v, i da j srdnja du`ina slobodnog puta λ, tada j vrm izmdju dva sudara τ=λ/ v. Tada j brzina usmrnog krtanja (drift) x λ vd = = E = µ E, (2) τ 2mv gd j µ pokrtljivost lktrona. Ta~an prora~un brzin usmrnog krtanja lktrona zahtva uzimanj u obzir da trmaln brzin lktrona nisu ist v} da s 3
4 pokoravaju nkoj raspodli. Isti j slu~aj i sa slobodnim putvima koji takodj podl`u nkoj raspodli, tako da j nophodno izvr{iti usrdnjavanj izraza (2) za sv brzin i sv slobodn putv. U tom slu~aju brzina usmrnog krtanja lktrona s mo` napisati u sld}m obliku λ v d =, (3) 3mv gd j v brzina grup lktrona. Ako s prtpostavi da lktroni imaju Maksvlovu raspodlu brzina, mo` s izvr{iti usrdnjavanj za ov brzin. Usrdnjavanjm brzin drifta za sv brzin dobija s Eλ 2m v d =. (4) 2m π kt Ako s uvd srdnja aritmti~ka vrdnost brzin lktrona 8kT v =, (5) πm izraz za srdnju brzinu usmrnog krtanja lktrona dobija sld}i oblik: 2 λ λ1 E 2 v d = E =, (6) π mv mv p π gd j λ 1 srdnji slobodni put na jdini~nom pritisku, a p j pritisak gasa. Iz izraza (6) sldi da j pokrtljivost lktrona v d 2 λ µ = = 1 (7) E π mv konstanta za dati gas na datoj tmpraturi. Ovo j ta~no samo za slaba lktri~na polja kada su brzin lktrona blisk trmalnim brzinama na tmpraturi gasa. Ovo bi trbalo da bud ta~no samo u slu~aju ako vrdnost E/p n prlazi 10-2 V/(mPa). Obzirom da su vrdnosti E/p prakti~no u svakom ralnom slu~aju v}, mora da s nadj nrgija koju imaju slobodni lktroni i njihova tmpratura. U ovom slu~aju s za usmrnu brzinu lktrona dobija sld}i izraz λ 4 1 δ E v d =, (8) 2 π m p gd δ prdstavlja do prdat nrgij atomu od stran lktrona δ=2m/m, gd j m masa lktrona, a M masa atoma ili molkula sa kojim s lktron sudara. Pokrtljivost lktrona u ovom slu~aju nij konstantna, v} zavisi od lktri~nog polja kao E -1/2 v 2 = d λ δ µ = 4. (9) E 3 πme Prtpostavljaju}i Maksvlovu raspodlu brzina lktrona mo` s izraziti tmpratura lktrona znaju}i da j kinti~ka nrgija 2 mv 3 W = = kt. (10) 2 2 Vrdnost tmpratur lktrona j prma tom 1 Eλ 1 λ E T = =. (11) 6δ k 6δ k p 1 2 4
5 Eksprimntalna mrnja pokazuju da formul (8), (9), (10) i (11) daju dobr vrdnosti brzin drifta, pokrtljivosti i tmpratur lktrona USMERENO KRETANJE JONA U GASU Usmrno krtanj jona u gasu pod djstvom lktri~nog polja ima principijlno isti karaktr kao u slu~aju lktrona. Mdjutim, zbog vlik mas jona, mo` s uzti da su sudari sa molkulima gasa prakti~no uvk lasti~ni, ~ak i kod jakih lktri~nih polja. Po{to j tmpratura jona u lktri~nom pra`njnju uglavnom manja od tmpratur lktrona, a njihova masa j mnogo v}a, njihov trmaln brzin su mnogo manj od brzin lktrona. Usld rlativno sporog krtanja jona u blizini molkula dolazi do njihov polarizacij. Zbog intrakcij jona sa molkulima trtman usmrnog krtanja jona j druga~iji. Korist}i toriju o fktu indukovanja dipola u molkulima koju su dali Tomson i Lan`vn za pokrtljivost jona dobija s kona~an izraz 1 2 ε 2 0 π µ j =, (12) 3ρ( ε r 1) gd j ρ = Mn gustina gasa i ε r = 1+ η rlativna dilktri~na propustljivost, dok j P η lktri~na suscptibilnost ( η =, P intnzitt vktora polarizacij). E ε ELEKTRI^NA PROVODNOST Elktri~na provodnost jonizovanog gasa s mo` izraziti prko lktronsk i jonsk pokrtljivosti. Elktroni i joni driftuju u suprotnim smrovima i doprinos ukupnoj gustini struj j j = j + j = n v + n v (13) j d Kada su koncntracij lktrona i jona jdnak ( n = ni = n ) sldi: j = j + j = n v + v ) = ne( µ + µ ), (14) i i dj ( d dj j a lktri~na provodnost gasa j σ = j E = n( µ + µ ) (15) / j Ako s uzm u obzir da j µ >> µ j, provodnost j pribli`no jdnaka σ = nµ (16) 3. NESAMOSTALNO PRA@NJENJE I ELEKTRI^NI PROBOJ Kao {to j r~no na po~tku, usld kosmi~kog zra~nja i prirodn radioaktivnosti okolin, u atmosfrskom vazduhu nastaj oko 10 lktron-jonskih parova u kubnom santimtru u skundi. U odsustvu lktri~nog polja uspostavlja s ravnot`a izmdju brzin stvaranja i nstajanja nalktrisanih ~stica u gasu. Ako s na gasnu cv na niskom pritisku sa parallnim lktrodnim sistmom (slika 1) priklju~i jdnosmrni napon U usld prisustva nalktrisanja u gasu, u kolu po~inj da t~ struja. Elktri~no polj j homogno i iznosi E=U/d, 5
6 U A Slika 1. gd j d mdjulktrodno rastojanj. Laganim podizanjm napona mo` s dobiti strujno-naponska karaktristika koja prdstavlja zavisnost struj u gasnoj cvi od priklju~nog napona na njoj (slika 2). Pri vrlo sporom porastu napona strujnonaponska karaktristika j stati~na, jr s pri svakoj vrdnosti napona uvk uspostavlja stacionarno stanj u gasu. Kada j za proticanj struj nophodno stvaranj nalktrisanih ~stica pomo}u spolja{njg izvora jonizacij (na primr osvtljavanjm ultraljubi~astom svtlo{}u), pra`njnj j nsamostalno. Na strujno-naponskoj karaktristici nsamostalnog pra`njnja (slika 2) mogu s uo~iti sld} oblasti: I-linarna oblast i zasi}nj, II-oblast sa pojavom jonizacij lktronskim udarom i III-oblast sa u~{}m procsa skundarn misij na katodi. Ov oblasti nsamostalnog pra`njnja nazivaju s Townsnd-ovim oblastima. i I II III Slika 2. U 3.1. LINEARNA OBLAST I ZASI]ENJE (OBLAST I) Ako j brzina stvaranja lktron-jonskih parova u prostoru izmdju lktroda 3 1 pod djstvom jonizuju}g zra~nja k i [ cm s ] (koficijnt jonizacij), onda } promna koncntracij lktrona ili jona u jdinici zaprmin biti dn 2 j = ki β n, (17) dt d gd j n = n = n i koncntracija lktrona i jona, β koficijnt brzin lktronjonsk rkombinacij (vrovatnoa rkombinacij pri susrtu jdnog lktrona i jdnog jona) i j ukupna gustina struj na lktrodama. U slu~aju ravnot` procsa nastajanja i nstajanja nalktrisanih ~stica, tj. kada j dn / dt = 0, odnosno n=const., prthodna jdna~ina prlazi u oblik 6
