radni nerecenzirani materijal za predavanja

Σχετικά έγγραφα
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

3.1 Elementarne funkcije

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

4 Funkcije. 4.1 Pojam funkcije

6 Polinomi Funkcija p : R R zadana formulom

18. listopada listopada / 13

Matematička analiza 1 dodatni zadaci

3 Funkcije. 3.1 Pojam funkcije

4.1 Elementarne funkcije

ELEKTROTEHNIČKI ODJEL

7 Algebarske jednadžbe

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

Operacije s matricama

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Ispitivanje toka i skiciranje grafika funkcija

3.1 Granična vrednost funkcije u tački

1 Aksiomatska definicija skupa realnih brojeva

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

4 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Uvod u teoriju brojeva

Funkcije dviju varjabli (zadaci za vježbu)

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

9. PREGLED ELEMENTARNIH FUNKCIJA

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

Matematika 1 - vježbe. 11. prosinca 2015.

Derivacija funkcije Materijali za nastavu iz Matematike 1

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1 Pojam funkcije. f(x)

3. poglavlje (korigirano) F U N K C I J E

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Pojam funkcije. Funkcija, preslikavanje, pridruživanje, transformacija

Dijagonalizacija operatora

ELEMENTARNE FUNKCIJE

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

Funkcije Materijali za nastavu iz Matematike 1

APROKSIMACIJA FUNKCIJA

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

1.4 Tangenta i normala

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Teorijske osnove informatike 1

5 Ispitivanje funkcija

Riješeni zadaci: Limes funkcije. Neprekidnost

2. KOLOKVIJ IZ MATEMATIKE 1

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Osnovne teoreme diferencijalnog računa

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

Elementi spektralne teorije matrica

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Riješeni zadaci: Nizovi realnih brojeva

Zadaci iz trigonometrije za seminar

5. Karakteristične funkcije

Zadaci iz Osnova matematike

f(x) = a x, 0<a<1 (funkcija strogo pada)

4. DERIVACIJA FUNKCIJE 1 / 115

IZVODI ZADACI (I deo)

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

16 Lokalni ekstremi. Definicija 16.1 Neka je A R n otvoren, f : A R i c A. Ako postoji okolina U(c) od c na kojoj je f(c) minimum

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

I Pismeni ispit iz matematike 1 I

Zavrxni ispit iz Matematiqke analize 1

numeričkih deskriptivnih mera.

Funkcije. Helena Kmetić. 6. srpnja 2016.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

RIJEŠENI ZADACI I TEORIJA IZ

Seminar 11 (Ispitivanje domene i globalnih svojstava funkcije)

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Sintaksa i semantika u logici

41. Jednačine koje se svode na kvadratne

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike DERIVACIJA

ELEMENTARNE FUNKCIJE

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

( , 2. kolokvij)

Sadržaj: Diferencijalni račun (nastavak) Derivacije višeg reda Približno računanje pomoću diferencijala funkcije

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

Dvanaesti praktikum iz Analize 1

SISTEMI NELINEARNIH JEDNAČINA

Matematka 1 Zadaci za drugi kolokvijum

Četrnaesto predavanje iz Teorije skupova

Linearna algebra I, zimski semestar 2007/2008

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Linearna algebra 2 prvi kolokvij,

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Numerička matematika 2. kolokvij (1. srpnja 2009.)

1 / 79 MATEMATIČKA ANALIZA II REDOVI

VJEŽBE IZ MATEMATIKE 1

Granične vrednosti realnih funkcija i neprekidnost

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

ZI. NEODREðENI INTEGRALI

Transcript:

Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je f(x) f(x 0 ) za svaki x O(x 0 ). Funkcija f u točki x 0 a, b postiže lokalni maksimum ako postoji okolina O(x 0 ) broja x 0 takva da je f(x) f(x 0 ) za svaki x O(x 0 ). Ukoliko vrijede stroge nejednakosti za x x 0, onda govorimo o strogom lokalnom minimumu, odnosno strogom lokalnom maksimumu. Definicija 2. Kažemo da funkcija f : D R u točki x 0 D postiže globalni minimum na D ako je f(x 0 ) f(x) za svaki x D. Analogno se definira i globalni maksimum na D. Ukoliko za svaki x x 0 vrijede stroge nejednakosti, govorimo o strogom globalnom ekstremu. Definicija 3. Kažemo da je funkcija f : D R, parna ako je Funkcija f : D R je neparna ako je f( x) = f(x) za svaki x D. f( x) = f(x) za svaki x D. Primjer 1. Ispitajmo parnost funkcija f(x) = 2x 1, g(x) = x 2 + 2x 3 i h(x) = 3 x. Definicija 4. (Konveksnost i konkavnost) Kažemo da je funkcija f : D R konveksna na intervalu a, b D ako je ( ) x1 + x 2 f 1 2 2 (f(x 1) + f(x 2 )) za sve x 1, x 2 a, b (1) Ako u (1) stoji znak, kažemo da je funkcija f konkavna na intervalu a, b. Ako u (1) umjesto znaka stoji znak <, onda kažemo da je funkcija f strogo konveksna na intervalu a, b. Analogno se definira i pojam stroge konkavnosti funkcije na intervalu. Definicija 5. (Točka infleksije) Kažemo da je točka c D točka infleksije funkcije f ako postoji realan broj δ > 0, takav da je f strogo konveksna na c δ, c i strogo konkavna na c, c + δ ili da je f strogo konkavna na c δ, c i strogo konveksna na c, c + δ.

