UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Σχετικά έγγραφα
IZVODI ZADACI (I deo)

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

numeričkih deskriptivnih mera.

Ispitivanje toka i skiciranje grafika funkcija

3.1 Granična vrednost funkcije u tački

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

Elementi spektralne teorije matrica

Osnovne teoreme diferencijalnog računa

III VEŽBA: FURIJEOVI REDOVI

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Zavrxni ispit iz Matematiqke analize 1

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Poglavlje 7. Blok dijagrami diskretnih sistema

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

nvt 1) ukoliko su poznate struje dioda. Struja diode D 1 je I 1 = I I 2 = 8mA. Sada je = 1,2mA.

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

Teorijske osnove informatike 1

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci iz trigonometrije za seminar

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

Riješeni zadaci: Limes funkcije. Neprekidnost

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Računarska grafika. Rasterizacija linije

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

IZVODI ZADACI (I deo)

Trigonometrijske nejednačine

Kaskadna kompenzacija SAU

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Matematka 1 Zadaci za drugi kolokvijum

41. Jednačine koje se svode na kvadratne

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Matematička analiza 1 dodatni zadaci

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

1.4 Tangenta i normala

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Riješeni zadaci: Nizovi realnih brojeva

Numerička matematika 2. kolokvij (1. srpnja 2009.)

5 Ispitivanje funkcija

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

( , 2. kolokvij)

5. Karakteristične funkcije

TRIGONOMETRIJA TROKUTA

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

2. KOLOKVIJ IZ MATEMATIKE 1

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

ELEKTROTEHNIČKI ODJEL

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Termovizijski sistemi MS1TS

TRIGONOMETRIJSKE FUNKCIJE I I.1.

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Matematika 1 - vježbe. 11. prosinca 2015.

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

Reverzibilni procesi

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Linearna algebra 2 prvi kolokvij,

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

APROKSIMACIJA FUNKCIJA

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

7 Algebarske jednadžbe

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

PRIMJER 3. MATLAB filtdemo

Računarska grafika. Rasterizacija linije

RIJEŠENI ZADACI I TEORIJA IZ

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

SISTEMI NELINEARNIH JEDNAČINA

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

Termovizijski sistemi MS1TS

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

Antene. Srednja snaga EM zračenja se dobija na osnovu intenziteta fluksa Pointingovog vektora kroz sferu. Gustina snage EM zračenja:

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

18. listopada listopada / 13

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

TEORIJA BETONSKIH KONSTRUKCIJA 79

Periodičke izmjenične veličine

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

Transcript:

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014.

Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3

4 Sadržaj

1 Konvolucija Zadatak 1. Odrediti konvoluciju signala i signala t/3 za 0 < t < 1 x 1 (t) = za 1 < t < 60 0 za t > 60 x (t) = { za 0 < t < 40 0 za t > 40 Rešenje: Po definiciji konvolucija se izračunava na osnovu izraza x 1 (t) x (t) = x 1 ()x (t )d = x ()x 1 (t )d (1.1) Signali x 1 (t) i x (t) su prikazani na slici 1.1. x1(t) x(t) 0 1 60 t 0 40 t Sl. 1.1: Da bi lakše razumeli izračunavanje konvolucionog integrala na slici 1. su prikazani signali x 1 () i x1( ). Vremenski pomeren signal, za vreme t, u oznaci x 1 (t ) = x 1 ( +t) = x 1 ( ( t)) prikazan je na slici 1.3.

6 1. Konvolucija x1() x1( ) 0 1 60 60 1 0 x1( +t) Sl. 1.: 30 0 1 30 Sl. 1.3: Treba obratiti pažnju da je vremenska osa obeležena sa i da je sa t predstavljena konstantna vrednost za koju se vremenski pomera signal x 1 () ( slici 1.3 odgovara vrednost t = 30). Posmatrajući izraz 1.1, u kome su granice integraljenja od do, zaključujemo da, s obzirom na činjenicu da su date funkcije x 1 (t) i x (t) nenultih vrednosti na konačnom vremenskom intervalu, integral praktično treba izračunavati samo za one vrednosti za koje su istovremeno različite od nule funkcije x 1 () i x (t ) (koristićemo definicioni izraz x 1 (t) x (t) = x 1()x (t )d, (1.1). Na osnovu ovoga zaključujemo da je za t < 0 vrednost konvolucije x 1 (t) x (t) jednaka nuli, jer za vrednosti za koje je funkcija x 1 () različita od nule, funkcija x (t ) je jednaka nuli, i obrnuto, tako da je za sve vrednosti na celom opsegu od do podintegralna funkcija jednaka nuli. Ovo je ilustrovano slikom 1.4 koja je data za slučaj t = 10. x 1 () 0 0 1 60 x (t ) 10 0 Za t < 0 x 1()x (t )d = 0 Sl. 1.4: Slika 1.4 je data za slučaj t = 10. Ako funkciju x 1 (t) uzmemo kao referentnu, izraz za konvolu-

