SAVIJANJE I UVIJANJE TANKOSTJENIH KOMPOZITNIH ŠTAPOVA OTVORENOG POPREČNOG PRESJEKA

Σχετικά έγγραφα
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

J. Brnić & G. Turkalj: Nauka o čvrstoći I, Tehnički fakultet Sveučilišta u Rijeci, Rijeka, 2004.

VAŽNO. Posmino naprezanje τ

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

Periodičke izmjenične veličine

STATIKA KONSTRUKCIJA I

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

Dimenzioniranje nosaa. 1. Uvjeti vrstoe

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

41. Jednačine koje se svode na kvadratne

1.4 Tangenta i normala

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Funkcije dviju varjabli (zadaci za vježbu)

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

OM1 V10 V11 Ime i prezime: Index br: TORZIJA GREDE

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

Prof. dr. sc. Vedrana Kozulić TEHNIČKA MEHANIKA 2 Predavanja Akad. god. 2008/09

3 Grafičke primitive

Matematika 1 - vježbe. 11. prosinca 2015.

Zadatak 4b- Dimenzionisanje rožnjače

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

numeričkih deskriptivnih mera.

20 mm. 70 mm i 1 C=C 1. i mm

Eliminacijski zadatak iz Matematike 1 za kemičare

Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

IZVODI ZADACI (I deo)

1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

[ ] VAŽNO UVIJANJE ŠTAPOVA. Kut uvijanja (torzije) ϕ M I. Maksimalno posmino naprezanja τ. Dimenzioniranje štapova optereenih na uvijanje

PRORAČUN GLAVNOG KROVNOG NOSAČA

3.1 Granična vrednost funkcije u tački

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

TRIGONOMETRIJA TROKUTA

BETONSKE KONSTRUKCIJE 2

RIJEŠENI ZADACI I TEORIJA IZ

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTORNI STATIČKI ODREĐENI SUSTAVI

TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

5. Karakteristične funkcije

Prostorni spojeni sistemi

Zavod za tehnologiju, Katedra za alatne strojeve: GLODANJE

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

ISPIT GRUPA A - RJEŠENJA

ΙΑΓΡΑΜΜΑ ΠΕΡΙΕΧΟΜΕΝΩΝ

18. listopada listopada / 13

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ, ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΝΟΜΙΚΗΣ

ELEKTROTEHNIČKI ODJEL

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Elementi spektralne teorije matrica

Matematička analiza 1 dodatni zadaci

Ispitivanje toka i skiciranje grafika funkcija

Fizika 2. Auditorne vježbe - 7. Fakultet elektrotehnike, strojarstva i brodogradnje Računarstvo. Elekromagnetski valovi. 15. travnja 2009.

Deformacije. Tenzor deformacija tenzor drugog reda. Simetrinost tenzora deformacija. 1. Duljinska deformacija ε. 1. Duljinska (normalna) deformacija ε

BETONSKE KONSTRUKCIJE 3 M 1/r dijagrami

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

Eksperimentalna i numerička analiza slobodnih vibracija grede

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

Προγραμματική Περίοδος

FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET ZAVRŠNI RAD

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

III IV V VI VII VIII IX IX X XI XII XIII XIV XVI XIX XIX XX XXII XXIII

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Izravni posmik. Posmična čvrstoća tla. Laboratorijske metode određivanja kriterija čvratoće ( c i φ )

DOMAĆA ZADAĆA 5. /Formulacije i rješenja zadataka/ - INŽENJERSKA MATEMATIKA 1 ak. 2009/2010. Selma Grebović. Sarajevo, Decembar 2009.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

15PROC

Priveznice W re r R e o R p o e p S e l S ing n s

Στοιχεία και έγγραφα που απαιτούνται για την εγγραφή στο ΓΕΜΗ

GLAZBENA UMJETNOST. Rezultati državne mature 2010.

VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.

Opšte KROVNI POKRIVAČI I

Linearna algebra 2 prvi kolokvij,

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

FAKULTET PROMETNIH ZNANOSTI

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

6 Primjena trigonometrije u planimetriji

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

Riješeni zadaci: Limes funkcije. Neprekidnost

Računarska grafika. Rasterizacija linije

( , 2. kolokvij)

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

Transcript:

SVEUČILIŠTE U SPLITU FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE Marko Vukasović SAVIJANJE I UVIJANJE TANKOSTJENIH KOMPOZITNIH ŠTAPOVA OTVORENOG POPREČNOG PRESJEKA DOKTORSKA DISERTACIJA Spli, 014.

SVEUČILIŠTE U SPLITU FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE Marko Vukasović SAVIJANJE I UVIJANJE TANKOSTJENIH KOMPOZITNIH ŠTAPOVA OTVORENOG POPREČNOG PRESJEKA DOKTORSKA DISERTACIJA Spli, 014.

Dokorska diseracija je irađena na Zavodu a srojarsvo i brodogradnju, Fakulea elekroehnike, srojarsva i brodogradnje u Spliu. Menor: prof. dr. sc. Radoslav Pavaa Rad br. 116 ii

Povjerensvo a ocjenu dokorske diseracije: 1. iv. prof. dr. sc. Frane Vlak, FESB, Spli. prof. dr. sc. Radoslav Pavaa, FESB, Spli 3. prof. dr. sc. Vedrana Koulić, FGAG, Spli 4. iv. prof. dr. sc. Vedrana Cvianić, FESB, Spli 5. doc. dr. sc. Ado Maoković, OSS, Spli Povjerensvo a obranu dokorske diseracije: 1. iv. prof. dr. sc. Frane Vlak, FESB, Spli. prof. dr. sc. Radoslav Pavaa, FESB, Spli 3. prof. dr. sc. Vedrana Koulić, FGAG, Spli 4. iv. prof. dr. sc. Vedrana Cvianić, FESB, Spli 5. doc. dr. sc. Ado Maoković, OSS, Spli Diseracija obranjena 7. sudenoga 014. iii

Sažeak Savijanje i uvijanje ankosjenih kompoinih šapova ovorenog poprečnog presjeka U ovom radu prikaan je ravoj približne, inženjerske eorije kompoinih ankosjenih šapova ovorenog poprečnog presjeka. Da bi se opisalo ponašanje akvih šapova pri savijanju i uvijanju, posavljen je analiički model na emelju klasične Vlasovljeve eorije. Teorija je dopunjena uimajući u obir kunu deformaciju u srednjoj plohi poprečnog presjeka e ororopiju maerijala. Time je eorija posala primjenjiva i a relaivno krake e kompoine šapove kod kojih se ujecaj smicanja ne može anemarii. Uravnoeženi laminai uei u analiu simerični su u odnosu na srednju plohu poprečnog presjeka. Za ankosjene poprečne presjeke s jednom i dvije osi simerije, posavljeni su analiički irai a pomake i srednja normalna napreanja, u avorenom obliku. U ramaranje su uei globno-oslonjeni e obosrano ukliješeni šapovi, operećeni jednoliko raspodijeljenim i koncenriranim operećenjem. U svrhu analie ujecaja smicanja ivedeni su fakori ujecaja smicanja na pomake e fakori ujecaja smicanja na srednja normalna napreanja. Za relaivno krake šapove pokaano je da smicanje načajno uječe na pomake, ali i na srednje normalno napreanje. U odnosu na ankosjene ioropne šapove ovorenog presjeka, ujecaj smicanja na pomake i srednja normalna napreanja je nano iraženiji kod kompoinih šapova, jer je omjer imeđu modula elasičnosi i modula smicanja visok kod kompoinih maerijala. I usporedbe s reulaima koje daje meoda konačnih elemenaa uočeno je ivrsno slaganje a slučajeve kada su poprečni presjeci sasavljeni od laminaa kod kojih su vlakna paralelna s udužnom osi šapa, odnosno a slučaj kada su vlakna u laminau orijenirana pod kuevima 0 i 90. Za laminae kod kojih su vlakna usmjerena pod kuevima ± θ dobiveno je dobro slaganje vrijednosi srednjih normalnih napreanja, dok se određena odsupanja javljaju kod pomaka. Za raličie omjere duljine šapa i visine poprečnog presjeka, na koncu je dana i usporedba reulaa koje daju eorija savijanja ankosjenih kompoinih šapova ovorenog poprečnog presjeka, s reulaima drugih israživača preueih i dosupne lieraure. Ključne riječi: kompoini ankosjeni šap, ovoreni poprečni presjek, lamina, fakor ujecaja smicanja iv

