Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Σχετικά έγγραφα
2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Σάββατο 11 Νοεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Πέμπτη 5 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ

Απαντήσεις Διαγωνίσματος Μαθηματικών Προσανατολισμού Γ Λυκείου 03/11/2018

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

Ημερομηνία: Τετάρτη 12 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

2018 Φάση 1 ιαγωνίσµατα Προετοιµασίας ΜΑΘΗΜΑΤΙΚΑ. Γ' Γενικού Λυκείου. Θετικών Σπουδών / Σπουδών Οικονοµίας & Πληροφορικής

5o Επαναληπτικό Διαγώνισμα 2016

(, ) ( x0, ), τότε να αποδείξετε ότι το. x, στο οποίο όμως η f είναι συνεχής. Αν f ( x) 0 στο

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ( ) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

Επαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

f x x, ν Ν-{0,1} είναι παραγωγίσιμη στο R

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ (1η σειρά)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

Ημερομηνία: Παρασκευή 28 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Λύσεις των θεμάτων προσομοίωσης -2- Σχολικό Έτος

f ( x) f ( x ) για κάθε x A

#Ευθύνη_Μαθηματικά ΤΕΛΟΣ 1ΗΣ ΑΠΟ 11 ΣΕΛΙΔΕΣ

Μαθηματικά Προσανατολισμού Γ' Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 18 ΔΕΚΕΜΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. f x = x 6x + 3, x 1, 1. Η f είναι συ-

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

Διαγώνισμα στις Συναρτήσεις και τα Όρια τους

Α3. Σχολικό βιβλίο σελ. 142 Γεωμετρική ερμηνεία του θ. Fermat: Στο σημείο (x o, f(x o )) η εφαπτομένη της C f είναι οριζόντια.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2013 ΕΚΦΩΝΗΣΕΙΣ

2o Επαναληπτικό Διαγώνισμα 2016

( ) ( ) ɶ = = α = + + = = z1 z2 = = Οπότε. Έχουµε. ii) γ) 1ος Τρόπος. Οπότε Ελάχιστη απόσταση είναι:

2 ο Διαγώνισμα περιόδου στις Συναρτήσεις και τα Όρια

Μαθηµατικά Θετικής & Τεχνολογικής Κατεύθυνσης Γ' Λυκείου 2001

x x f x για κάθε f x x ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. α) Σχολικό σελίδα 15

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

1 ο Διαγώνισμα περιόδου στις Συναρτήσεις και τα Όρια

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

Σελίδα 1 από 3. f ( x ) 0. Τι σημαίνει γεωμετρικά το Θεώρημα Μέσης Τιμής του Διαφορικού Λογισμού ( Μονάδες 5 ) (Α3) Πότε η ευθεία y x

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]

Α1. Να διατυπωθεί και να δοθεί η γεωµετρική ερµηνεία του θεωρήµατος Μέσης Τιµής του ιαφορικού Λογισµού. (3 µονάδες)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ- ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ ΕΚΦΩΝΗΣΕΙΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Ημερομηνία: Κυριακή 29 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑ Α. lim f(x) 0 και lim g(x), τότε lim [f(x) g(x)] 0. lim.

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές λύσεις)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 17 ΔΕΚΕΜΒΡΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΝΕΟ & ΠΑΛΑΙΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

Α4. δ. Α5. (i) Λάθος (ii) Λάθος (iii) Λάθος (iv) Σωστό (v) Λάθος. Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα 1. g x. και. f x g x έχουμε: Για την συνάρτηση

( ) ( ) ( 3 ) ( ) = ( ) ( ) ( ) ( ) ( ) ( 1) ( ) (( ) ( )) ( ) + = = και και και και. ζ να ταυτισθούν, δηλαδή θα πρέπει: f x ημ x. 6 x x x.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ., στο οποίο όμως η f είναι συνεχής. Αν η f x

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

Transcript:

ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Ιανουαρίου 07 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω η συνάρτηση () στο (0, ) και ισχύει Να αποδείξετε ότι η συνάρτηση είναι παραγωγίσιμη ( ), δηλαδή Μονάδες 0 Α Πότε μια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο o του πεδίου ορισμού της; Μονάδες 5 Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη α) Αν η συνάρτηση είναι συνεχής σ ένα σημείο o, τότε είναι και παραγωγίσιμη στο σημείο αυτό β) Αν για μία συνάρτηση ορισμένη σε ένα διάστημα [ αβ, ] ισχύει ( α) ( β) 0, τότε υπάρχει τουλάχιστον ένα 0 ( αβ, ) τέτοιο ώστε ( 0 ) 0 γ) Για κάθε 0 ισχύει ln δ) Αν μία συνάρτηση είναι συνεχής και γνησίως αύξουσα σε ένα ανοιχτό διάστημα ( αβ,, ) τότε το σύνολο τιμών της είναι το διάστημα ( ), ( ) α β ε) Αν ισχύει ( ) ( 0), τότε η δεν είναι παραγωγίσιμη στο 0 0 0 Μονάδες 0 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Ωρίωνας ΣΕΛΙΔΑ: ΑΠΟ

ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΘΕΜΑ Β Δίνεται η συνάρτηση ( ) ln με 0 Β Να αποδείξετε ότι η συνάρτηση αντιστρέφεται Β Να βρείτε το πεδίο ορισμού της συνάρτησης Μονάδες 8 και στη συνέχεια να δείξετε ότι η εξίσωση ln 06 έχει ακριβώς μία λύση ( β) ( a) Β Αν 0 α β τότε να δείξετε ότι η εξίσωση 0 ρίζα στο διάστημα (,) ΘΕΜΑ Γ Έστω : R R μια συνάρτηση συνεχής για την οποία ισχύει: Μονάδες 9 έχει τουλάχιστον μία Μονάδες 8 ημ ( ), για κάθε και η συνάρτηση g ( ) λe Γ Να δείξετε ότι ημ, αν 0 ( ), αν 0 Μονάδες 6 Γ Να αποδείξετε ότι η εφαπτομένη της γραφικής παράστασης της στο σημείο M(0, (0)) είναι η ε : y Μονάδες 5 Γ Να βρείτε το λ, ώστε η εφαπτομένη ε του ερωτήματος Γ να εφάπτεται στη γραφική παράσταση της συνάρτησης g Μονάδες 7 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Ωρίωνας ΣΕΛΙΔΑ: ΑΠΟ

ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ Γ4 Για λ, να βρείτε το ( ) g ( ) ΘΕΜΑ Δ Μονάδες 7 Δίνεται η συνεχής συνάρτηση : R R, με σύνολο τιμών ( R) R για την οποία ισχύει: Δ Να αποδείξετε ότι ( ) t ( ) t t t t 4 t, ( ) ( ) 4 για κάθε Δ Να αποδείξετε ότι: i) η συνάρτηση είναι γνησίως αύξουσα Μονάδες 4 ii) η αντιστρέφεται και στη συνέχεια ότι αν η γραφική παράσταση της βρίσκεται κάτω από την ευθεία y τότε η γραφική παράσταση της βρίσκεται πάνω από την y Μονάδες 7 Δ Να αποδείξετε ότι υπάρχει μοναδικός πραγματικός αριθμός ρ με ρ(,0), τέτοιος ώστε ( ρ) 0 Δ4 Να αποδείξετε ότι υπάρχει μοναδικό ξ (0,) τέτοιο ώστε Δ5 Να υπολογίσετε τα όρια: i) 9 (4) 5 ii) ( ) Μονάδες 4 ( ξ) 07 π Μονάδες 4 Μονάδες 6 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Ωρίωνας ΣΕΛΙΔΑ: ΑΠΟ

ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Ιανουαρίου 07 Διάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Απόδειξη Α Ορισμός Α α Λάθος β Λάθος γ Σωστό δ Σωστό ε Σωστό ΘΕΜΑ Β Β Για κάθε, (0, ) με έχουμε ln ln και οπότε ln ln ln ln ( ) ( ) Άρα η είναι γνησίως αύξουσα, επομένως - οπότε αντιστρέφεται Β Η είναι συνεχής στο (0, ) και γνησίως αύξουσα ( ) (ln ) ( ) ( ) 0 0 ( ) (ln ) ( ) 0 Άρα το σύνολο τιμών της είναι ( A) Επομένως D ( A) Είναι ln 06 ln 06 ( ) 07 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Ωρίωνας ΣΕΛΙΔΑ: ΑΠΟ 6

ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ Το 07 ( A) άρα η εξίσωση ( ) 07 ln 06 έχει μία τουλάχιστον λύση η οποία είναι μοναδική αφού η είναι γνησίως αύξουσα στο πεδίο ορισμού της Β Για (,) είναι ( β) ( a) Επομένως έχουμε να δείξουμε ότι η συνάρτηση τουλάχιστον ρίζα στο (,) Η g είναι συνεχής στο [,] ως πολυωνυμική g() ( a) 0 g() 7 ( β) 0 0 ( ) ( β) ( ) ( a) 0 διότι α β ( a) () ( β) ( a) 0 ( β) Άρα g() g() 0 g( ) ( ) ( β) ( ) ( a) έχει μία Επομένως σύμφωνα με το θεώρημα του Bolzano, η g έχει μία τουλάχιστον ρίζα στο (,) ΘΕΜΑ Γ Γ Για 0 είναι: ημ ( ) Η είναι συνεχής στο ( ) ημ ημ ( ) επομένως θα είναι συνεχής και στο 0 οπότε: ημ ημ 0 0 0 (0) ( ) 0 αφού Άρα u ημ ημu 0 u0 u ημ, αν 0 ( ), αν 0 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Ωρίωνας ΣΕΛΙΔΑ: ΑΠΟ 6

ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ Γ Έχουμε (0) και ημ u ( ) (0) ημ ημu 0 0 0 0 u0 u Η εφαπτομένη της C στο 0 0 είναι η ευθεία με εξίσωση: οπότε (0) y (0) (0)( 0) y y Γ Είναι g ( ) λe με και g( ) λe, Η ευθεία ε: y θα εφάπτεται της C g όταν υπάρχει 0 ώστε: g 0 0 λe 0 0 g 0 λe 0 ( ) 0 0 ( ) λ Άρα για λ η ευθεία ε εφάπτεται της Γ4 Για λ είναι g( ) e, C g στο 0 0 Είναι ημ ( ) ημ g( ) e e Για (0, ): ημ ημ ημ Είναι 0 Επομένως από το κριτήριο παρεμβολής Επίσης 0 οπότε e ( ) 0 (0 ) 0 g ( ) ημ 0 ΘΕΜΑ Δ Δ Για κάθε έχουμε: t ( ) ( ) t ( ) t ( ) t t t t t t t t t0 t t ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Ωρίωνας ΣΕΛΙΔΑ: ΑΠΟ 6

ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ( ) ( ) ( ) ( ) 0 t ( ) ( ) t 0 0 t t Επομένως: ( ) ( ) 4 για κάθε Δ ( ) ( ) 4 () Έστω ότι υπάρχουν, με τέτοια ώστε ( ) ( ) Τότε ( ) ( ) () και ( ) ( ) () Με πρόσθεση κατά μέλη των () και () έχουμε: ( ) ( ) ( ) ( ) 4 4 4 4 0 ( )( ) 4( ) 0 * ( )( 4) 0 0 που είναι άτοπο Επομένως για κάθε, με ισχύει ( ) ( ), οπότε η συνάρτηση είναι γνησίως αύξουσα * 4 0 8 0 ( ) 8 0 που ισχύει ii) Η συνάρτηση είναι γνησίως αύξουσα στο οπότε και άρα αντιστρέφεται Επειδή η γραφική παράσταση της βρίσκεται κάτω από την ευθεία y έχουμε ( ) για κάθε Είναι Άρα η γραφική παράσταση της ( ) ( ) ( ( )) (), για κάθε βρίσκεται πάνω από την ευθεία y ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Ωρίωνας ΣΕΛΙΔΑ: 4 ΑΠΟ 6

ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ Δ Στη σχέση ( ) ( ) 4 για έχουμε ( ) ( ) ( ) 4( ) ( ) ( ) 4 και επειδή ( ) 0 θα είναι ( ) 0 Όμοια για 0 έχουμε: (0)[ (0) ] και επειδή Η συνάρτηση είναι συνεχής στο [,0] (0) ( ) 0 (0) 0 θα είναι (0) 0 Άρα από το θεώρημα Bolzano προκύπτει ότι θα υπάρχει ένας τουλάχιστον ρ(,0) τέτοιος ώστε ( ρ) 0 Επειδή η είναι γνησίως αύξουσα, το ρ είναι μοναδικό Δ4 Είναι 0 (0) () π π και όμοια (0) () 07 Με πρόσθεση κατά μέλη βρίσκουμε: (0) () 07 π 07 π Οπότε (0) () 07 π Επειδή η συνεχής στο [0,] και (0) () από το θεώρημα ενδιαμέσων τιμών θα υπάρχει ξ (0,) τέτοιο ώστε: 07 π ( ξ) ( ξ) 07 π Επειδή η συνάρτηση είναι - το ξ θα είναι μοναδικό ος τρόπος : Με Θεώρημα Bolzano για την g( ) ( ) 07 π στο [0,] Δ5 i) Είναι 0 4 (0) (4) και επειδή (0) 0 θα είναι (4) 0 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Ωρίωνας ΣΕΛΙΔΑ: 5 ΑΠΟ 6

ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ Επομένως 9 (4) 5 (4) (4) ( ) ( ) 4 ( ) ( ) 4 ii) Είναι 4 4 ( ) ( ) για κάθε Επειδή 4 είναι ( ) Για την φετινή σχολική χρονιά 06-07 σύμφωνα με τις οδηγίες του ΥΠΠΕΘ για την επίλυση των ασκήσεων μπορεί να χρησιμοποιηθεί χωρίς απόδειξη η παρακάτω πρόταση Έστω, g δύο συναρτήσεις που είναι ορισμένες κοντά στο R 0, Αν ισχύουν : α) ( ) g( ) κοντά στο 0 β) g ( ) 0 τότε θα ισχύει και ( ) 0 ΤΑ ΘΕΜΑΤΑ ΠΡΟΟΡΙΖΟΝΤΑΙ ΓΙΑ ΑΠΟΚΛΕΙΣΤΙΚΗ ΧΡΗΣΗ ΤΩΝ ΦΡΟΝΤΙΣΤΗΡΙΩΝ Ωρίωνας ΣΕΛΙΔΑ: 6 ΑΠΟ 6