7 2 j k i = β n +. (18) d Za slaba lktri~na polja, kada j broj nalktrisanih ~stica koj nstaju na lktrodama mnogo manji od broja nstalih u rkombinacijama, drugi ~lan u jdna~ini (18) s mo` zanmariti u odnosu na prvi. Sldi da j koncntracija nalktrisanih ~stica tada stalna i zavisi samo od koficijnata jonizacij i rkombinacij, tj. k i n =. (19) β Smnom ovog izraza u izraz (15) dobija s da j ki j = ( µ + µ j ) E, (20) β {to j u su{tini Omov zakon koji daj linarnu zavisnost gustin struj od ja~in lktri~nog polja. Zbog vlik mas jona u odnosu na lktron, a za ist tmpratur, njihova pokrtljivost s mo` zanmariti u odnosu na pokrtljivost lktrona, tako da jdna~ina (20) dobija sld}i oblik ki j = µ E. (21) β Ovaj izraz opisuj pona{anj prvog dla kriv u oblasti T 1 u kom struja rast proporcionalno sa naponom. U slu~aju ja~ih polja, tj. za v} napon na lktrodama, gustina struj j v}a i prakti~no sv nalktrisan ~stic koj s stvor spolja{njom jonizacijom u~stvuju u prno{nju struj. Tada s mo` zanmariti broj ~stica nastalih rkombinacijom u odnosu na broj nutralizovanih na lktrodama tako da iz izraza (18) sldi da j gustina struj j = kid (22) kod datog intnzitta zra~nja ( j = const. ) j j konstanta i jdnaka struji zasi}nja j 0. U ovoj oblasti struja n zavisi od ja~in lktri~nog polja, njna vrdnost j odrdjna samo intnzittom spolja{njg jonizatora. Zbog toga s ovaj do karaktristik u oblasti I koristi pri mrnju intnzitta jonizuju}g zra~nja. Ovo j dakl oblast rada jonizacionih komora JONIZACIJA ELEKTRONSKIM UDAROM (OBLAST II) Sa pov}anjm napona izmdju lktroda pov}ava s i ja~ina lktri~nog polja. Za dat uslov odrdjn vrstom i pritiskom gasa i za dovoljnu ja~inu polja, lktroni izmdju sudara mogu da dobiju dovoljnu nrgiju i da u sld}m sudaru izvr{ jonizaciju. To zna~i da } pod tim uslovima koncntracija lktrona da s pov}a i da } s njihov broj od katod do anod pov}avati u obliku lavin. Za opisivanj ovog procsa Townsnd j uvo koficijnt jonizacij lktronskim udarom α, koji prdstavlja broj jonskih parova koj stvara lktron po jdinici du`in puta driftuju}i ka anodi. On s takodj naziva prvim Townsnd-ovim koficijntom, a procs jonizacij lktronskim udarom α -procsom. Porast broja lktrona dn pri prolasku rastojanja dx ka anodi iznosi dn = αn dx (23) Prtpostavi} s da jonizacioni agns oslobadja lktron sa katod procsom fotofkta, a da s jonizacija gasa ovim agnsom mo` zanmariti. Ako j broj lktrona koji polaz sa katod po jdinici povr{in u jdinici vrmna, intgracija n 0 7
8 jdna~in (23) u granicama od 0 do d (d mdjulktrodno rastojanj) daj broj lktrona koji u jdinici vrmna sti` na jdinicu povr{in anod: n = n0. (24) Pov}ana gustin struj s mo` izraziti na sld}i na~in j = j, (25) j 0 0 gd j struja saturacij lktrona mitovanih fotofktom sa katod. Sv navdn zakonitosti va` pod prtpostavkom da s zanmari nstajanj lktrona rkombinacijom i difuzijom. Odnos n j i = = =, (26) n0 j0 i0 naziva s koficijnt multiplikacij lktrona u prostoru izmdju lktroda. Ako s mri struja pri razli~itim rastojanjima d, a pri konstantnom α odnosno konstantnom E i p, iz nagiba ln( i / i 0 ) = mo` s odrditi α. Ovakav postupak