Bending and orsion of hin-walled composie beams wih open crosssecion Summar A developmen of an approximae engineering heor of hin-walled composie beams wih open cross-secions is presened wihin his hesis. To describe a behavior of hese pes of beams a bending and orsion, an analical model is developed, based on classic Vlasov s heor of hin-walled beams. Theor is complemened b aking ino accoun a shear deformaion in beam mid surface and maerial orhorop. This makes heor applicable for relaivel shor composie beams for which he influence of shear is expressed. Balanced laminaes aken ino accoun are smmerical wih respec o mid surface of cross-secion. For hin-walled cross-secions wih one and wo axes of smmer, analical expressions for displacemens and average normal sress are derived in close form. Simpl suppored and clamped beams, loaded wih uniforml disribued and concenraed forces are aken ino consideraion. For he purpose of analsis, facors of influence of shear on displacemens and facors of influence of shear on average normal sress are derived. I is shown for relaivel shor beams ha he influence of shear on displacemens and on average normal sress is expressed. Compared o hin-walled isoropic beams wih open cross-secions, influence of shear on displacemens and on average normal sresses is much more expressed for composie beams, since he raio beween modulus of elasici and shear modulus is high. An excellen agreemen is observed from he comparison wih he resuls given b finie elemen mehod, for unidirecional laminaes and for cross-pl laminaes. Ver good agreemen of average normal sresses is obained for angle-pl laminaes, while some variaions are obained for displacemens. A comparison of resuls given b developed analic model and b oher auhors from available lieraure is presened a he end for differen raios of beam lengh and beam cross-secion heigh. Ke words: hin-walled composie beam, open cross-secion, laminae, facor of influence of shear. v

Ovaj rad posvećujem svojoj obielji. vii

Menoru prof. dr. sc. Radoslavu Pavai iskreno ahvaljujem na pomoći i korisnim savjeima ijekom irade ove diseracije. Kolegi iv. prof. dr. sc. Frani Vlaku od srca ahvaljujem na bodrenju, podršci, kolegijalnoj i sručnoj pomoći pri pisanju rada. Također se ahvaljujem i osalim članovima povjerensva a ocjenu i obranu dokorske diseracije na korisnim savjeima i uloženom rudu u pregledavanju rada. viii

Sadržaj Bibliografski podaci ii Podaci o ocjeni diseracije iii Sažeak iv Summar v Zahvala vii Sadržaj ix Popis ablica xi Popis ilusracija xviii Popis onaka xxii 1. UVOD 1 1.1. Uvod u problemaiku 1 1.. Pregled dosadašnjih israživanja 3 1.3. Cilj i svrha israživanja 7. SAVIJANJE TANKOSTJENIH KOMPOZITNIH ŠTAPOVA OTVORENOG POPREČNOG PRESJEKA 11.1. Preposavke o deformiranju i napreanju 11.. Pomaci i deformacije 13.3. Napreanja 16.4. Jednadžbe ravnoeže.5. Vea napreanja i unuarnjih sila 5.5.1. Tangencijalno napreanje iraženo preko unuarnjih sila 5.5. Normalno napreanje iraženo preko unuarnjih sila 9.6. Pomaci pola 40.7. Posebni slučajevi 43.7.1. Poprečni presjeci s jednom osi simerije 43.7.. Poprečni presjek s dvije osi simerije 47 3. UVIJANJE TANKOSTJENIH KOMPOZITNIH ŠTAPOVA OTVORENOG POPREČNOG PRESJEKA 50 3.1. Jednadžbe ravnoeže 5 3.. Vea napreanja i unuarnjih sila 55 3..1. Tangencijalna napreanja iražena preko unuarnjih sila 55 ix

3... Normalno napreanje iraženo preko unuarnjih sila 59 3.3. Pomaci pola 68 3.4. Posebni slučajevi 71 3.4.1. Poprečni presjek s jednom osi simerije 71 3.4.. Poprečni presjek s dvije osi simerije 7 4. ANALIZA VERTIKALNIH POMAKA I SREDNJEG NORMALNOG NAPREZANJA PRI SAVIJANJU TANKOSTJENIH KOMPOZITNIH ŠTAPOVA OTVORENOG POPREČNOG PRESJEKA 74 4.1. I profil s dvije osi simerije 76 4.. I profil s jednom osi simerije 91 4.3. T profil 106 4.4. U profil 118 5. ANALIZA POMAKA I SREDNJEG NORMALNOG NAPREZANJA PRI UVIJANJU TANKOSTJENIH KOMPOZITNIH ŠTAPOVA OTVORENOG POPREČNOG PRESJEKA 18 5.1. I profil s dvije osi simerije 19 5.. I profil s jednom osi simerije 143 5.3. U profil 155 6. USPOREDBA VRIJEDNOSTI VERTIKALNIH POMAKA DOBIVENIH RAZVIJENIM ANALITIČKIM MODELOM S REZULTATIMA IZ DOSTUPNE LITERATURE 167 7. ZAKLJUČAK 180 LITERATURA 185 Živoopis 191 Biograph 193 PRILOZI A KONSTITUTIVNE JEDNADŽBE KOMPOZITNIH MATERIJALA 195 B DEFINICIJA OSNOVNIH POJMOVA I VELIČINA 10 x

Popis ablica Tablica 4.1. Tablica 4.. Tablica 4.3. Tablica 4.4. Tablica 4.5. Tablica 4.6. Tablica 4.7. Tablica 4.8. Tablica 4.9. Verikalni pomaci w (mm) i fakori ujecaja smicanja η globnooslonjenog I profila s dvije osi simerije (l/h = 3). Usporedba fakora ujecaja smicanja na pomake η po eoriji STKŠ e MKE a globno-oslonjeni I profil s dvije osi simerije (l/h = 3). sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ a globno-oslonjeni I profil s dvije osi simerije (l/h = 3). Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji STKŠ e MKE a globno-oslonjeni I profil s dvije osi simerije (l/h = 3). Verikalni pomaci w (mm) i fakori ujecaja smicanja η globnooslonjenog I profila s dvije osi simerije (l/h = 5). Usporedba fakora ujecaja smicanja na pomake η po eoriji STKŠ e MKE a globno-oslonjeni I profil s dvije osi simerije (l/h = 5). sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ a globno-oslonjeni I profil s dvije osi simerije (l/h = 5). Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji STKŠ e MKE a globno-oslonjeni I profil s dvije osi simerije (l/h = 5). Verikalni pomaci w (mm) i fakori ujecaja smicanja na pomake η obosrano ukliješenog I profila s dvije osi simerije (l/h = 3). Tablica 4.10. Usporedba fakora ujecaja smicanja na pomake η po eoriji STKŠ e MKE a obosrano ukliješeni I profil s dvije osi simerije (l/h = 3). Tablica 4.11. sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ a obosrano ukliješeni I profil s dvije osi simerije (l/h = 3). Tablica 4.1. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji STKŠ e MKE a obosrano ukliješeni I profil s dvije osi simerije (l/h = 3). Tablica 4.13. Verikalni pomaci w (mm) i fakori ujecaja smicanja na pomake η obosrano ukliješenog I profila s dvije osi simerije (l/h = 5). xi