7 ciju postaje (za t < 0) 60 x 1 (t) x (t) = x 1 ()x (t )d = x 1 () 0d = 0 (1.) 0 Tek za t > 0 dolazi do preklapanja x 1 () i x (t ) pa podintegralna funkcija (proizvod ove dve funkcije) ima nenultu vrednost. U prvom koraku izračunaćemo vrednost konvolucije za 0 < t < 1. Slika 1.,koja ilustruje ovaj slučaj, je data za t = 10. x 1 () x (t ) 0 1 60 Za 0 < t < 1 t 40 0 t Sl. 1.: Za 0 < t < 1, na osnovu slike 1., konvoluciju izračanavamo na osnovu izraza x 1 (t) x (t) = x 1 ()x (t )d = x 1 ()x (t )d = d = 0 0 3 3 t 0 = t 3 (1.3) Za t = 1 se dobija 7 za vrednost konvolucije. Za t > 1 funkcija x (t ) u potpunosti prekriva linearnu oblast funkcije x 1 () i delimično oblast u kojoj je njena vrednost jednaka. To znači da se pri izračunavanju konvolucije definicioni integral deli na dva integrala. To se dobro uočava sa slike 1.6. 1 x 1 (t) x (t) = x 1 ()x (t )d = x 1 ()x (t )d + x 1 ()x (t )d 0 1 (1.4) = 7+ d = 7+10 t 1 = 7+10(t 1) = 10t 7 1 Za t = 40 vrednost konvolucije je 10 40 7 = 3. Ovo je maksimalna vrednost vremenskog pomeraja t (funkcije x ) za koju je u potpunosti nenultim vrednostima funkcije x prekriven linearni deo funkcije x 1. U narednom koraku iračunavamo vrednost konvolucije za 40 < t < kada je još uvek delimično prekriven linearni deo funkcije x 1 nenultim vrednostima funkcije x. Ovaj slučaj je prikazan na slici 1.9, koja je data za t = 0.

8 1. Konvolucija x 1 () x (t ) 0 1 60 Za 1 < t < 40 t 40 0 t Sl. 1.6: x 1 () x (t ) 0 1 60 0 t 40 t Za 40 < t < Sl. 1.7: Konvoluciju izračunavamo na osnovu izraza 1 x 1 (t) x (t) = x 1 ()x (t )d = x 1 ()x (t )d + x 1 ()x (t )d = t t 40 1 3 1 t 40 + d 1 = 1 (t 80t + 1600) 3 = t + 110t 18 3 + 10 t 1 = t + 80t 1600+ 3 na osnovu koga se dobija vrednost konvolucije 400 za t =. + 10(t 1) Za t > funkcija x više se ne preklapa sa linearnim delom funkcije x 1. Konvolucija se izračunava samo preko jednog integrala pričemu su obe funkcije konstantne i imaju vrednosti i. Naravno, sve ovo ima smisla samo dok je t < 60 kako bi imali interval na kome je u igri funkcija x u potpunosti. Ovaj slučaj prikazan je na slici 1.8, a slika se odnosi na slučaj t = 8. Konvoluciju sada izračunavamo pomoću izraza (1.)

9 x 1 () x (t ) 0 1 60 0 t 40 t Za < t < 60 Sl. 1.8: x 1 (t) x (t) = x 1 ()x (t )d = d = 10 t t 40 = 10((t 40) t) = 400 = const t 40 t 40 (1.6) Do promene dolazi kada je t > 60 jer tada jedan deo funkcije x se nalazi van opsega u kome je funkcija x 1 sa nenultim vrednostima, tako da taj deo funkcije x ne utiče na konačnu vrednost. Kako t raste na sve manjem intervalu se funkcije x 1 i x preklapaju što za posledicu daje da vrednost konvolucije opada. Slučaj za 60 < t < 100 je prikazan na slici 1.9 a sama slika je data za t = 80. x 1 () x (t ) 0 1 60 0 t 40 t Za 60 < t < 100 Sl. 1.9: Na osnovu slike vidimo da se konvolucija izračunava na osnovu izraza x 1 (t) x (t) = = 60 t 40 60 x 1 ()x (t )d = x 1 ()x (t )d t 40 d = 10 60 t 40 = 10(60 (t 40)) = 10(100 t) = 1000 10t (1.7) Za t > 100 nema preklapanja funkcija x 1 () i x (t ), tako da je podintegralna funkcija na

10 1. Konvolucija celom opsegu integraljenja jednaka nuli pa i sama konvolucija ima nultu vrednost. Ovaj slučaj je prikazan na slici 1.10, a sama slika je data za t = 110. x 1 () x (t ) 0 1 60 0 t 40 t Za t > 100 Sl. 1.10: Vrednost konvolucije prikazana je na slici 1.11 400 30 300 x1(t) x(t) 0 00 10 100 0 0 0 0 40 60 80 100 t Sl. 1.11: Konvolucija signala.

Literatura 11