j primnljiv pri slabim homognim poljima kada s pozitivno prostorno nalktrisanj mo` zanmariti. Za analiti~ko opisivanj zavisnosti koficijnata α od odnosa E/p koristi s Townsnd-ova smi-mpirijska formula: α / p = Axp( Bp / E), (27) gd su A i B konstant za dati gas i odrdjuju s fitovanjm ksprimntalnih podataka U^E[]E SEKUNDARNE EMISIJE NA KATODI (OBLAST III) Kod v}ih napona izmdju lktroda po~inju da s javljaju i fkti vzani za jon. Zahvaljuju}i ja~im lktri~nim poljima joni sti~u dovoljnu nrgiju da oslobod skundarn lktron iz katod i da jonizuju nutraln atom ili molkul. Po{to jonizacija sudarom jona sa molkulima postaj zna~ajna tk za nrgij jona oko 1000 V, ovaj s procs u v}ini slu~ajva mo` zanmariti u odnosu na oslobadjanj lktrona iz katod. Ako s uzm u obzir da pozitivni joni dovod do oslobadjanja skundarnih lktrona sa katod onda s za broj lktrona koji u jdinici vrmna sti` na jdinicu povr{in anod mo` izraziti na sld}i na~in = n n0, (28) α 1 γ ( d 1) gd j q = γ [xp( ) 1] koficijnt lavinskog umno`avanja (multiplikacij). Originalna Townsnd-ova torija j izvdna kori{}njm koficijnta skundarn misij pozitivnim jonima γ i koji prdstavlja broj skundarnih lktrona mitovanih po jdnom pozitivnom jonu pristiglom na katodu. Procsi skundarn misij mogu biti izazvani i drugim mhanizmima (fotofktom, udarom mtastabilnih stanja itd.) i u tom slu~aju u gornjm izrazu trba koristiti fktivni koficijnt skundarn misij γ. f Pov}anj gustin struj s mo` izraziti na sld}i na~in: = j j0. (29) α 1 γ ( d 1) 8
9 Struja pra`njnja u ovom slu~aju j ja~a zbog γ procsa, ali jo{ uvk j proporcionalna struji zbog spolja{njg jonizatora j 0. To zna~i da kada s ukloni spolja{nji izvor jonizacij, struja prstaj da t~. Faktor multiplikacij u ovom slu~aju j n i j = = =. (30) n i j 1 γ ( 1) ELEKTRI^NI PROBOJ U GASU I PASCHEN-OV ZAKON Uklanjanjm spolja{njg izvora jonizacij kada s pra`njnj vr{i u jdnoj od Townsnd-ovih oblasti dolazi do trnutnog prstanka toka struj. Pov}anj napona na lktrodama prko granic tr} Townsnd-ov oblasti prouzrokuj nagli porast struj i prlaz iz nsamostalnog u samostalno pra`njnj. Kada s to dogodi, struja nastavlja da t~ i posl uklanjanja spolja{njg jonizatora. Uzimaju}i da u trnutku proboja struja naglo porast, tj. da gustina struj j, iz jdna~in (29) sldi uslov za proboj odnosno 1 γ ( 1) = 0, (31) γ ( 1) = 1. Iz ov zadnj formul sldi fizi~ki smisao uslova za proboj. Faktor u zagradi j broj jona koj u multiplikovanim procsima stvori jdan lktron na putu od katod do anod. Taj faktor pomno`n sa γ j broj novih lktrona koj ti joni izbiju sa katod. Po kritrijumu (32) taj broj trba da bud jdnak 1, {to zna~i da uslov proboja zahtva da svaki lktron koji podj sa katod, multiplikovanim procsima obzbdi stvaranj jdnog novog lktrona na katodi. U tom slu~aju s obzbdjuj kontinuitt stvaranja nalktrisanih ~stica nzavisno od postojanja spolja{njg izvora. Iz uslova (31) sldi