Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate trigonometrijske nejednakosti u trokutu. Dokazi su prilagod eni učenicima srednjih škola. Ključne riječi: trigonometrija, nejednakosti Several proofs of well known trigonometric inequality in triangle Abstract. Several proofs of well known trigonometric inequality are given. These proofs are adapted for high school students. Key words: trigonometry, inequality Dokazivanje nejednakosti u matematici je jako zanimljiv i kreativan posao. Pri tome dolaze do izražaja razne ideje koje često dovode do rezultata. Naravno, onaj koji hoće to realizirati mora biti solidno educiran iz raznih područja matematike te diferencijalnog računa. U ovom članku upravo ćemo se baviti raznim dokazima jedne poznate trigonometrijske nejednakosti koja često ima primjenu kod dokazivanja drugih nejednakosti. Riječ je o sljedećoj trigonometrijskoj nejednakosti u trokutu: tg α + tg β + tg γ, ) gdje su α, β i γ unutarnji kutovi trokuta. Kod dokaza ove nejednakosti koristit ćemo neke druge poznate jednakosti i nejednakosti čiji se dokazi mogu naći u [], [] i []. To su ove jednakosti i nejednakosti koje vrijede za trokut: tg α tgβ + tgβ tg γ + tgγ tgα =, ) cos α + cos β + cos γ = 4R + r R, ) cos α + cos β + cos γ = + r R, 4) Prirodno-matematiki fakultet, Zmaja od Bosne -5, Sarajevo, Bosna i Hercegovina Enighedsuej 58..th., 4800 Nykøbing F., Danska
6 Šefket Arslanagić i Alija Muminagić tg α + tgβ + tgγ = 4R + r, 5) s R r Eulerova nejednakost), 6) 4R + r s, 7) tg α + tgβ + tgγ, 8) gdje su r i R polumjeri upisane i opisane kružnice trokutu, s je poluopseg trokuta. Dokaz. Stavimo li da je tg α = x, tgβ = y i tgγ = z, jednakost ) postaje xy + yz + zx =. 9) Sada iz očigledne nejednakosti x + y + z ) xy + yz + zx) = x y) + y z) + x z) 0 i jednakosti 9) slijedi: x + y + z ) 0, tj. x + y + z, odnosno tg α + tg β + tg γ, a ovo je nejednakost ) koju je trebalo dokazati. Primijetimo da jednakost u ) vrijedi onda i samo onda ako je x = y = z, tj. tg α = tgβ = tgγ, a odavde α = β = γ, odnosno onda i samo onda ako je trokut jednakostraničan. Dokaz. Iz jednakosti ) primjenom nejednakosti Cauchy-Buniakowsky- Schwartz dobivamo = tg α tgβ + tgβ tgγ + tgγ tgα tg α + tg β + tg γ = tg α + tg β + tg γ. tg α + tg β + tg γ Ovo je jedan jako kratak i elegantan dokaz za koga je potrebno znati samo nejednakost Cauchy-Buniakowsky-Schwartz za n =, a koja glasi: a b + a b + a b ) a + a + a )b + b + b ), gdje su a, a, a, b, b, b R.
Više dokaza jedne poznate trigonom. nejednakosti u trokutu 7 Dokaz. Neka je Kako je tg x = cos x + cos x = + cos x M = M = tg α + tg β + tg γ., to je: + cos α + + cos β + + cos γ Stavimo da je x = + cos α, y = + cos β, z = + cos γ; x, y, z > 0). Aritmetička sredina tih brojeva je ). 0) A = x + y + z = 4) + cos α + cos β + cos γ) = + + r ) 6) R. ) Harmonijska sredina tih brojeva je a odavde H =, + cos α + + cos β + + cos γ = H + cos α + + cos β + + cos γ ) 0) = M +, te H = 6 M +. ) Kako je H A, to iz ) i ) dobivamo: Dokaz 4. Neka je 6 M + M + 4 M. M = tg α + tg β + tg γ. Kako je tg x = cos x, to je: sin x ) ) ) cos α cos β cos γ M = + + sin α sin β sin γ cos α) cos β) cos γ) = sin + α sin + β sin γ cos α) + cos β) + cos γ) = + cos α + cos β + cos γ cos α + cos β + cos γ) 4) = + cos α + β cos + γ cos + r ) R = cos α + β cos + γ ) cos r R ) = 4R + r R M. r R = R r R = r R 6), tj.
8 Šefket Arslanagić i Alija Muminagić Dokaz 5. Neka su A = tg α + tg β + tg γ i B = tgα + tgβ + tgγ. Sada dobivamo: B = A + tg α ) tgβ + tgβ tgγ + tgγ tgα, tj. zbog ): a odavde zbog 8): Dokaz 6. Imamo zbog ): B = A +, A = B 8) ) =. tg α + tg β + tg γ = tg α + tgβ + tgγ ), tj. na osnovu 5) i 7): tg α + β tg + γ ) 4R + r tg = 7) s ) = =. s s Dokaz 7. Za ovaj dokaz koristit ćemo Jensenovu nejednakost []). Promatrat ćemo funkciju fx) = tg x ; x 0, π). Imamo te f x) = tg x cos x f x) = cos x + sin x cos 4 x = tg x cos x = sin x cos x, > 0 za sve x 0, π). Dakle, dana funkcija fx) = tg x je konveksna za x 0, π), pa na osnovi Jensenove nejednakosti za n = imamo: ) [fx x + x + x ) + fx ) + fx )] f, a odavde uzimajući da je x = α, x = β i x = γ dobivamo tg α + β tg + γ ) tg tg α + β + γ,
Više dokaza jedne poznate trigonom. nejednakosti u trokutu 9 tj. odnosno zbog α + β + γ = π imamo tg α + β tg + γ ) α + β + γ tg tg, 6 tg α + tg β + tg γ tg π 6, tj. ) tg α + β tg + γ tg =. Literatura [] Š. Arslanagić, Matematika za nadarene, Bosanska riječ, Sarajevo, 004. [] Š. Arslanagić, Metodička zbirka zadataka sa osnovama teorije iz elementarne matematike, Grafičar promet d.o.o., Sarajevo, 006. [] O. Bottema, and oth., Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, 969. [4] B. Pavković, D. Veljan, Elementarna matematika, Školska knjiga, Zagreb, 995. [5] A. Muminagić, Bobillierova formula, Osječka matematička škola 4004) br..