Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Σχετικά έγγραφα
Još neki dokazi leptirovog teorema

TRIGONOMETRIJSKE FUNKCIJE I I.1.

6 Primjena trigonometrije u planimetriji

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

TRIGONOMETRIJA TROKUTA

ELEKTROTEHNIČKI ODJEL

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

1.4 Tangenta i normala

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

Udaljenosti karakterističnih točaka trokuta

Matematička analiza 1 dodatni zadaci

3.1 Granična vrednost funkcije u tački

Udaljenosti karakterističnih točaka trokuta

Matematika 1 - vježbe. 11. prosinca 2015.

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

2.7. DEVET RJEŠENJA JEDNOG ZADATKA IZ GEOMETRIJE *)

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Funkcije dviju varjabli (zadaci za vježbu)

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

IZVODI ZADACI (I deo)

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

RIJEŠENI ZADACI I TEORIJA IZ

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

radni nerecenzirani materijal za predavanja

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Uvod u teoriju brojeva

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

Linearna algebra 2 prvi kolokvij,

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Elementi spektralne teorije matrica

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

4. Trigonometrija pravokutnog trokuta

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

SISTEMI NELINEARNIH JEDNAČINA

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Osnovne teoreme diferencijalnog računa

18. listopada listopada / 13

Riješeni zadaci: Nizovi realnih brojeva

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

Zavrxni ispit iz Matematiqke analize 1

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Dvanaesti praktikum iz Analize 1

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Riješeni zadaci: Limes funkcije. Neprekidnost

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

MJERA I INTEGRAL 2. kolokvij 30. lipnja (Knjige, bilježnice, dodatni papiri i kalkulatori nisu dozvoljeni!)

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Rijeseni neki zadaci iz poglavlja 4.5

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

numeričkih deskriptivnih mera.

Ispitivanje toka i skiciranje grafika funkcija

Zadaci iz trigonometrije za seminar

Linearna algebra 2 prvi kolokvij,

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

Kaskadna kompenzacija SAU

KONAČNA MATEMATIKA Egzistencija kombinatornih konfiguracija Dirichlet-ov i Ramseyev teorem

Zadaci iz Osnova matematike

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2.6 Nepravi integrali

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

2. KOLOKVIJ IZ MATEMATIKE 1

je B 1 = B 2. Prvi teorem kojeg ćemo dokazati primjenom Menelajeva teorema je Euklidski slučaj poznatog Desargesova 2 teorema. B 2 Z B 1B 2 B 1 O

( , 2. kolokvij)

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Operacije s matricama

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Trigonometrijske nejednačine

Slučajni procesi Prvi kolokvij travnja 2015.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

IZVODI ZADACI (I deo)

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

Teorijske osnove informatike 1

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 Pojam funkcije. f(x)

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

1 Promjena baze vektora

Transcript:

Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate trigonometrijske nejednakosti u trokutu. Dokazi su prilagod eni učenicima srednjih škola. Ključne riječi: trigonometrija, nejednakosti Several proofs of well known trigonometric inequality in triangle Abstract. Several proofs of well known trigonometric inequality are given. These proofs are adapted for high school students. Key words: trigonometry, inequality Dokazivanje nejednakosti u matematici je jako zanimljiv i kreativan posao. Pri tome dolaze do izražaja razne ideje koje često dovode do rezultata. Naravno, onaj koji hoće to realizirati mora biti solidno educiran iz raznih područja matematike te diferencijalnog računa. U ovom članku upravo ćemo se baviti raznim dokazima jedne poznate trigonometrijske nejednakosti koja često ima primjenu kod dokazivanja drugih nejednakosti. Riječ je o sljedećoj trigonometrijskoj nejednakosti u trokutu: tg α + tg β + tg γ, ) gdje su α, β i γ unutarnji kutovi trokuta. Kod dokaza ove nejednakosti koristit ćemo neke druge poznate jednakosti i nejednakosti čiji se dokazi mogu naći u [], [] i []. To su ove jednakosti i nejednakosti koje vrijede za trokut: tg α tgβ + tgβ tg γ + tgγ tgα =, ) cos α + cos β + cos γ = 4R + r R, ) cos α + cos β + cos γ = + r R, 4) Prirodno-matematiki fakultet, Zmaja od Bosne -5, Sarajevo, Bosna i Hercegovina Enighedsuej 58..th., 4800 Nykøbing F., Danska