da j 1+ γ = (33) γ odnosno 1+ γ = ln. (34) γ Uvod}i u izraz za Townsnd-ov koficijnt α (izraz (28)), vrdnost lktri~nog polja, u slu~aju proboja, tj. E d, gd j U napon pri kom nastaj p = U p / p samostalno pra`njnj (probojni napon), dobija s posl mno`nja sa d Bpd α d = paxp( ) d. (35) U Izjdna~avaju}i dsn stran izraza (34) i (35) i logaritmuju}i dobija s Bpd 1 1+ γ = ln[ ln ] U pda γ p p odakl sldi izraz za probojni napon Bpd U p = (37) A ln[ pd] ln(1 + 1/ γ ) (32) (36) 9
10 Kriv probojnog napona u zavisnosti od proizvoda pd imaju minimum i poznat su pod nazivom Paschn-ov kriv. Paschn-ov kriv za nkoliko gasova prikazan su na slici 3 (ubaciti sliku). Slika 3. Razlog postojanja minimuma l`i u ~injnici da j broj molkula izmdju lktroda proporcionalan proizvodu pd. U slu~aju malih pritisaka, srdnji slobodni put j vliki, ali j broj sudara, pa i jonizuju}ih sudara, mali. Prma tom da bi s obzbdila v}a fikasnost jonizacij dovoljna za proboj, potrban j napon utoliko v}i, utoliko j manji pritisak. Da bi s odrdila minimalna vrdnost probojnog napona ( i U p ) min odgovaraju} vrdnosti proizvoda ( pd) min, potrbno j difrncirati izraz (37) po pd i izjdna~iti sa nulom. Nalazi s da j u tom slu~aju ln[ A ( pd)] 1 ln(1 + 1/ γ ) = (38) Iz jdna~in (37) prma tom sldi da j ( U p ) = B( pd (39) min ) min Kako j iz izraza (38) ln(1 + 1/ γ ) ( pd) min = (40) A to s za minimalni probojni napon dobija B ( U p ) min = ln(1 + 1/ γ ), (41) A gd j osnova prirodnog logaritma (=2.718). 5. VREME KA[NJENJA ELEKTRI^NOG PROBOJA Do lktri~nog proboja u gasovima n dolazi odmah posl priklju~nja napona na lktrod gasn cvi, v} posl odrdjnog vrmna i ono s naziva vrmnom 10
11 ka{njnja lktri~nog proboja. Pokazalo s da j ono, kao i probojni napon, vli~ina statisti~kog karaktra. Vrm ka{njnja lktri~nog proboja (t d ) s mo` dfinisati kao vrm od momnta priklju~ivanja napona na gasnu cv v}g od probojnog napona (slika 4) do nastanka proboja, tj. dostizanja vrdnosti struj zadat uslovima mrnja. Sastoji s iz statisti~kog vrmna ka{njnja ( ) i vrmna formiranja pra`njnja ( t f ) (slika 4). U t s U w I z t s Slika 4. Statisti~ko vrm ka{njnja prdstavlja vrm od momnta priklju~nja napona na lktrod gasn cvi do momnta pojav inicijalnog lktrona koji } izazvati proboj. Karaktri{ ga struja u cvi u opsgu rda A sa fluktuacijama istog rda vli~in. Vrm formiranja pra`njnja prdstavlja vrm porasta struj od pojav usp{nog inicijalnog lktrona do uslovima mrnja zadat vrdnosti. t d t f t 6. SAMOSTALNO PRA@NJENJE Kada j napon na lktrodama dovoljno vliki, nsamostalno pra`njnj prlazi u samostalno. Sam prlaz izmdju nsamostalnog i samostalnog pra`njnja j dosta nodrdjn i odigrava s u trnutku kada struja postign ja~inu rda 10 µ A. Oblast samog prlaza odgovara tzv. subnormalnom tinjavom pra`njnju, {to s mo` zapaziti sa slik 5. Sa daljim pov}anjm ja~in struj, pra`njnj prlazi u oblast normalnog tinjavog pra`njnja ( A) koja s karaktri{ konstantnom vrdno{}u napona izmdju lktroda. Sa daljim pov}anjm ja~in struj napon ponovo po~inj da rast i pra`njnj prlazi u abnormalno tinjavo pra`njnj. Pov}anj struj do ja~in rda 10-1 A izaziva nagli prlaz u oblast lu~nog pra`njnja u kom napon na lktrodama opada sa pov}anjm ja~in struj. 11
