SISTEMI NELINEARNIH JEDNAČINA

Σχετικά έγγραφα
Elementi spektralne teorije matrica

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

3.1 Granična vrednost funkcije u tački

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Osnovne teoreme diferencijalnog računa

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

Ispitivanje toka i skiciranje grafika funkcija

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Teorijske osnove informatike 1

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

5 Ispitivanje funkcija

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

18. listopada listopada / 13

Operacije s matricama

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

4 Numeričko diferenciranje

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

POGLAVLJE 1 NJUTNOVA METODA

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

ELEMENTARNE FUNKCIJE

Dvanaesti praktikum iz Analize 1

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

Granične vrednosti realnih funkcija i neprekidnost

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Geometrija (I smer) deo 1: Vektori

Granične vrednosti realnih nizova

Norme vektora i matrica

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

ELEMENTARNE FUNKCIJE

Zavrxni ispit iz Matematiqke analize 1

ELEMENTARNA MATEMATIKA 2

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

METODA SEČICE I REGULA FALSI

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

3.1. Granične vrednosti funkcija

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Nepokretna tačka za kontraktivna preslikavanja lokalnog tipa u tački

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

41. Jednačine koje se svode na kvadratne

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

8 Funkcije više promenljivih

1 Svojstvo kompaktnosti

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

Matematička analiza 1 dodatni zadaci

APROKSIMACIJA FUNKCIJA

TEORIJA REDOVA. n u k (n N) (2) k=1. u k. lim S n = S, kažemo da zbir (suma) reda. k=1 S = k=1

1.4 Tangenta i normala

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

Svojstva metoda Runge-Kutta

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Prediktor-korektor metodi

1. Funkcije više promenljivih

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Univerzitet u Nišu Prirodno - matematički fakultet Departman za matematiku

numeričkih deskriptivnih mera.

f n z n, (2) F (z) = pri čemu se pretpostavlja da red u (2) konvergira bar za jednu konačnu vrednost kompleksne promenljive Z(f n ) = F (z).

Metrički prostori i Riman-Stiltjesov integral

ELEMENTARNA MATEMATIKA 2

ELEKTROTEHNIČKI ODJEL

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

Linearna algebra 2 prvi kolokvij,

IZVODI ZADACI (I deo)

Sistemi veštačke inteligencije primer 1

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Elementarna matematika - predavanja -

ELEMENTARNA MATEMATIKA 2

Računarska grafika. Rasterizacija linije

Bulove jednačine i metodi za njihovo

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f}

(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)

Matematika 4. t x(u)du + 4. e t u y(u)du, t e u t x(u)du + Pismeni ispit, 26. septembar e x2. 2 cos ax dx, a R.

Dijagonalizacija operatora

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Slučajni procesi Prvi kolokvij travnja 2015.

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA

Determinante. Inverzna matrica

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Zadaci iz trigonometrije za seminar

FUNKCIJE VIŠE REALNIH PROMENLJIVIH

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

POGLAVLJE 1 GRADIJENTNE METODE

4 Izvodi i diferencijali

5. Karakteristične funkcije

Transcript:

SISTEMI NELINEARNIH JEDNAČINA April, 2013

Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0

Definicije i oznake Definicija: Preslikavanje F : D R n D je kontrakcija na D ako postoji konstanta q, 0 q < 1 takva da je F(x) F(y) q x y, x, y D Konstanta q naziva se koeficijent kontrakcije Jakobijeva matrica preslikavanja F u tachki x D: J F (x) = f 1 f 1 x 1 (x) x n (x) f n f x 1 (x) n x n (x)

Metoda iteracije Hesijanova matrica preslikavanja f : R n R: 2 f (x) 2 f x 1 2 x 1 x n (x) H f (x) = 2 f x n x 1 (x) 2 f (x) xn 2 Metoda iteracije ili f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0 x 1 = g 1 (x 1,, x n ) x n = g n (x 1,, x n ), (3) x = G(x), (4)