Tablica 4.14. Usporedba fakora ujecaja smicanja na pomake η po eoriji STKŠ e MKE a obosrano ukliješeni I profil s dvije osi simerije (l/h = 5). Tablica 4.15. sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ a obosrano ukliješeni I profil s dvije osi simerije (l/h = 5). Tablica 4.16. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji STKŠ e MKE a obosrano ukliješeni I profil s dvije osi simerije (l/h = 5). Tablica 4.17. Konfiguracija slaganja poprečnog presjeka I profila s jednom osi simerije. Tablica 4.18. Verikalni pomaci w (mm) i fakori ujecaja smicanja na pomakeη globno oslonjenog I profila s jednom osi simerije (l/h = 3). Tablica 4.19. Usporedba fakora ujecaja smicanja na pomake η po eoriji STKŠ e MKE a globno oslonjeni I profil s jednom osi simerije (l/h = 3). Tablica 4.0. sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ a globno-oslonjeni I profil s jednom osi simerije (l/h = 3). Tablica 4.1. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji STKŠ e MKE a globno-oslonjeni I profil s jednom osi simerije (l/h = 3). Tablica 4.. Verikalni pomaci w (mm) i fakori ujecaja smicanja na pomake η obosrano ukliješenog I profila s jednom osi simerije (l/h = 5). Tablica 4.3. Usporedba fakora ujecaja smicanja na pomake η po eoriji STKŠ e MKE a obosrano ukliješeni I profil s jednom osi simerije (l/h = 5). Tablica 4.4. Srednje normalno napreanjeσ (MPa) u očki C spoja sruka i donjeg sr x pojasa i fakori ujecaja smicanja na srednje normalno napreanje λ a obosrano ukliješeni I profil s jednom osi simerije (l/h = 5). Tablica 4.5. sr Srednje normalno napreanje σ x (MPa) u očki B spoja sruka i gornjeg pojasa i fakori ujecaja smicanja na srednje normalno napreanje λ a obosrano ukliješeni I profil s jednom osi simerije (l/h = 5). Tablica 4.6. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji STKŠ e MKE a obosrano ukliješeni I profil s jednom osi simerije (l/h = 5). Tablica 4.7. Verikalni pomaci w (mm) i fakori ujecaja smicanja na pomake η a globno-oslonjeni T profil (l/h = 3). xii

Tablica 4.8. Usporedba fakora ujecaja smicanja na pomake η po eoriji STKŠ e MKE a globno-oslonjeni T profil (l/h = 3). Tablica 4.9. sr Srednje normalno napreanje σ x (MPa) e fakori ujecaja smicanja na srednje normalno napreanje λ u donjoj očki sruka C a globnooslonjeni T profil (l/h = 3). Tablica 4.30. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji STKŠ e MKE a globno-oslonjeni T profil (l/h = 3). Tablica 4.31. Verikalni pomaci w (mm) i fakori ujecaja smicanja na pomake η a obosrano ukliješeni T profil (l/h = 5). Tablica 4.3. Usporedba fakora ujecaja smicanja na pomake η po eoriji STKŠ e MKE a obosrano ukliješeni T profil (l/h = 5). Tablica 4.33. Srednje normalno napreanjeσ (MPa) e fakori ujecaja smicanja na sr x srednje normalno napreanje λ u donjoj očki sruka C obosrano ukliješenog T profila (l/h = 5). Tablica 4.34. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji STKŠ e MKE a obosrano ukliješeni T profil (l/h = 5). Tablica 4.35. Verikalni pomaci w (mm) i fakori ujecaja smicanja na pomake η a globno-oslonjeni U profil (l/h = 3). Tablica 4.36. Usporedba fakora ujecaja smicanja na pomake η po eoriji STKŠ e MKE a globno-oslonjeni U profil (l/h = 3). Tablica 4.37. sr Srednje normalno napreanje σ x (MPa) e fakori ujecaja smicanja na srednje normalno napreanje λ u očki A lijeve verikalne sjenke globno-oslonjenog U profila (l/h = 3). Tablica 4.38. Usporedba fakora ujecaja smicanja na normalno napreanje λ po eoriji STKŠ e MKE a globno-oslonjeni U profil (l/h = 3). Tablica 4.39. Verikalni pomaci w (mm) i fakori ujecaja smicanja na pomake η a obosrano ukliješeni U profil (l/h = 5). Tablica 4.40. Usporedba fakora ujecaja smicanja na pomake η po eoriji STKŠ e MKE a obosrano ukliješeni U profil (l/h = 5). Tablica 4.41. sr Srednje normalno napreanje σ x (MPa) e fakori ujecaja smicanja na srednje normalno napreanje λ u očki A lijeve verikalne sjenke obosrano ukliješenog U profila (l/h = 5). Tablica 4.4. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji STKŠ e MKE a obosrano ukliješeni U profil (l/h = 5). xiii

Tablica 5.1. Tablica 5.. Tablica 5.3. Tablica 5.4. Tablica 5.5. Tablica 5.6. Tablica 5.7. Tablica 5.8. Tablica 5.9. Kuevi uvijanja α (rad) i fakori ujecaja smicanja η globno-oslonjenog I profila s dvije osi simerije (l/h = 3). Usporedba fakora ujecaja smicanja na pomake η po eoriji UTKŠ e MKE a globno-oslonjeni I profil s dvije osi simerije (l/h = 3). sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ u očki A poprečnog presjeka globnooslonjenog I profila s dvije osi simerije (l/h = 3). Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji UTKŠ e MKE a globno-oslonjeni I profil s dvije osi simerije (l/h = 3). Kuevi uvijanja α (rad) i fakori ujecaja smicanja η globno-oslonjenog I profila s dvije osi simerije (l/h = 5). Usporedba fakora ujecaja smicanja na pomake η po eoriji UTKŠ e MKE a globno-oslonjeni I profil s dvije osi simerije (l/h = 5). sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ u očki A poprečnog presjeka globnooslonjenog I profila s dvije osi simerije (l/h = 5). Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji UTKŠ e MKE a globno-oslonjeni I profil s dvije osi simerije (l/h = 5). Kuevi uvijanja α (rad) i fakori ujecaja smicanja η a obosrano ukliješeni I profil s dvije osi simerije (l/h = 3). Tablica 5.10. Usporedba fakora ujecaja smicanja na pomake η po eoriji UTKŠ e MKE a obosrano ukliješeni I profil s dvije osi simerije (l/h = 3). Tablica 5.11. sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ u očki A poprečnog presjeka obosrano ukliješenog I profila s dvije osi simerije (l/h = 3). Tablica 5.1. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji UTKŠ e MKE a obosrano ukliješeni I profil s dvije osi simerije (l/h = 3). Tablica 5.13. Kuevi uvijanja α (rad) i fakori ujecaja smicanja η a obosrano ukliješeni I profil s dvije osi simerije (l/h = 5). Tablica 5.14. Usporedba fakora ujecaja smicanja na pomake η po eoriji UTKŠ e MKE a obosrano ukliješeni I profil s dvije osi simerije (l/h = 5). xiv

Tablica 5.15. sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ u očki A poprečnog presjeka obosrano ukliješenog I profila s dvije osi simerije (l/h = 5). Tablica 5.16. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji UTKŠ e MKE a obosrano ukliješeni I profil s dvije osi simerije (l/h = 5). Tablica 5.17. Kuevi uvijanja α (rad) i fakori ujecaja smicanja η a globnooslonjeni I profil s jednom osi simerije (l/h = 3). Tablica 5.18. Usporedba fakora ujecaja smicanja na pomake η po eoriji UTKŠ e MKE a globno-oslonjeni I profil s jednom osi simerije (l/h = 3). Tablica 5.19. Horionalni pomak v B (mm) očke B poprečnog presjeka i fakori ujecaja smicanja na horionalni pomak η B a globno-oslonjeni I profil s jednom osi simerije (l/h = 3). Tablica 5.0. Usporedba fakora ujecaja smicanja na horionalne pomake η B po eoriji UTKŠ e MKE a globno-oslonjeni I profil s jednom osi simerije (l/h = 3). Tablica 5.1. sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ u očki A poprečnog presjeka globnooslonjenog I profila s jednom osi simerije (l/h = 3). Tablica 5.. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji UTKŠ e MKE a globno-oslonjeni I profil s jednom osi simerije (l/h = 3). Tablica 5.3. Kuevi uvijanja α (rad) i fakori ujecaja smicanja η a obosrano ukliješeni I profil s jednom osi simerije (l/h = 5). Tablica 5.4. Usporedba fakora ujecaja smicanja na pomake η po eoriji UTKŠ e MKE a obosrano ukliješeni I profil s jednom osi simerije (l/h = 5). Tablica 5.5. Horionalni pomak v B (mm) očke B poprečnog presjeka i fakori ujecaja smicanja na horionalni pomak η B a obosrano uliješeni I profil s jednom osi simerije(l/h = 5). Tablica 5.6. Usporedba fakora ujecaja smicanja na horionalne pomake η B po eoriji UTKŠ e MKE a obosrano ukliješeni I profil s jednom osi simerije (l/h = 5). Tablica 5.7. sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ u očki A poprečnog presjeka obosrano ukliješenog I profila s jednom osi simerije (l/h = 5). xv