Matematika 2 Definicija 6. (Periodičnost) Kažemo da je funkcija f : D R periodična ako postoji pozitivan broj T R, takav da je f(x + T ) = f(x) za svaki x D. (2) Najmanji od brojeva T za koji je ispunjeno (2) nazivamo temeljni period funkcije f. Osnovne elementarne funkcije (a) opća potencija x x α, α R, Elementarne funkcije (b) eksponencijalna funkcija x a x, a > 0, (c) logaritamska funkcija x log a x, a > 0, (d) trigonometrijske funkcije: sin, cos, tg, ctg, (e) ciklometrijske funkcije: arcsin, arccos, arctg, arcctg Definicija 7. Elementarnim funkcijama nazivamo one funkcije koje se dobivaju iz osnovnih elementarnih funkcija pomoću konačnog broja aritmetičkih operacija (zbrajanja, oduzimanja, množenja i dijeljenja) i konačnog broja komponiranja osnovnih elementarnih funkcija. Polinomi Definicija 8. Funkciju P n : R R definiranu s P n (x) = a n x n + + a 1 x + a 0, n N 0, a i R, a n 0 nazivamo polinomom n tog stupnja nad R. Brojeve a i R nazivamo koeficijenti polinoma. Specijalno broj a n nazivamo najstariji ili vodeći, a a 0 slobodni koeficijent. Ako je a n = 1, kažemo da je polinom normiran. Teorem 1. Dva polinoma P n (x) = onda ako je (i) m = n, te (ii) a i = b i, i = 0, 1,..., n. n a i x i i R m (x) = i=0 m b i x i su jednaki onda i samo i=0

Matematika 3 Hornerov algoritam (shema) P n (x) = a n x n + + a 1 x + a 0, a R P n (a) = (( (a n a + a n 1 ) a + + a 2 ) a + a 1 ) a + a 0 a n a n 1 a n 2... a 1 a 0 a a }{{} n a b n 1 + a n 1 a b n 2 + a n 2... a b 1 + a 1 a b }{{}}{{}}{{} 0 + a }{{ 0 } b n 1 b n 3 b 0 P n(a) b n 2 Teorem 2. (Teorem o dijeljenju s ostatkom) Za svaka dva polinoma f i g, g 0, postoje jedinstveni polinomi q i r takvi da vrijedi f = g q + r U slučaju kada je r 0, tada vrijedi st r < st g. Racionalne funkcije Definicija 9. Funkciju Q(x) = P m(x) P n (x) = b mx m + + b 1 x + b 0 a n x n + + a 1 x + a 0, nazivamo racionalna funkcija. Ako je m < n onda govorimo o pravoj racionalnoj funkciji, a ako je m n o nepravoj racionalnoj funkciji. Ako je n = 0, funkcija Q postaje polinom. Teorem 3. Svaku pravu racionalnu funkciju moguće je na jedinstven način prikazati kao zbroj parcijalnih razlomaka. Eksponencijalna funkcija Definicija 10. Neka je a pozitivan realan broj različit od 1. Funkciju f : R R + definiranu formulom f(x) = a x, a > 0 nazivamo eksponencijalna funkcija s bazom a. Svojstva eksponencijalne funkcije: za svaki x 1, x 2 R vrijedi: (i) f(x 1 + x 2 ) = f(x 1 ) f(x 2 ), tj. a x 1+x 2 = a x1 a x 2 (ii) f(x 1 x 2 ) = f(x 1) f(x 2 ), tj. ax 1 x 2 = ax1 a x 2 (iii) (a x 1 ) x 2 = a x 1 x 2 ako je a > 1, onda je f strogo rastuća funkcija ako je 0 < a < 1, onda je f strogo padajuća funkcija

Matematika 4 Logaritamska funkcija Definicija 11. Neka je a pozitivan realan broj različit od 1. Funkciju f : R + R definiranu formulom f(x) = log a x, a > 0 nazivamo logaritamska funkcija s bazom a. Svojstva logaritamske funkcije: za svaki x 1, x 2 R + vrijedi: (i) f(x 1 x 2 ) = f(x 1 ) + f(x 2 ), tj. log a (x 1 x 2 ) = log a x 1 + log a x 2 ( ) ( ) x1 x1 (ii) f = f(x 1 ) f(x 2 ), tj. log x a = log 2 x a x 1 log a x 2 2 (iii) log a x x 2 1 = x 2 log a x 1 (iv) log b x = log b a log a x

Matematika 5 ako je a > 1, onda je f strogo rastuća funkcija ako je 0 < a < 1, onda je f strogo padajuća funkcija Najčešće se koriste: dekadski ili Briggsovi logaritmi (a = 10). Odgovarajuća logaritamska funkcija jednostavno se označava s x log x, prirodni ili Napierovi logaritmi (a = e). Odgovarajuća logaritamska funkcija jednostavno se označava s x ln x, diadski logaritmi (a = 2). Odgovarajuća logaritamska funkcija jednostavno se označava s x ld x.