G(x) = Iterativni proces: g 1 (x) g n (x) = g 1 (x 1,, x n ) g n (x 1,, x n ) x n = G(x n 1 ), n = 1, 2, (5) Teorema (dovoljan uslov konvergencije): Neka su ispunjeni uslovi: (i) preslikavanje G je definisano na zatvorenoj lopti S = S(x 0, r) = {x R n : x x 0 r} čiji je centar početna aproksimacija x 0, a poluprečnik jednak r; (ii) G je kontrakcija na S sa koeficijentom kontrakcije q, G(x) G(y) q x y, 0 q < 1, x, y S; (iii) za početnu aproksimaciju x 0 važi G(x 0 ) x 0 (1 q)r (6)

Dovoljan uslov konvergencije Tada: 1 svi članovi niza (5) pripadaju lopti S; 2 niz (5) konvergira tački x S, lim x n = x; n 3 x je jedinstvena nepokretna tačka preslikavanja G; 4 za aproksimaciju x n važi ocena Dokaz: x n x 1 Matematičkom indukcijom dokazujemo da qn 1 q x 1 x 0 (7) x n S(x 0, r) za n = 0, 1,

x 1 x 0 = G(x 0 ) x 0 (1 q)r < r x 1 S(x 0, r) Pretpostavimo da x i S(x 0, r) za i = 1,, k, gde je k N Tada je x k+1 x k = G(x k ) G(x k 1 ) q x k x k 1 pa je q k x 1 x 0 q k (1 q)r, x k+1 x 0 = x k+1 x k + x k x k 1 + + x 1 x 0 x k+1 x k + x k x k 1 + + x 1 x 0 q k (1 q)r + q k 1 (1 q)r + + (1 q)r = (1 q)r(1 + q + + q k ) = (1 q)r 1 qk+1 1 q = (1 q k+1 )r < r x k+1 S(x 0, r)

2 Neka je m > n Tada je x m x n x m x m 1 + x m 1 x m 2 + + x n+1 x n q m 1 (1 q)r + q m 2 (1 q)r + + q n (1 q)r = (1 q)rq n (1 + q + q 2 + + q m n 1 ) < (1 q)rq n (1 + q + q 2 + ) = (1 q)rq n 1 1 q = rq n 0 kada n Niz (x n ) je Košijev, pa konvergira u R n Neka je x = lim n x n S obzirom da je x tačka nagomilavanja niza (x n ) čiji članovi pripadaju zatvorenom skupu S(x 0, r), to i x S(x 0, r)

3 G je kontrakcija na S(x 0, r), pa je G(x n ) G(x) q x n x Kako x n x 0 kada n, to je S druge strane je lim G(x n) = G(x) (8) n lim G(x n) = lim x n+1 = x, (9) n n Iz (8) i (9) sledi da je x = G(x), tj x je nepokretna tačka preslikavanja G Pretpostavimo da postoje dve nepokretne tačke, x i y Tada iz x y = G(x) G(y) q x y sledi (1 q) x y 0, što je moguće samo ako je x y = 0, odnosno x = y

4 Imamo x n x = G(x n 1 ) G(x) q x n 1 x q n x 0 x (10) Za n = 1 nejednakost (10) ima oblik x 1 x q x 0 x (11) S druge strane, korišćenjem (11), dobijamo x 0 x = x 0 x 1 + x 1 x x 0 x 1 + x 1 x odakle sledi x 1 x 0 + q x 0 x, x 0 x x 1 x 0 (12) 1 q Ocena (7) proizilazi iz relacija (10) i (12)

Dovoljan uslov za kontrakciju Teorema (dovoljan uslov kontraktibilnosti): Neka su funkcije g i, i = 1,, n neprekidno diferencijabilne na zatvorenoj lopti i neka je S(x 0, r) = {x R n : x x 0 r} max J G(s) q < 1, (13) s S(x 0,r) gde je bilo koja matrična norma saglasna sa uvedenom vektorskom normom Tada je G kontrakcija na S(x 0, r) Dokaz: u knjizi!