Tablica 5.8. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji UTKŠ e MKE a obosrano ukliješeni I profil s jednom osi simerije (l/h = 5). Tablica 5.9. Kuevi uvijanja α (rad) i fakori ujecaja smicanja η a globnooslonjeni U profil (l/h = 3). Tablica 5.30. Usporedba fakora ujecaja smicanja na pomake η po eoriji UTKŠ e MKE a globno-oslonjeni U profil (l/h = 3). Tablica 5.31. Horionalni pomak v C (mm) očke C poprečnog presjeka i fakori ujecaja smicanja na horionalni pomak η C a globno-oslonjeni U profil (l/h = 3). Tablica 5.3. Usporedba fakora ujecaja smicanja na horionalne pomake η C po eoriji UTKŠ e MKE a globno-oslonjeni U profil (l/h = 3). Tablica 5.33. sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ u očki A poprečnog presjeka globnooslonjenog U profila (l/h = 3). Tablica 5.34. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji UTKŠ e MKE a globno-oslonjeni U profil (l/h = 3). Tablica 5.35. Kuevi uvijanja α (rad) i fakori ujecaja smicanja η a obosrano ukliješeni U profil (l/h = 5). Tablica 5.36. Usporedba fakora ujecaja smicanja na pomake η po eoriji UTKŠ e MKE a obosrano ukliješeni U-profil (l/h = 5). Tablica 5.37. Horionalni pomak v C (mm) očke C poprečnog presjeka i fakori ujecaja smicanja na horionalni pomak η C a obosrano ukliješeni U profil (l/h = 5). Tablica 5.38. Usporedba fakora ujecaja smicanja na horionalne pomake eoriji UTKŠ e MKE a obosrano ukliješeni U profil (l/h = 5). ηc po Tablica 5.39. sr Srednje normalno napreanje σ x (MPa) i fakori ujecaja smicanja na srednje normalno napreanje λ u očki A poprečnog presjeka obosrano ukliješenog U profila (l/h = 5). Tablica 5.40. Usporedba fakora ujecaja smicanja na srednje normalno napreanje λ po eoriji UTKŠ e MKE a obosrano ukliješeni U profil (l/h = 5). Tablica 6.1. Verikalni pomaci w (cm) globno-oslonjenog I profila s dvije osi simerije. xvi

Tablica 6.. Tablica 6.3. Usporedba verikalnih pomaka globno-oslonjenog I-profila s dvije osi simerije. Vrijednosi fakora ujecaja smicanja na pomake η a globno-oslonjeni I profil s dvije osi simerije (l/h = 50). Tablica 6.4. Verikalni pomaci w (cm) na slobodnom kraju konole (l/h = 0). Tablica 6.5. Vrijednosi fakora ujecaja smicanja na pomake η a konolu operećenu koncenriranom silom na slobodnom kraju (l/h =0). Tablica 6.6. Usporedba vrijednosi pomaka w (mm) po eoriji STKŠ e po Kim-u [65] a obosrano ukliješeni šap operećen koncenriranom silom (l/h = 5). Tablica 6.7. Usporedba vrijednosi pomaka w (mm) po eoriji STKŠ e po Kim-u [65] a obosrano ukliješeni šap operećen koncenriranom silom (l/h = 0). Tablica 6.8. Tablica 6.9. Vrijednosi fakora ujecaja smicanja na pomake η a obosrano ukliješeni I profil s dvije osi simerije operećen koncenriranom silom na sredini raspona. Verikalni pomak w (cm) na slobodnom kraju konole I profila s jednom osi simerije (l/h = 50). Tablica 6.10. Verikalni pomak w (cm) na slobodnom kraju konole I profila s jednom osi simerije (l/h = 5). Tablica 6.11. Usporedba vrijednosi verikalnih pomaka w po eoriji STKŠ e po MKE [65] i Kim-u [65] a konolu operećenu koncenriranom silom (l/h = 5). Tablica 6.1. Vrijednosi fakora ujecaja smicanja na pomake η a konolu operećenu koncenriranom silom na slobodnom kraju. Tablica 6.13. Usporedba vrijednosi pomaka w (mm) po eoriji STKŠ e po Kim-u [64] a globno-oslonjeni I profil s jednom osi simerije operećen koncenriranom silom na sredini raspona (l/h = 5). Tablica 6.14. Vrijednosi fakora ujecaja smicanja na pomake η a globno-oslonjeni I profil (l/h = 5) s jednom osi simerije operećen koncenriranom silom na sredini raspona. Tablica 6.15. Usporedba vrijednosi pomaka w (mm) po eoriji STKŠ e po Kim-u [64] a obosrano ukliješeni I-profil s jednom osi simerije operećen koncenriranom silom na sredini raspona (l/h = 5). Tablica 6.16. Vrijednosi fakora ujecaja smicanja na pomake η a obosrano uklješeni I profil (l/h = 5) s jednom osi simerije operećen koncenriranom silom na sredini raspona. xvii

Popis ilusracija Slika.1. Pomaci očke S u ravnini poprečnog presjeka u koordinanom susavu O, odnosno Sδ. Slika.. Pomaci očaka elemena srednje plohe. Slika.3. Ravnoeža infinieimalnog elemena k-og sloja laminaa. Slika.4. Vanjsko operećenje šapa: a) sile na jedinicu površine b) sile na jedinicu duljine. Slika.5. Ravnoeža odsječka šapa. Slika 3.1. Ravnoeža odsječka sjenke šapa. Slika 4.1. 9-čvorni ioparamearski kvadrilaeralni ljuskasi elemen a debele i anke ljuske. Slika 4.. Zglobno-oslonjeni i obosrano ukliješeni šapovi operećeni jednoliko raspodijeljenim operećenjem. Slika 4.3. Rubni uvjei numeričkog modela a globno-oslonjeni i obosrano ukliješeni šap. Slika 4.4. Tankosjeni I-profil s dvije osi simerije. Slika 4.5. Verikalni pomak globno-oslonjenog I profila s dvije osi simerije (l/h = 3). Slika 4.6. Srednje normalno napreanje globno-oslonjenog I profila s dvije osi simerije (l/h = 3). Slika 4.7. Verikalni pomak globno-oslonjenog I profila s dvije osi simerije (l/h = 5). Slika 4.8. Srednje normalno napreanje globno-oslonjenog I profila s dvije osi simerije (l/h = 5). Slika 4.9. Verikalni pomak obosrano ukliješenog I profila s dvije osi simerije (l/h = 3). Slika Slika Slika 4.10. Srednje normalno napreanje obosrano ukliješenog I profila s dvije osi simerije (l/h = 3). 4.11. Verikalni pomak obosrano ukliješenog I profila s dvije osi simerije (l/h = 5). 4.1. Tankosjeni I profil s jednom osi simerije. xviii