12 Slika STRIMERNO Pri vlikim lktri~nim poljima (oko V / cm ) u vazduhu koji s nalazi na normalnom atmosfrskom pritisku javlja s pra`njnj u obliku varnic. Varnica ima oblik vrlo svtlog, krivudavog i razgranatog kanala-strimra. Strimr, prko koga id formiranj varnic, povzuj oblasti (ta~k) u gasu sa razli~itim potncijalima. U toku formiranja lktri~n varnic, gas u svtlom kanalu karaktri{ vlika lktri~na provodnost. Zbog toga tmpratura u kanalu mo` da narast na hiljadu do nkoliko dstina hiljada stpni. Usld razli~it tmpratur u kanalu i van njga gas s naglo {iri {to izaziva pucktanj ili prasak. Pri kojm naponu } s pojaviti varnica zavisi od rastojanja izmdju lktroda i pritiska gasa, zatim od vrst gasa kao i oblika i vli~in lktroda. Usld naglog pra`njnja kroz gas napon obi~no opadn u vlikoj mri t prstaj fkat udarn jonizacij i varnica s gasi. Varni~no pra`njnj j uslovljno lavinom lktrona i jona, koju izaziva udarna jonizacija, fotojonizacija i izbijanj lktrona sa katod. 8. PRA@NJENJE U OBLIKU KORONE Korona j spcijalna vrsta pra`njnja u nhomognom lktri~nom polju. Javlja s u vazduhu i u drugim gasovima u blizini vrhova i izbo~nih povr{ina lktroda i du` `ica kada s nalaz na visokim potncijalu u odnosu na svoju okolinu. Kod lktrodnih sistma javlja s uvk oko on lktrod u ~ijoj s blizini nalazi ja~ polj. Takv lktrod s nazivaju aktivn. Elktrod sa slabijim poljm u okolini su pasivn i slu` kao kolktor. Korona mo` biti pozitivna i ngativna {to zavisi od toga uz koju s lktrodu vr{i pra`njnj. Ako j aktivna lktroda na pozitivnom potncijalu formira} s pozitivna korona, u protivnom nastaj ngativna korona. U mdjuprostoru izmdju lktroda razlikuju s dv oblasti, jdna u nposrdnoj blizini aktivn lktrod u 12
13 kojoj j gustina polja vlika i druga, oblast slabog polja, u nastavku do pasivn lktrod. U prvoj oblasti vr{i s jonizacija gasa zbog ~ga j nazvana jonizaciona oblast ili zona. Pra`njnj u oblasti koron j odrdjno oblikom polja, vrstom gasa, pritiskom, tmpraturom i drugim uslovima. Ono s manifstuj kao svtlucanj raznih boja u okolini aktivn lktrod i zavisi od srdin. Ponkad s javlja zvu~ni signal u obliku {u{tanja i krckanja u blizini lktroda sa malim radijusom. Osnovni procsi u pra`njnju u obliku koron su vzani za α i γ procs Townsnd-ovog pra`njnja. Ovo s odnosi kako na jdnosmrnu koronu tako i na koronu u naizmni~nom polju nisk frkvncij. 13
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.
Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
Sistem sučeljnih sila
Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.