Metoda Njutn-Kantoroviča Metoda Njutn-Kantoroviča Ideja: Rešavanje sistema nelinearnih jednačina f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0 F(x) = 0 (14) svodi se na rešavanje niza sistema linearnih jednačina Oznake: x = (x 1,, x n ) T - tačno rešenje sistema (14) x 0 = (x (0) 1,, x n (0) ) T - početna aproksimacija rešenja sistema ε 0 = x x 0 Tada je F(x 0 + ε 0 ) = 0, (15) odnosno f i (x 0 + ε 0 ) = 0 za i = 1,, n

Ako su funkcije f i neprekidno diferencijabilne u nekoj okolini tačke x 0, važe Tejlorovi razvoji f i (x 0 ) + n j=1 f i x j (x 0 )ε (0) j + = 0 za i = 1,, n, (16) gde je ε (0) j = x j x (0) j Ako u razvoju (16) izostavimo nelinearne članove u odnosu na ε (0) j, dobijamo sistem jednačina f i (x 0 ) + n j=1 f i x j (x 0 )ε (0) j = 0, i = 1,, n koji je linearan u odnosu na ε (0) j Matrična forma ovog sistema je F(x 0 ) + J F (x 0 )ε 0 = 0 (17)

Ako je J F (x 0 ) regularna matrica, iz (17) sledi da je ε 0 = (J F (x 0 )) 1 F(x 0 ) Zbog izostavljanja nelinearnih članova u (16), zbir x 0 + ε 0 nije jednak tačnom reshenju x Taj zbir uzimamo za narednu aproksimaciju tačnog rešenja, Analogno, x 1 = x 0 + ε 0 = x 0 (J F (x 0 )) 1 F(x 0 ) x 2 = x 1 (J F (x 1 )) 1 F(x 1 ), Iterativni proces metode Njutn-Kantoroviča: x n+1 = x n (J F (x n )) 1 F(x n ) n = 0, 1, (18)

y Primer: Sistem jednačina e x y = 0 xy e x = 0 ima jedinstveno rešenje (1, e) Numerički rezultati sa početnom aproksimacijom (x 0, y 0 ) = (05, 20) ukazuju na konvergenciju iterativnog procesa tačnom rešenju 8 7 6 5 4 3 2 e x y=0 1 02 04 06 08 1 12 14 16 18 2 x xy e x =0 k x k y k 0 0500000 2000000 1 1201202 2804808 2 1008660 2684080 3 0999891 2717880 4 1000000 2718282

Dovoljni uslovi konvergencije Teorema (dovoljni uslovi konvergencije ): Neka su ispunjeni sledeći uslovi: (i) funkcije f i, i = 1,, n su dva puta neprekidno diferencijabilne na zatvorenoj lopti i pri tome je za i = 1,, n S(x 0, r) = {x R n : x x 0 r} H fi (x) K, x S; (ii) Jakobijeva matrica J F (x 0 ) ima inverznu matricu za koju je (J F (x 0 )) 1 B; (iii) početna aproksimacija x 0 zadovoljava uslov F (x 0 ) η;

(iv) h = B 2 Kη 1 2 ; (v) Tada: 1 1 2h Bη r (19) h 1 sistem (14) ima rešenje x koje pripada lopti S; 2 svi članovi niza (x n ) pripadaju lopti S i niz (x n ) konvergira rešenju x, lim n x n = x; 3 važi ocena x x n t t n, (20)

gde je t = (1 1 2h)Bη/h manji koren jednačine 1 2 Kt2 1 t + η = 0, (21) B a t n, n = 0, 1, su uzastopne aproksimacije korena t dobijene Njutnovom metodom za t 0 = 0