6 Šefket Arslanagić i Alija Muminagić tg α + tgβ + tgγ = 4R + r, 5) s R r Eulerova nejednakost), 6) 4R + r s, 7) tg α + tgβ + tgγ, 8) gdje su r i R polumjeri upisane i opisane kružnice trokutu, s je poluopseg trokuta. Dokaz. Stavimo li da je tg α = x, tgβ = y i tgγ = z, jednakost ) postaje xy + yz + zx =. 9) Sada iz očigledne nejednakosti x + y + z ) xy + yz + zx) = x y) + y z) + x z) 0 i jednakosti 9) slijedi: x + y + z ) 0, tj. x + y + z, odnosno tg α + tg β + tg γ, a ovo je nejednakost ) koju je trebalo dokazati. Primijetimo da jednakost u ) vrijedi onda i samo onda ako je x = y = z, tj. tg α = tgβ = tgγ, a odavde α = β = γ, odnosno onda i samo onda ako je trokut jednakostraničan. Dokaz. Iz jednakosti ) primjenom nejednakosti Cauchy-Buniakowsky- Schwartz dobivamo = tg α tgβ + tgβ tgγ + tgγ tgα tg α + tg β + tg γ = tg α + tg β + tg γ. tg α + tg β + tg γ Ovo je jedan jako kratak i elegantan dokaz za koga je potrebno znati samo nejednakost Cauchy-Buniakowsky-Schwartz za n =, a koja glasi: a b + a b + a b ) a + a + a )b + b + b ), gdje su a, a, a, b, b, b R.

Više dokaza jedne poznate trigonom. nejednakosti u trokutu 7 Dokaz. Neka je Kako je tg x = cos x + cos x = + cos x M = M = tg α + tg β + tg γ., to je: + cos α + + cos β + + cos γ Stavimo da je x = + cos α, y = + cos β, z = + cos γ; x, y, z > 0). Aritmetička sredina tih brojeva je ). 0) A = x + y + z = 4) + cos α + cos β + cos γ) = + + r ) 6) R. ) Harmonijska sredina tih brojeva je a odavde H =, + cos α + + cos β + + cos γ = H + cos α + + cos β + + cos γ ) 0) = M +, te H = 6 M +. ) Kako je H A, to iz ) i ) dobivamo: Dokaz 4. Neka je 6 M + M + 4 M. M = tg α + tg β + tg γ. Kako je tg x = cos x, to je: sin x ) ) ) cos α cos β cos γ M = + + sin α sin β sin γ cos α) cos β) cos γ) = sin + α sin + β sin γ cos α) + cos β) + cos γ) = + cos α + cos β + cos γ cos α + cos β + cos γ) 4) = + cos α + β cos + γ cos + r ) R = cos α + β cos + γ ) cos r R ) = 4R + r R M. r R = R r R = r R 6), tj.

8 Šefket Arslanagić i Alija Muminagić Dokaz 5. Neka su A = tg α + tg β + tg γ i B = tgα + tgβ + tgγ. Sada dobivamo: B = A + tg α ) tgβ + tgβ tgγ + tgγ tgα, tj. zbog ): a odavde zbog 8): Dokaz 6. Imamo zbog ): B = A +, A = B 8) ) =. tg α + tg β + tg γ = tg α + tgβ + tgγ ), tj. na osnovu 5) i 7): tg α + β tg + γ ) 4R + r tg = 7) s ) = =. s s Dokaz 7. Za ovaj dokaz koristit ćemo Jensenovu nejednakost []). Promatrat ćemo funkciju fx) = tg x ; x 0, π). Imamo te f x) = tg x cos x f x) = cos x + sin x cos 4 x = tg x cos x = sin x cos x, > 0 za sve x 0, π). Dakle, dana funkcija fx) = tg x je konveksna za x 0, π), pa na osnovi Jensenove nejednakosti za n = imamo: ) [fx x + x + x ) + fx ) + fx )] f, a odavde uzimajući da je x = α, x = β i x = γ dobivamo tg α + β tg + γ ) tg tg α + β + γ,

Više dokaza jedne poznate trigonom. nejednakosti u trokutu 9 tj. odnosno zbog α + β + γ = π imamo tg α + β tg + γ ) α + β + γ tg tg, 6 tg α + tg β + tg γ tg π 6, tj. ) tg α + β tg + γ tg =. Literatura [] Š. Arslanagić, Matematika za nadarene, Bosanska riječ, Sarajevo, 004. [] Š. Arslanagić, Metodička zbirka zadataka sa osnovama teorije iz elementarne matematike, Grafičar promet d.o.o., Sarajevo, 006. [] O. Bottema, and oth., Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, 969. [4] B. Pavković, D. Veljan, Elementarna matematika, Školska knjiga, Zagreb, 995. [5] A. Muminagić, Bobillierova formula, Osječka matematička škola 4004) br..