Slika Slika Slika Slika Slika Slika Slika Slika Slika Slika 4.13. Verikalni pomak globno-oslonjenog I profila s jednom osi simerije (l/h = 3). 4.14. Raspodjela srednjeg normalnog napreanja na donjem pojasu globnooslonjenog I profila s jednom osi simerije (l/h = 3). 4.15. Raspodjela srednjeg normalnog napreanja u sruku globno-oslonjenog I profila s jednom osi simerije (l/h = 3). 4.16. Verikalni pomak obosrano ukliješenog I profila s jednom osi simerije (l/h = 5). 4.17. Srednje normalno napreanje u očki C spoja sruka i donjeg pojasa obosrano ukliješenog I profila s jednom osi simerije (l/h = 5). 4.18. Srednje normalno napreanje u očki B spoja sruka i gornjeg pojasa obosrano ukliješenog I-profila s jednom osi simerije (l/h = 5). 4.19. Raspodjela srednjeg normalnog napreanja na donjem pojasu obosrano ukliješenog I profila s jednom osi simerije (l/h = 5). 4.0. Raspodjela srednjeg normalnog napreanja na gornjem pojasu obosrano ukliješenog I profila s jednom osi simerije (l/h = 5). 4.1. Raspodjela srednjeg normalnog napreanja u sruku obosrano ukliješenog I profila s jednom osi simerije (l/h = 5). 4.. Tankosjeni T profil. Slika 4.3. Verikalni pomak globno-oslonjenog T profila (l/h = 3). Slika Slika Slika 4.4. Srednje normalno napreanje u donjoj očki sruka C globno-oslonjenog T profila (l/h = 3). 4.5. Raspodjela srednjeg normalnog napreanja na pojasu globnooslonjenog T profila (l/h = 3). 4.6. Raspodjela srednjeg normalnog napreanja u sruku globno-oslonjenog T profila (l/h = 3). Slika 4.7. Verikalni pomak obosrano ukliješenog T profila (l/h = 5). Slika Slika 4.8. Raspodjela srednjeg normalnog napreanja na pojasu obosrano ukliješenog T profila (l/h = 5). 4.9. Tankosjeni U profil. Slika 4.30. Verikalni pomak globno-oslonjenog U profila (l/h = 3). Slika 4.31. Raspodjela srednjeg normalnog napreanja u horionalnoj sjenci globno oslonjenog U profila (l/h = 5). xix

Slika 4.3. Raspodjela srednjeg normalnog napreanja u lijevoj verikalnoj sjenci obosrano ukliješenog U profila (l/h = 3). Slika 5.1. Zglobno-oslonjeni i obosrano ukliješeni šapovi operećeni jednoliko raspodijeljenim momenima uvijanja. Slika 5.. Ku uvijanja globno oslonjenog I profila s dvije osi simerije (l/h = 3). Slika 5.3. Srednje normalno napreanje u očki A poprečnog presjeka globnooslonjenog I profila s dvije osi simerije (l/h = 3). Slika 5.4. Ku uvijanja obosrano ukliješenog I profila s dvije osi simerije (l/h = 3). Slika 5.5. Srednje normalno napreanje u očki A poprečnog presjeka obosrano ukliješenog I profila s dvije osi simerije (l/h = 3). Slika 5.6. Ku uvijanja globno-oslonjenog I profila s jednom osi simerije (l/h = 3). Slika 5.7. Srednje normalno napreanje u očki A poprečnog presjeka globnooslonjenog I profila s jednom osi simerije (l/h = 3). Slika 5.8. Horionalni pomak očke B poprečnog presjeka obosrano ukliješenog I profila s jednom osi simerije (l/h = 5). Slika 5.9. Srednje normalno napreanje u očki A poprečnog presjeka obosrano ukliješenog I profila s jednom osi simerije (l/h = 5). Slika 5.10. Ku uvijanja globno-oslonjenog U profila (l/h = 3). Slika 5.11. Srednje normalno napreanje u očki A poprečnog presjeka globnooslonjenog U profila (l/h = 3). Slika 6.1. Verikalni pomak globno-oslonjenog I profila s dvije osi simerije (l/h = 50). Slika 6.. Ukliješeni šap operećen koncenriranom silom na slobodnom kraju. Slika 6.3. Obosrano ukliješeni šap operećen koncenriranom silom na sredini raspona. Slika 6.4. Verikalni pomak obosrano ukliješenog I profila operećenog koncenriranom silom na sredini raspona (l/h = 5). Slika 6.5. Verikalni pomak obosrano ukliješenog I profila operećenog koncenriranom silom na sredini raspona (l/h = 0). Slika 6.6. Zglobno-oslonjeni šap operećen koncenriranom silom na sredini raspona. xx

Slika 6.7. Verikalni pomak globno-oslonjenog I profila s jednom osi simerije (l/h = 5). xxi

Popis onaka A A, A, A površina poprečnog presjeka površine odsječenog dijela presjeka A, A, A reducirane smicajne površine poprečnog presjeka a, a A 0, A 1, A b, b 1, b B koordinae pola P površine pojedinih dijelova poprečnog presjeka duljine horionalnih sjenki poprečnog presjeka bimomen B, B sekundarni bimomeni pri savijanju s ujecajem smicanja ω B sekundarni bimomen pri uvijanju s ujecajem smicanja D fleksijska kruos 66 E 1, E, E 3 F glavni moduli elasičnosi sila G 1, G 13, G glavni moduli smicanja 3 h visina verikalne sjenke srednje linije poprečnog presjeka h 0 h P I P s I P I I, I udaljenos glavnog pola P od ishodišne očke M udaljenos glavnog pola od angene na srednju liniju ramarane očke momen romosi površine u odnosu na glavni pol P smicajni momen romosi površine u odnosu na glavni pol P orijski momen romosi površine aksijalni momeni romosi površine u odnosu na os, odnosno os I devijacijski momen romosi I ω I ω, I ω k sekorski momen romosi površine u odnosu na sekorsku koordinau ω devijacijski sekorski momen romosi sloj laminaa xxii

k a k b l L s m P m ω M M, M, M M, M, M kruos laminaa fakor ujecaja maerijala na smicanje duljina šapa proivoljno odabrana duljina konure poprečnog presjeka momen na jedincu duljine u odnosu na glavni pol P momen ivioperenja na jedinicu duljine ishodišna očka momeni savijanja oko osi, odnosno osi sekundarni momen savijanja pri savijanju s ujecajem smicanja M ω, ω M sekundarni momeni savijanja pri uvijanju s ujecajem smicanja M momen uvijanja P sv M M sv M ω momen čisog uvijanja momen čisog uvijanja po jedinici duljine momen ivioperenja N udužna sila N, N sekundarne udužne sile pri savijanju s ujecajem smicanja ω N sekundarna udužna sila pri uvijanju s ujecajem smicanja Ox pravokuni koordinani susav p, P p q, q Q, Q ij Q ij Q s, s, s S sile na jedinicu površine u odnosu na os, odnosno os glavni pol sile na jedinicu duljine u smjeru osi, odnosno osi poprečne sile u smjeru osi, odnosno osi ransformirane reducirane kruosi modificirane, ransformirane reducirane kruosi krivocrne koordinae očka srednje linije xxiii

S, S, S ω S ω k S S 0, 1, T k T v, k T w, k T α saički momeni površine u odnosu na os, odnosno os saički momeni dijela površine u odnosu na os, odnosno os sekorski saički momen površine u odnosu na sekorsku koordinau ω sekorski saički momen dijela površine u odnosu na sekorsku koordinau ω debljina sjenke laminaa debljina sjenke k-og sloja debljina verikalne sjenke, odnosno horionalnih sjenki ežiše ok angencijalnog napreanja k-og sloja u odnosu na pomake v P, w P i α P u udužni pomak ishodišne očke M u S v, v P, w, w P udužni pomak očke srednje linije pomaci glavnog pola u smjeru osi, odnosno osi (progib šapa u smjeru osi, odnosno osi ) v S, vɶ S, v b, v s, w S wɶ S w b w s x,, W P W P, W P, α, a P α α s β s W P, s W P pomaci očke srednje linije u smjeru osi, odnosno osi pomak očke srednje linije u smjeru angene na srednju liniju, odnosno u smjeru normale na srednju liniju pomaci poprečnog presjeka u smjeru osi, odnosno osi (progib šapa u smjeru osi odnosno osi ) prema klasičnoj EBBT dodani pomaci od smicanja pravokune koordinae polarni momen opora poprečnog presjeka smicajni momeni opora poprečnog presjeka ku uvijanja u odnosu na glavni pol P ku uvijanja u odnosu na glavni pol P prema klasičnoj Vlasovljevoj eoriji ku uvijanja bog smicanja u odnosu na glavni pol P ku nagiba progibne linije xxiv

β b β s ε x, ε u ε x, v ε x, ε 1, ε, ε 3 γ γ b γ s w ε x, ε x α ku nagiba progibne linije u odnosu na os prema klasičnoj EBBT dodani ku nagiba progibne linije u odnosu na os od smicanja duljinske deformacije u smjeru osi x duljinska defomacija u smjeru angene na srednju liniju duljinske deformacije u pravcu glavnih maerijalnih osi ku nagiba progibne linije u odnosu na os ku nagiba progibne linije u odnosu na os prema klasičnoj EBBT dodani ku nagiba progibne linije u odnosu na os od smicanja γ kuna deformacija u srednjoj plohi x u v γ x, γ x, γ w x, x α γ komponene kune deformacije u odnosu na pomake M a P u P v, w P i η η B, η C δ k θ κ x, κ x, κ, κ, fakor ujecaja smicanja na pomake fakor ujecaja smicanja na horionalne pomake očke B, odnosno očke C poprečnog presjeka položaj k-og sloja u odnosu na srednju liniju ku imeđu maerijalnih osi vlakana i udužne osi šapa fakori smicanja pri savijanju s ujecajem smicanja κ, κ, κ ω, κ ω κ xω, κ ωω, κ ω, κ fakori smicanja pri uvijanju s ujecajem smicanja ω λ fakor ujecaja smicanja na srednje normalno napreanje ν 1, ν 13, ν glavni Poissonovi fakori 3 ϑ relaivni ku uvijanja ϑ ϑ s k σ x sr σ x k σ relaivni ku uvijanja prema klasičnoj Vlasovljevoj eoriji dodani relaivni ku uvijanja bog smicanja normalno napreanje k-og sloja u udužnom smjeru srednje normalno napreanje u udužnom sloju normalno napreanje k-og sloja u smjeru konure srednje linije poprečnog presjeka xxv

σ 1, σ, σ 3 k τ x kv x kw x τ, τ, sr τ x sv τ x τ ϕ o x, k, δ ω k τ x α normalna napreanja u smjeru glavnih maerijalnih osi angencijalno napreanje k-og sloja u smjeru angene na srednju liniju komponene angencijalnog napreanja k-og sloja u odnosu na pomake v P, w P i a P srednje angencijalno napreanje u smjeru angene na srednju liniju angencijalno napreanje pri čisom uvijanju ukupno angencijalno napreanje k-og sloja u smjeru angene na srednju liniju ku imeđu angene na srednju liniju i osi pravokune koordinae lokalnog koordinanog susava glavna sekorska koordinaa xxvi

1. Uvod 1.1. Uvod u problemaiku Napredni maerijali kao šo su vlaknima-ojačani kompoii sve češće amjenjuju konvencionalne maerijale popu čelika i aluminija u ranim granama indusrije [1]. Pojačana primjena ovakvih maerijala pokauje visoku učinkovios kompoinih konsrukcijskih elemenaa u obliku ankosjenih šapova []. U širem smislu ankosjeni šap je viki konsrukcijski elemen čije su karakerisične geomerijske dimenije raličiog reda veličine. Debljina sjenke ankosjenog šapa mala je u usporedbi s osalim dimenijama poprečnog presjeka (visina i širina poprečnog presjeka), dok duljina šapa načajno premašuje dimenije presjeka. Tankosjeni šapovi mogu se nadalje ravrsai s obirom na geomerijska obilježja pa ako ralikujemo šapove konsannog i promjenjivog oblika poprečnog presjeka, avorene i ovorene konure srednje linije presjeka, ravne i akrivljene udužne osi. Zbog visoke efikasnosi, koja se očiuje u minimalnoj ežini a danu čvrsoću, ovi konsrukcijski elemeni se već duže vrijeme korise u građevinskom [3], [4] i srojarskom inženjersvu, kao i kod brodskih konsrukcija [5], [6] (primjer: rup broda) koje se mogu idealiirai susavom šapova ovorenog ili avoreno-ovorenog poprečnog presjeka. Međuim, fakor koji je nano doprinio ravoju ovih ipova srukura s eoreske i prakične očke glediša, povean je s njihovom širokom primjenom u diajnu rakoplovnih konsrukcija [7], [8]. Ova činjenica je pokrijepljena velikim brojem nansvenih radova posvećenih modeliranju i sabilnosi ankosjenih konsrukcijskih elemenaa korišenih u aeronauičkoj indusriji. Daljnji simulans a israživanjem ankosjenih šapova proilai i pojave kompoinih maerijala e njihovom pojačanom primjenom u rakoplovnoj, auomobilskoj, građevinskoj i brodograđevnoj indusriji [9]. Kompoi predsavlja srukurni maerijal koji se sasoji od dva ili više raličiih maerijala međusobno poveanih na makroskopskom nivou [1]. Čeiri su uobičajena ipa kompoinih maerijala: vlaknasi kompoini maerijali koji se sasoje od vlakana smješenih unuar marice, laminirani kompoini maerijali sasavljeni od slojeva koji mogu bii napravljeni od raličiih maerijala, parikulni kompoini maerijali sasavljeni od česica unuar marice, dok je čevri ip kompoinog maerijala dobiven kombinacijom prva ri ipa. Lamina kod kojeg su slojevi sasavljeni od vlakana smješenih unuar marice predsavlja najčešće korišeni ip kompoinog maerijala [10]. Kod vlaknima-ojačanih kompoia očvršćujući maerijal u obliku vlakana smješen je po 1

određenom obrascu unuar marice koja predsavlja koninuiranu fau kompoinog maerijala. Maerijal vlakana direkno uječe na mehanička svojsva kompoia, dok je osnovna funkcija marice da poveže vlakna, ašii ih od okoline e disribuira operećenje na njih. Iako same imaju niska mehanička svojsva u usporedbi sa vlaknima, marice ipak uječu na mehanička svojsva kompoia. Ova svojsva uključuju poprečne module elasičnosi i čvrsoću, posmične module elasičnosi i čvrsoću, oplinski koeficijen širenja e oplinsku opornos i amornu čvrsoću. Prednos vlaknima-ojačanih kompoinih maerijala, u odnosu na konvencionalne inženjerske maerijale popu čelika i aluminija, leži u visokoj specifičnoj čvrsoći e visokom specifičnom modulu elasičnosi koje posjeduju ovi ipovi maerijala. Specifična čvrsoća i specifični modul elasičnosi definirani su preko omjera čvrsoće i gusoće maerijala, odnosno preko omjera Young-ova modula elasičnosi i gusoće, i čega slijedi da kompoini maerijali imaju visoku čvrsoću i kruos a danu ežinu. Sljedeće prednosi kompoinih maerijala uključuju poboljšanu opornos na koroiju, povećani amorni vijek rajanja, bolju oplinsku i akusičnu iolaciju, id [1]. S obirom na orijenaciju maerijalnih osi kod vlaknima-ojačanih kompoia ravijena je ehnologija srukurnog krojenja (srucural ailoring) koja ovisno o ipu operećenja ima a cilj definirai poželjno srukurno ponašanje [], [9]. Pri ome se česo korisi efek elasičnog uparivanja (coupling) imeđu raličiih ipova operećenja (raseanje-savijanje, savijanje-uvijanje). Mogućnos prilagođavanja elasičnih svojsava, da bi se adovoljili projekni ahjevi čvrsoće i kruosi, predsavlja jednu od najnačajnijih karakerisika kompoia koja inženjerima daje slobodu pri projekiranju. Tankosjeni kompoini šapovi se sve češće korise kao nosivi elemeni konsrukcija na koje djeluje kompleksno saičko i dinamičko operećenje. Klasična Vlasovljeva eorija [11], [1] posavlja emelj a analiu srukurnog ponašanja laminiranih ankosjenih kompoinih šapova ovorenog poprečnog presjeka. Ponao je da će na saiku kompoinih šapova nano ujecai posmične kune deformacije budući da je modul smicanja niak kod kompoinih maerijala. Međuim ujecaj smicanja se ne može ramarai Vlasovljevom eorijom koja anemaruje kune deformacije u srednjoj plohi šapa. Poopćavanjem klasične eorije moguće je uei u obir kunu deformaciju u srednjoj plohi šapa, a da se pri om ne naruši jednosavnos jednodimenionalnog modela [1], [13]. I priloženog proilai da je porebno ravii akav analiički model koji uima u

obir ujecaj smicanja e ororopiju maerijala, radi ramaranja pomaka i napreanja kod savijanja i uvijanja ankosjenih kompoinih šapova ovorenog poprečnog presjeka. 1.. Pregled dosadašnjih israživanja Ravoj eorija savijanja šapa polai od klasične Euler-Bernoullijeve eorije (EBBT) koja se emelji na preposavci da poprečni presjeci nakon deformiranja osaju ravni i okomii na elasičnu liniju [14], [15], [16]. Za krake šapove, kod kojih je omjer duljine šapa i visine poprečnog presjeka relaivno mali, naan je ujecaj smicanja. Timošenko nadopunjuje eoriju savijanja uimajući u obir kune deformacije, uvodi fakor smicanja i definira ga kao omjer maksimalnog angencijalnog napreanja i srednjeg angencijalnog napreanja u poprečnom presjeku [17], [18]. Raličii prisupi u novije vrijeme ujecali su na ravoj eorija šapova: uvođenje korekcijskog fakora smicanja [18], [19], [0], [1], [], [3], [4], [5], [6], korišenje funkcija vioperenja bairanih na Sain-Venanovom rješenju [7], [8], [9], [30], varijacijsko-asimposko rješenje [31], [3] e ravoj poopćenih eorija šapova (GBTs) [33], [34], [35]. Mnogi israživači su posavili napredne eorije višeg reda da bi šo bolje opisali fenomen vioperenja kod složenog operećenja šapova. Većina ovih eorija se bavi analiom vioperenja kod uvijanja [36], [11], [37], [38], [4], [39], [40], [41], [5], odnosno analiom vioperenja kod savijanja [4], [43], [44], [45], [3] šapova raličiih oblika poprečnog presjeka. Da bi poboljšao Timošenkovu eoriju, Cowper [19] predlaže uporebu rješenja eorije elasičnosi koje je bairano na geomerijskoj preposavci da se srednji poprečni pomaci određenog presjeka šapa mogu definirai kao progib udužne osi. Za jednosavne, simerične presjeke (I-presjek, T-presjek, U-presjek), Cowper daje goove irae a iračun fakora smicanja K. U njima fakor smicanja ovisi o geomeriji poprečnog presjeka, ali i o Poissonovu koeficijenu. Također, Grumann i Wagner [] su računali fakore smicanja a Timošenkovu eoriju šapova, i o a raličie oblike poprečnog presjeka. Pavaa [3] u svom radu do vrijednosi fakora smicanja dolai geomerijskim prisupom, pri čemu fakor smicanja ovisi samo o obliku poprečnog presjeka. Robers [4] daje približan ira a fakor smicanja I-presjeka, dok Kim [5] navodi vrijednosi fakora smicanja a U-presjek kao i a nesimerični C-presjek. El Fami [7], [8], [9], [30] u svom radu posavlja eoriju a nejednoliko vioperenje šapova kod uvijanja i savijanja. I iraa a pomak e s obirom na princip virualnog rada, El Fami ivodi irae a normalna i posmična napreanja e prikauje ujecaj 3

primarnih i sekundarnih unuarnjih sila, kao i nesimeričnosi poprečnog presjeka, na srukurno ponašanje šapova. Teoriju bairanu na Sain-Venanovom rješenju primjenjuje na kompoinim šapovima, e shodno ome definira funkcije vioperenja (ou of plane warping funcions) e funkcije disorije (in-plane warping funcions). Uvod u varijacijsko-asimposku meodu (VAM), na primjeru anioropnih šapova, dao je u svom radu Berdichevsk [31]. Be posavljanja kinemaskih preposavki, Berdichevsk definira eoriju a šapove koriseći bedimenijske paramere u funkciji geomerijskih karakerisika poprečnog presjeka. Yu, Hodges, Volovoi i Fuchs [3] ravijaju poopćenu eoriju Vlasova a kompoine šapove s proivoljnim geomerijskim i maerijalnim svojsvima, na emelju varijacijsko-asimposke analie presjeka šapa. Varijacijskoasimposka meoda (VAM) je korišena da bi se geomerijski-nelinearni, 3-D problem elasičnosi reducirao na linearnu, -D analiu poprečnog presjeka, e nelinearnu, 1-D analiu šapa. Soldaos i Wason [34] su ravili opću eoriju šapova, koja uima u obir poprečnu kunu i normalnu deformaciju. Uvode funkcije oblika, od kojih se svaka funkcija odnosi na pojedinu komponenu pomaka. Za pojednosavljenu definiciju ovih funkcija, opća eorija se može reducirai na klasičnu Timošenkovu eoriju. Benscoer [36] je ravio eoriju a šapove avorenog presjeka sasavljenog od više ćelija, po kojoj je pomak ivan ravnine presjeka proporcionalan funkciji vioperenja e parameru deformacije koji ovisi o kuu akrea. Kod Vlasova [11] funkcija vioperenja, a slučaj uvijanja ankosjenih šapova ovorenog presjeka, proporcionalna je relaivnom kuu uvijanja. Maddur i Chaurvedi [37] modificiraju Vlasovljevu eoriju uimajući u obir poprečnu kunu deformaciju (okomio na srednju plohu), dok kunu deformaciju u srednjoj plohi anemaruju. U svojoj formulaciji uimaju u obir efeke međulaminarnih posmičnih napreanja kako bi dobili pomake bog vioperenja. Sapounakis i Mokos [38] su ravili meodu rubnih elemenaa a slučajeve ograničenog uvijanja kompoinih šapova proivoljnog konsannog poprečnog presjeka. Ravijena meoda predsavlja poboljšanje, u odnosu na prehodne radove ovih auora, budući da daje procjenu sekundarne funkcije vioperenja, i koje se aim mogu odredii sekundarna posmična napreanja. Robers [4] je u svom radu pokaao da se ujecaj smicanja može anemarii kod uvijanja relaivno dugih kompoinih šapova. Eisenberger [39] u svom radu računa koeficijene kruosi, a ioropne šapne elemene, na emelju rješenja diferencijalne jednadžbe ravnoeže dobivene i eorije višeg reda [35]. Analiu ponašanja ankosjenih elasičnih šapova, operećenih na uvijanje, prikaao je u svom radu Saade [40]. Na emelju Prokićevog rada [46], ravija 4

eoriju sa jednom funkcijom vioperenja koja vrijedi a proivoljne oblike poprečnog presjeka. Pavaa [41] ispiuje ujecaj smicanja kod uvijanja ankosjenih ioropnih šapova ovorenog poprečnog presjeka, a slučaj kad je Sain-Venanova komponena uvijanja mala u odnosu na komponenu vioperenja. Sain-Venanovo čiso uvijanje može se anemarii kod relaivno krakih šapova, odnosno kod šapova kod kojih je omjer duljine šapa i duljine konure srednje linije, kao i omjer debljine sjenke e duljine šapa, relaivno mali. U ovom je radu pokaano da će ujecaj smicanja na pomake i napreanja bii još iraženiji kod kompoinih maerijala kod kojih su vrijednosi modula smicanja niske. Kim i Whie [43], a raliku od Soldaosa i Wasona [34] ne uimaju u obir disoriju poprečnog presjeka, j. anemaruju deformacije unuar ravnine presjeka. Njihova analia se ograničila na kompoine ankosjene i debelosjene šapove, avorenog poprečnog presjeka. Pri ome uimaju u obir primarno i sekundarno vioperenje. Rand [44] je ravio višerainsku analiu čvrsih laminiranih kompoinih šapova. Meodologija višerainske analie se baira na hijerarhiji rješenja pojedinih nivoa, koji omogućuju predviđanje širokog spekra fiičkih fenomena, kao šo su savijanje šapova, raseanje, uvijanje, e lokalnih fenomena popu disorije poprečnog presjeka, međulaminarna napreanja kao i efek delaminacije. Dufor [45] u svom radu predlaže rješenje a slučaj savijanja globno oslonjenog šapa, koji je operećen poprečnom silom na sredini raspona (hree-poin bending). Vioperenje je ramarano samo a poprečne presjeke koji su udaljeni od sredine raspona šapa. Jednadžbe ravnoeže su dobivene varijacijskim prisupom, pri čemu su korišene ri varijable: progib, akre poprečnog presjeka e funkcija vioperenja. Ravoj eorije ankosjenih šapova ovorenog presjeka apočinje radom Vlasova [11], koji daje jednosavno rješenje problema s obirom na preposavke o načinu deformiranja e raspodjeli napreanja. Poboljšanja klasične eorije dana su kro radove Kollbrunera i Hajdina [47], Gjelsvika [48], Pavae [1], [3], [41], [49], [50], Saadea [40] i El Famia [7], [8], [9], [30]. Gjelsvik [48] nadopunjuje klasičnu eoriju uimanjem u obir dodano savijanje po debljini sjenke, dok osnovne jednadžbe i irae ivodi koriseći princip virualnih radova. Pavaa [3], [41], uima u obir kunu deformaciju u srednjoj plohi, e nadopunjuje irae a normalna napreanja članovima kojima se uima u obir smicanje. Pri ome ne ograničava vioperenje bog smicanja a raliku od El-Famia [7], [8], [9], [30], koji ramara ujecaj smicanja s ograničenim vioperenjem bog smicanja. Za rane profile šapova, e a raličie slučajeve operećenja i rubnih uvjea, Pavaa [51], 5

[5], je pokaao da irai a normalna napreanja i pomake daju dobra poklapanja reulaa s reulaima dobivenim meodom konačnih elemenaa. Mnogi israživači bavili su se ravojem eorija savijanja i uvijanja laminiranih ankosjenih kompoinih šapova ovorenog presjeka. Bauld i Teng [53] u svom radu nadopunjuju Vlasovljevu eoriju [11] a ankosjene šapove ovorenog poprečnog presjeka koji su sasavljeni od vlaknima-ojačanih simeričnih laminaa. Nasavljajući rad Gjelsvika [48], linearna eorija koju ravijaju prikladna je a određivanje pomaka i napreanja kod šapova, a raličio operećenje i rubne uvjee. Chandra i Chopra [54] analiiraju srukurno ponašanje ankosjenih kompoinih šapova, ovorenog i avorenog presjeka, koriseći Vlasovljevu eoriju. Model koji su ravili uima u obir poprečne kune deformacije presjeka, dok su deformacije bog vioperenja implicino uključene u formulaciju. Ponašanje grafi-epoksi kompoinih šapova, raličiog presjeka (puni presjek, I-presjek, avoreni presjek s jednom ćelijom), analiirali su i eksperimenalno pri čemu su ramarali šapove operećene koncenriranim silama na krajevima. Bank i Bednarck [55] ravijaju eoriju koja je formulirana s obirom na ravninska elasična svojsva panela od kojih je sasavljen poprečni presjek ankosjenog kompoinog šapa. Paneli su specijalno ororopni čime je ibjegnu efek normalno-posmičnog uparivanja (coupling). Barbero, Lope i Davalos [56] ramaraju ankosjene kompoine šapove ovorenog i avorenog poprečnog presjeka, operećene na savijanje i raseanje. Inženjerski prisup mehanici ankosjenih laminiranih šapova emelji se na kinemaičkim preposavkama Timoshenkove eorije šapova. Rand [57] u svoj model uključuje 3-D disribuciju vioperenja da bi opisao srukurno ponašanje kompoinih šapova. Formulacija koju je posavio omogućuje ivod osnovnih analiičkih rješenja avorenog oblika, a raličie konfiguracije šapova e a raličie ipove operećenja. Ascione [58] u svom radu predsavlja formulaciju jednodimenionalnog kinemaičkog modela koji omogućuje analiu saičkog ponašanja ankosjenih šapova napravljenih od vlaknimaojačanih polimera. Ovaj model uima u obir ujecaj kune deformacije. Analiički model je uspoređen s reulaima koje daju meoda konačnih elemenaa e Vlasovljeva klasična eorija. S obirom na reulae vidljiv je ujecaj posmičnog vioperenja presjeka na verikalne pomake šapa. Maddur i Chaurvedi [59] pojednosavljuju vlasiu opću eoriju [37] da bi analiirali deformacije koje nasaju kod ne-uniformnog uvijanja I-presjeka napravljenog od laminiranog kompoinog maerijala (cross-pl laminaes). Numerički reulai koje daju a slučaj uvijanja konolnog I-profila pokauju dobru korelaciju s eksperimenalnim i eorijskim reulaima. 6

Song, Librescu i Jeong [60] daju analiičko rješenje a slučaj konole, I-oblika poprečnog presjeka, operećene na slobodnom kraju. Pri ome ramaraju mehanime elasičnog uparivanja proiašle i kružno-uniformne (CUS) i kružno-asimerične (CAS) konfiguracije kompoinog maerijala. Jung i Lee [61] provode analiu avorenog oblika na ankosjenim šapovima poprečnog presjeka I-profila. Kombiniranim prisupom bairanim na Reissner-ovom semi-komplemenarnom energijskom funkcionalu, ivode relacije silapomak, nakon čega slijedi avoreni oblik rješenja a šapove simerične i anisimerične konfiguracije laminaa. Lee i Lee [6] su u svom radu ivršili analiu savijanja i uvijanja I- oblikovanog laminiranog kompoinog šapa. Pri ome su ravili opći numerički model koji se emelji na klasičnoj eoriji laminacije e koji uima u obir uparivanje imeđu savijanja i uvijanja a proivoljnu konfiguraciju slaganja laminaa, simeričnu i nesimeričnu. Uvođenjem poprečnih kunih deformacija Lee [63] je proširio svoj numerički model opisan u [6]. Teorija prvog reda ravijena u njegovom radu uima u obir kunu deformaciju u srednjoj plohi, aim kunu deformaciju u ravnini okomioj na srednju plohu e dodanu kunu deformaciju bog vioperenja. S obirom na reulae pomaka dobivene pri savijanju pokaao je da je ujecaj smicanja načajan a šapove s niskim omjerom raspona i visine poprečnog presjeka, kao i a šapove koji imaju visoki supanj ororopije. Kim, Shin i Kim [64] daju egakna rješenja a analiu uvijanja ankosjenih kompoinih šapova ovorenog presjeka s proivoljnom konfiguracijom laminaa. Egakna marica kruosi određena je koriseći relacije sila-deformacija, dok su kao poseban slučaj ivedena rješenja avorenog oblika a simerično laminirane šapove s raličiim rubnim uvjeima. Kim [65] u svom radu ravija smično-deformabilni šapni elemen u svrhu analie savojnog i orijskog uparivanja ankosjenog I-profila s jednom i dvije osi simerije. Koriseći eoriju prvog reda, uima u obir poprečno smicanje e kunu deformaciju induciranu spriječenim vioperenjem. Temeljne jednadžbe i odnose sile-pomaci ivedeni su i principa minimuma ukupne poencijalne energije. 1.3. Cilj i svrha israživanja Cilj israživanja jes ravii analiički model na emelju klasične Vlasovljeve eorije [11], kojim bi se opisalo srukurno ponašanje laminiranih kompoinih šapova ovorenog poprečnog presjeka pri savijanju i uvijanju. Budući da bi se u obir uela kuna deformacija u srednjoj plohi poprečnog presjeka, kao i ororopija maerijala, eorija bi osim a duge bila primjenjiva i a relaivno krake kompoine šapove kod kojih je ujecaj 7