IOAE Dioda 8/9 I U kolu sa slike, diode D su identične Poznato je I=mA, I =ma, I S =fa na 7 o C i parametar n= a) Odrediti napon V I Kolika treba da bude struja I da bi izlazni napon V I iznosio 5mV? b)
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
2H + CuCl Cu Cl SO 4. Provođenje struje kroz: elektrolite i jonizovane gasove; termoelektricitet i električni luk - H
Provođnj struj kroz: lktrolit i jonizovan gasov; trmolktricitt i lktrični luk.8 Provođnj struj kroz lktrolit Čista voda j dobar izolator. Mđutim, rastvori kisjlina, baza i soli u vodi, su rlativno dobri
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
ZI. NEODREðENI INTEGRALI
ZI. Nodrđni intgrali 7 ZI. NEODREðENI INTEGRALI. Antidrvacij. Pronañi tri antidrivacij funkcij.. Odrdi sv antidrivacij funkcij.. Pronañi dvij antidrivacij funkcij.. Pronañi antidrivaciju funkcij za koju
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić
OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
1. Uvodna razmatranja U ovom predavanju se navodi jedna motivacija za proučavanje tema koje čine sadržaj kursa.
Izabrana poglavlja primnjn analiz 1. XI 217. 1. Uvodna razmatranja U ovom prdavanju s navodi jdna motivacija za proučavanj tma koj čin sadržaj kursa. 1.1. Linarni vrmnsko-invarijanti i vrmnsko-nprkidni
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
VEŽBA 4 DIODA. 1. Obrazovanje PN spoja
VEŽBA 4 DIODA 1. Obrazovanje PN spoja Poluprovodnik može da bude tako obrađen da mu jedan deo bude P-tipa, o drugi N-tipa. Ovako se dobije PN spoj. U oblasti P-tipa šupljine čine pokretni oblik elektriciteta.
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
1. Na slici je prikazan grafik zavisnosti vremenske promene napona između dve tačke u jednom kolu.
Doaci /REŠENJA ADATAKA. Na slici j prikazan grafik zavisnosti vrnsk pron napona izđu dv tačk u jdno kolu. a) Odrditi aplitudu, fktivnu vrdnost, počtnu fazu, kružnu učstanost i frkvnciju ovog napona. b)
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
Dijagonalizacija operatora
Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Snage u kolima naizmjenične struje
Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Idealno gasno stanje-čisti gasovi
Idealno gasno stanje-čisti gasovi Parametri P, V, T i n nisu nezavisni. Odnos između njih eksperimentalno je utvrđeni izražava se kroz gasne zakone. Gasni zakoni: 1. ojl-maritov: PVconst. pri konstantnim
MEHANIKA KOTRLJANJA TOČKA
MEHANIKA KOTRLJANJA TOČKA Kako s odrđuj smr tangncijaln rakcij? MEHANIKA KOTRLJANJA TOČKA Smr rakcij j uvk suprotan djstvu koj tži da izazov klizanj! Sv ovo važi bz obzira na smr ugaon brzin! Aktivno spoljno
Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT
OASDSP : 7 FFT Dkompozicija DFT Brzi algoritmi a bazi radix- Brza Furijova trasofrmacija Tačost izračuavaja Komplksa FFT ovi Sad, Oktobar 5 straa OASDSP : 7 FFT Brza trasformacija : itrativa dkompozicija
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
10.1. Bit Error Rate Test
.. Bt Error Rat Tst.. Bt Error Rat Tst Zadata. Izračuat otrba broj rth formacoh bta u BER tstu za,, ogršo dttovaa bta a rjmu, tao da s u sstmu sa brzoom sgalzacj od Mbs mož tvrdt da j vrovatoća grš rosa
Priprema za državnu maturu
Priprma za državnu maturu E L E K T R O S T A T I K A 1. Elktrički nutralno tijlo nakon trljanja vunnom krpom postan lktrizirano nabojm +Q. Koliki j ukupan naboj krp i tijla nakon trljanja? Vunna krpa
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet
Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.
šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.
KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO