KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ"

Transcript

1 eman ta zabal zazu Universidad del País Vasco Euskal Herriko Unibertsitatea BILBOKO INGENIARIEN GOI ESKOLA TEKNIKOA KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ I EGILEA: Jesus-Mari Romo Uriarte (hirugarren zirriborroa)

2 HITZAURREA Esku artean duzun liburu honek konputagailuen programazioaren oinarriak aurkezten ditu, helburu nagusi horrekin batera informatikaren hastapeneko kontzeptuak ere lantzen ditu. Liburu osoan zehar ariketa praktikoei garrantzia handia ematen zaie, batez ere laugarren kapitulutik aurrera, hots, programazioaren gaia hasten denetik aurrera. Esan daiteke kontzeptu bakoitzeko programa bat idatzi dela, programen erabilpena errazago izan dadin kapituluka bildu dira eta kapitulu bakoitzaren amaieran euren identifikazio-taula tartekatu egin da. Programok diskete batean banatzen ditugu horrela eskatuz gero, iturburu-programak direnez exekutatu ahal izateko konpiladoreren bat beharko du ikasleak (guk Borland etxeko Turbo Pascal 7.0 konpiladorea erabili dugu). Liburuak 14 kapitulu ditu, baina bigarren zirriborro hau amaitzen dugun une honetan lehen hamabiak idatzirik ditugu, gainerakoak hurrengo baterako utzi ditugularik. 14 kapituluen kontzeptuak jasotzeko ikasleak 12 kreditu beharko lituzke, euretatik 4 kreditu gutxienez konputagailuaren aurrean era praktiko batean kurtsatuko lituzke. 12 kreditu horiek bi ikasturtetan banaturik egonez gero, hona hemen proposatzen dugun jokabidea: Ikasturtea Kredituak Kapituluak 1 6 1, 2, 3, 4, 5, 6, 8, 9, 10, , 12, 13, 14 Bilboko Ingeniarien Goi Eskola Teknikoan, Industri Ingeniarien titulazioan erabiltzen da liburu hau eta bertan 9 kreditu ditugu une honetan konputagailuei buruzko kontzeptu guztiak eman ahal izateko. Gauzak horrela, egun prestaturik ditugun lehen hamabi kapituluak jorratzeko denborarik ez dugulako zazpigarrena, unitateak lantzen dituena alegia, sakontasunik gabe gainbegiratzen dugu. JM Romo Uriarte

3 NON ZER NON ZER NON ZER v 1. ATALA: INFORMATIKARAKO SARRERA 1 AURKIBIDEA SARRERA ALGORITMOA Algoritmoen erabilpena Algoritmoen mailaketa Algoritmotik programara Makina algoritmikoak Makina algoritmikoen sailkapena Makina algoritmikoen arkitektura MAKINA ALGORITMIKOEN MUGARRI HISTORIKOAK Ordenadoreen aurretikoak Aritmetikaren hastapenak Aritmetikaren automatizazioa Programaren kokapena memorian Ordenadore mekanikoak Ordenadore elektronikoak Gaur egungo makina algoritmikoen arkitektura PROGRAMAZIO-LENGOAIAK Makina-lengoaia Itzultzaileak Mihiztadura-lengoaia Konpiladoreak eta interpretatzaileak Konpiladoreak Interpretatzaileak Goi-mailako lengoaia garrantzitsuenak FORTRAN COBOL BASIC PASCAL C ADA MODULA LISP PROLOG LOGO KONPUTAZIO SISTEMA BATEN MAILAKETA Sistema Eragilea Sistema Eragilea eta erabiltzailea Sistema Eragilearen funtzioak Sistema Eragilearen motak Aplikazio Programak Testu-prozesadoreak eta Editoreak 44 v

4 NON ZER Kalkulu-orriak Simuladoreak Datu-baseak CAD-CAM-CAE Telekomunikazioak PROGRAMAK BIBLIOGRAFIA 48 ERANSKINAK 48 E1 Abakoa erabiltzeko arauak 49 E2 Adimena duten makinak 61 E3 Telekomunikazioen iraultza ATALA: INFORMAZIOA ETA BERE ADIERAZPIDEA 1 AURKIBIDEA SARRERA INFORMAZIOA NEURTZEKO UNITATEAK SINBOLOEN ADIERAZPIDEA: KONPUTAGAILU-KODEAK ASCII kodea BCD kodea EBCDIC kodea OEM kodea ANSI kodea UNICODE kodea KOPURUEN ADIERAZPIDEA Zenbaketaren Oinarrizko Teorema n oinarritik hamartarrerako eta hamartarretik n oinarrirako bihurketak n oinarritik m oinarrirako bihurketa Bitar-hamartar eta hamartar-bitar bihurketak Bitar-zortzitar eta zortzitar-bitar bihurketak Bitar-hamaseitar eta hamaseitar-bitar bihurketak Zenbaki osoen adierazpidea Modulua eta zeinua rako osagarria rako osagarria Bitarra gainditua Zenbaki errealen adierazpidea Koma finkoa Koma higikorra Erroreak detektatzeko kodeak ARIKETAK PROGRAMAK BIBLIOGRAFIA ATALA: KONPUTAGAILUAREN BARNE OSAGAIAK 1 AURKIBIDEA SARRERA Makina algoritmikoa kanpotik, hurbilpena Makina algoritmikoa barrutik, hurbilpena GAUR EGUNGO MAKINA ALGORITMIKOEN ARKITEKTURA Memoria 8 vi

5 NON ZER Memori taula Helbide-erregistroa Datu-erregistroa Deskodetzailea Memoriako eragiketak Irakurketa Idazketa Memoria motak RAM memoria ROM memoria Bus konektoreak Datu-busa Helbide-busa Kontrol-busa Unitate Aritmetiko-logikoa Kontrol-unitatea Kontrol-unitatearen osagaiak Instrukzio baten exekuzioa, Bilaketa-fasea eta Exekuzio-fasea Periferikoak Memoria masiboa Memoria magnetikoak Memoria optikoak KONPUTAGAILU DIDAKTIKO BATEN DISEINUA Arkitektura Lengoaia PROGRAMEN EXEKUZIOA Zenbakiak batzen Errepikapenak burutzen Bilaketa-fasea eta Exekuzio-fasea KONPUTAGAILU DIDAKTIKOAREN ESKEMA ARIKETA PROGRAMAK BIBLIOGRAFIA 34 ERANSKINAK 35 E1 Transistorea 37 E2 Datuak lantzeko zirkuituak 41 E3 Datuak biltegitzeko zirkuituak 55 E4 Konputagailuen memoriari buruzko artikulua 65 E5 Mikroprozesadorei buruzko artikuluak 71 E6 Konputagailuen periferiko optikoei buruzko artikuluak ATALA: TURBO PASCAL 7.0 LENGOAIAREN ELEMENTUAK 1 AURKIBIDEA SARRERA LENGOAIAREN FUNTSEZKO ELEMENTUAK Hitz erreserbatuak eta sinboloak Identifikadoreak Identifikadore estandarrak Erabiltzailearen identifikadoreak Konstanteak Aldagaiak Iruzkinak 8 vii

6 NON ZER Esleipena AURREDEFINITURIKO DATU-MOTAK Datu-mota osoak Zenbaki osoen eragileak Zenbaki osoen gainezkada Datu-mota errealak Zenbaki errealen eragileak Eragile aritmetiko eta eragigaien arteko bateragarritasuna Datu-mota boolearrak Adierazpen boolearrak Karaktere datu-mota PROGRAMA BATEN EGITURA Goiburukoa: PROGRAM hitz erreserbatua Erazagupen atala Unitateak Datu-motak Konstante eta aldagaiak Prozedura eta funtzioak Programa Nagusia IRTEERA/SARRERA Write eta WriteLn prozedurak Read eta ReadLn prozedurak DATU-MOTAK EGITURATUAK STRING datu-mota ARRAY datu-mota RECORD datu-mota SET datu-mota FILE eta TEXT datu-motak Erakusle datu-mota Objektu datu-mota PROGRAMAK BIBLIOGRAFIA ATALA: BALDINTZAK ETA ERREPIKAPENAK 1 AURKIBIDEA SARRERA BALDINTZAZKO AGINDUAK IF-THEN baldintzazko sententzia Adibidea IF-THEN kabiatuak IF-THEN-ELSE baldintzazko sententzia Adibidea IF-THEN-ELSE kabiatuak CASE-OF baldintzazko sententzia AGINDU ERREPIKAKORRAK WHILE-DO sententzia errepikakorra Adibidea Adibidea REPEAT-UNTIL sententzia errepikakorra Adibidea Adibidea FOR-DO sententzia errepikakorra 24 viii

7 NON ZER Adibidea Kontra adibidea Adibidea Adibidea Adibidea Adibidea Adibidea PROGRAMAZIO ARIKETAK EBAZTEKO URRATSAK Diferentzia Finituen metodoa (zenbaki osoekin) Arazoaren definizioa Algoritmoa asmatu Algoritmoa programa bezala idatzi Soluzioa ebaluatu Diferentzia Finituen metodoa (zenbaki errealekin) PROGRAMAK BIBLIOGRAFIA ATALA: AZPIPROGRAMAK, FUNTZIOAK ETA PROZEDURAK 1 AURKIBIDEA SARRERA AZPIPROGRAMA BATEN HELBURUA Kodearen errepikapena ekiditea Programaren antolaketa lortzea Kodearen independentzia AZPIPROGRAMEEN ARTEKO KOMUNIKAZIOA Azpiprogramaren deia Deiaren Helburua Parametroen ordena azpiprogramaren deian Parametro motak Sarrerako parametroak Adibideak Irteerako parametroak Adibideak Sarrera/Irteerako parametroak Adibideak Parametroen erabilpena Turbo Pascal lengoaian Baliozko parametroa Aldagai-parametroa Konstante-parametroa Azpiprogrameen arteko komunikazioa. Laburpena PARAMETRO MOTAK ETA MEMORI HELBIDEAK Baliozko parametroak eta memori helbideak Aldagai-parametroak eta memori helbideak Konstante-parametroak eta memori helbideak ALDAGAIEN IRAUPENA ETA ALDAGAIEN ESPARRUA Aldagaien iraupena Aldagaien esparrua Identifikadoreen lehentasuna eta ustegabeko gertaerak AZPIPROGRAMA MOTAK TURBO PASCAL LENGOAIAN Funtzioak Funtzioaren atalak Funtzioaren goiburukoa 53 ix

8 NON ZER Funtzioaren erazagupenak Funtzioaren sententzien atala Funtzioaren deia Funtzioen adibideak Kosinua Taylor bitartez Angeluen bihurketa Funtzio boolearra Zenbait funtzio estandar Prozedurak Prozeduraren atalak Prozeduraren goiburukoa Prozeduraren erazagupenak Prozeduraren sententzien atala Prozeduraren deia Prozeduren adibideak Kosinua Taylor bitartez Angeluen bihurketa Pilota jauzika Zenbait prozedura estandar ERREKURTSIBITATEA Funtzio errekurtsiboaren adibidea Prozedura errekurtsiboaren adibidea PROGRAMAK BIBLIOGRAFIA ATALA: UNITATEAK 1 AURKIBIDEA SARRERA Turbo Pascal eta grafikoak Grafikoak irekitzen eta ixten Pantaila testuala vs. pantaila grafikoa Pixelak Koloreak Letra-tipoak eta estiloak Lerro zuzenak Oinarrizko azpirrutina grafiko estandarrak Geure azpirrutina grafikoak Elementu geometrikoak banaka Hirukia Laukia Karratua Laukizuzena Zirkunferentzia Elipsea Arkua Funtzio trigonometrikoak Elementu geometrikoak bildurik UNITATE BAT ERAIKITZEN Unitate baten barne egitura Unitate baten sorrera, konpilazioa eta gaurkotzea Uste gabeko gertaerak Unitate kabiatuak Unitateen arteko erreferentzia gurutzatuak Unitate ezberdinetan dagoen identifikadore bera 38 x

9 NON ZER 7.3 UNITATEEN ADIBIDEA: GRAFIKOAK Unitate grafikoaren beharkizunak Unitate grafikoaren interfazea Unitate grafikoaren inplementazioa Unitate grafikoa erabiltzen UNITATEEN ARIKETA: KOORDENATU-TRANSFORMAZIOAK Biraketa Traslazioa Eskalatua UNITATEEN ADIBIDEA: ANIMAZIOAK UNITATEEN ARIKETA: TRIGONOMETRIA ERRAZTEN PROGRAMAK BIBLIOGRAFIA ATALA: ERABILTZAILEAREN DATU-MOTAK 1 AURKIBIDEA SARRERA DATU-MOTAK TURBO PASCAL LENGOAIAN Datu-moten arteko bihurketak DATU-MOTA BERRIAK SORTZEN DATU-MOTA ENUMERATUAK Datu-mota enumeratuak. Adibidea Datu-mota enumeratuak. Sendotasuna Datu-mota enumeratuak. Ahulezia AZPIEREMU DATU-MOTA Azpieremuak eta heina. {$R±} konpilazio direktiba DATU-MOTA EGITURATUEN SARRERA STRING datu-mota egituratua ARRAY datu-mota egituratua RECORD datu-mota egituratua SET datu-mota egituratua FILE datu-mota egituratua Erakusle datu-mota egituratua Objektu datu-mota egituratua KONPILADOREAREN DIREKTIBAK Konmutadore direktibak {$R±} direktiba {$B±} direktiba {$Q±} direktiba {$I±} direktiba {$V±} direktiba {$P±} direktiba {$X±} direktiba {$A±} direktiba Parametrodun direktibak {$I XXX} direktiba {$L XXX} direktiba Baldintza-direktibak PROGRAMAK 35 xi

10 NON ZER 8.9 BIBLIOGRAFIA ATALA: STRING DATU-MOTA 1 AURKIBIDEA SARRERA Definizioa Luzera fisiko vs luzera logiko String baten osagaiak Zero posizioaren edukia Karaktere-kateen eragiketak Kateen arteko esleipena Kateen arteko konparaketak Karaktere-kateen kateaketa Kateekin lan egiteko modua KATEEN FUNTZIO ETA PROZEDURA ESTANDARRAK Funtzioak Length funtzioa Copy funtzioa Pos funtzioa Concat funtzioa Prozedurak Delete prozedura Insert prozedura Str prozedura Val prozedura Kateen funtzio eta prozedura estandarren adibideak Adibidea Adibidea NULL KARAKTEREZ BUKATURIKO KATEAK StrLen eta StrEnd funtzioak StrCopy eta StrLCopy funtzioak StrCat eta StrLCat funtzioak StrComp, StrIComp, StrLComp eta StrLIComp funtzioak StrLower eta StrUpper funtzioak StrPas eta StrPCopy funtzioak StrPos funtzioa StrECopy funtzioa PROGRAMAK BIBLIOGRAFIA ATALA: ARRAY DATU-MOTA 1 AURKIBIDEA SARRERA Definizioa Indizeak Eragiketak arrayekin Eragiketak arrayen elementuekin Adibidea Adibidea Arrayen luzera fisikoa eta luzera logikoa Arrayen luzera fisikoa Arrayen luzera logikoa {$R±} direktiba Arrayak parametro bezala 20 xii

11 NON ZER 10.2 ARRAY DIMENTSIOBAKARRAK Array dimentsiobakar baten biltegitzea memorian Array dimentsiobakarra den aldagai baten hasieraketa ARRAY DIMENTSIOANITZAK Array dimentsioanitz baten biltegitzea memorian Array dimentsioanitza den aldagai baten hasieraketa ARRAY DIMENTSIOBAKARREN GAINEKO ERAGIKETAK Ibilera Bilaketa Bilaketa lineala Bilaketa bitarra Tartekaketa Ezabaketa Nahasketa Ordenazioa Ordenazioa aukeraketaren bitartez Ordenazioa tartekaketaren bitartez (bilaketa lineala) Ordenazioa tartekaketaren bitartez (bilaketa bitarra) Ordenazioa burbuilaren bitartez Ordenazioa burbuila hobetuaren bitartez ARRAYEN ERAGIKETA ARITMETIKOETARAKO UNITATEA Array karratuen aritmetikarako unitatearen beharkizunak Batuketa Kenketa Biderketa Zatiketa Array karratu baten determinantea Array karratu baten array iraulia Array karratu baten array adjuntua Array karratuen aritmetikarako unitatearen interfazea Array karratuen aritmetikarako unitatearen inplementazioa Array karratuen aritmetikarako unitatea erabiltzen Ekuazio sistemak ebazten Cramer Gauss-Jordan PROGRAMAK BIBLIOGRAFIA ATALA: RECORD ETA SET DATU-MOTAK 1 AURKIBIDEA SARRERA RECORD DATU-MOTA Definizioa Eremuak Eremuak zehazteko sintaxia Eremuen helburua Eremuen biltegitzea memorian Eragiketak erregistroekin Erregistroa eragigai bezala Erregistroa parametro bezala Eragiketak erregistroen eremuekin Erregistroen arrayak Adibidea 23 xiii

12 NON ZER Adibidea Erregistro baten hasieraketa Erregistro hierarkikoak Adibidea Adibidea Erregistro aldakorrak Adibidea Adibidea Adibidea Adibidea SET DATU-MOTA Definizioa Eragiketak multzoekin Multzoen arteko erlazioak Barnekotasuna Azpi eta gainmultzoa Berdintasuna eta desberdintasuna Multzoen eragileak Bilketa Ebaketa Osaketa Diferentzia Multzoak parametro bezala ZENBAKI KONPLEXUEN ERAGIKETATARAKO UNITATEA Zenbaki konplexuen unitatearen beharkizunak Zenbaki konplexuen unitatearen interfazea Zenbaki konplexuen unitatearen inplementazioa Zenbaki konplexuen unitatea erabiltzen PROGRAMAK BIBLIOGRAFIA ATALA: FILE ETA TEXT DATU-MOTAK 1 AURKIBIDEA FILE DATU-MOTAREN SARRERA Definizioa Fitxategi fisikoa Fitxategi logikoa Fitxategi fisiko eta fitxategi logiko. Laburpena Aurredefinituriko azpiprogramak Funtzioak Eof funtzioa FileSize funtzioa FilePos funtzioa Prozedurak Assign prozedura Rewrite prozedura Reset prozedura Close prozedura Read prozedura Write prozedura Seek prozedura Truncate prozedura Erase prozedura Rename prozedura Fitxategiak parametro bezala 38 xiv

13 NON ZER Fitxategien gaineko eragiketak Sorrera Existentzia Ibilera Bilaketa Gehiketa Aldaketa Tartekaketa Ezabaketa Fitxategi/Array Array/Fitxategi Ordenazioa fitxategi txikietan Ordenazioa fitxategi handietan TEXT DATU-MOTAREN SARRERA Definizioa Input eta Output fitxategi estandarrak WriteLn prozedura eta Output fitxategia Write prozedura eta Output fitxategia ReadLn prozedura eta Input fitxategia Read prozedura eta Input fitxategia Aurredefinituriko azpiprogramak Funtzioak Prozedurak Assign prozedura Rewrite prozedura Reset prozedura Close prozedura Read prozedura Write prozedura Seek prozedura Truncate prozedura Erase prozedura Rename prozedura DOS UNITATEA DOS unitateko funtzioak DiskFreef eta DiskSize funtzioak DosExitCode eta DosVersion funtzioak EnvCount eta EnvStr funtzioak GetEnv funtzioa FSearh funtzioa FExpand eta FSplit funtzioak DOS unitateko prozedurak Exec prozedura MsDos prozedura FindFirst eta FindNext prozedurak GetDate eta SetDate prozedurak GetTime eta SetTime prozedurak GetFTime eta SetFTime prozedurak GetFAttr eta SetFAttr prozedurak PROGRAMAK BIBLIOGRAFIA ATALA: ERAKUSLEAK 1 AURKIBIDEA SARRERA 3 xv

14 NON ZER Definizioa Eragiketak Aurredefinituriko azpiprogramak ZERRENDA KATEATUAK Zerrenda kateatuen sailkapena Zerrenda kateatuen gaineko algoritmoak ZUHAITZAK Zuhaitzen sailkapena Zuhaitzen gaineko algoritmoak ARIKETAK BIBLIOGRAFIA ATALA: OBJEKTUAK 1 AURKIBIDEA SARRERA Objektuei Zuzendutako Programazioa vs Programazio Egituratua Objektuei Zuzendutako Programazioaren propietareak OBJEKTUAK ETA TURBO PASCAL LENGOAIA Objektuen sorrera Metodoak Eremuen atzipenak Objektuak eta unitateak HERENTZIA Heredaturiko datuen eremuak Heredaturiko metodoak Herentzia eta ustegabeko gertarerak KAPSULAZIOA METODO ESTATIKOAK ETA METODO BIRTUALAK Polimorfismoa Eraikitzaileak Objektu dinamikoak ARIKETAK BIBLIOGRAFIA 6 KONTZEPTUEN INDIZE ALFABETIKOA 1 xvi

15 1. ATALA: INFORMATIKARAKO SARRERA 1-1

16 Informatikarako sarrera 1. kapitulua AURKIBIDEA 1. ATALA: INFORMATIKARAKO SARRERA 1 AURKIBIDEA SARRERA ALGORITMOA Algoritmoen erabilpena Algoritmoen mailaketa Algoritmotik programara Makina algoritmikoak Makina algoritmikoen sailkapena Makina algoritmikoen arkitektura MAKINA ALGORITMIKOEN MUGARRI HISTORIKOAK Ordenadoreen aurretikoak Aritmetikaren hastapenak Aritmetikaren automatizazioa Programaren kokapena memorian Ordenadore mekanikoak Ordenadore elektronikoak Gaur egungo makina algoritmikoen arkitektura PROGRAMAZIO-LENGOAIAK Makina-lengoaia Itzultzaileak Mihiztadura-lengoaia Konpiladoreak eta interpretatzaileak Konpiladoreak Interpretatzaileak Goi-mailako lengoaia garrantzitsuenak FORTRAN COBOL BASIC PASCAL C ADA MODULA LISP PROLOG LOGO KONPUTAZIO SISTEMA BATEN MAILAKETA Sistema Eragilea Sistema Eragilea eta erabiltzailea Sistema Eragilearen funtzioak Sistema Eragilearen motak J-M Romo Uriarte

17 1. kapitulua Informatikarako sarrera Aplikazio Programak Testu-prozesadoreak eta Editoreak Kalkulu-orriak Simuladoreak Datu-baseak CAD-CAM-CAE Telekomunikazioak PROGRAMAK BIBLIOGRAFIA 48 ERANSKINAK 48 E1 Abakoa erabiltzeko arauak 49 E2 Adimena duten makinak 61 E3 Telekomunikazioen iraultza 75 J-M Romo Uriarte 1-3

18 Informatikarako sarrera 1. kapitulua 1-4 J-M Romo Uriarte

19 1. kapitulua Informatikarako sarrera 1.1 SARRERA Informazioa transmititu eta prozesatu beharra betidanik izan du gizakiak, horregatik informatika bezala egun ezagutzen dugun zientziak aspaldiko aurretikoak ditu. Lehenengo kapitulu honetan zenbait definizio emango dugu, hurrengo kapituluen oinarriak direlako argi geratu beharko dira, edozein kasutan liburu honen planteamendu didaktikoa praktikoa izanik erabat argi geratuko ez diren kontzeptuak aurrerago ikusiko diren kapituluetan landuko direnez ez da zertan orain dena %100an ulertu behar. Has gaitezen bada informatika hitzak zer esanahi duen, UZEI hiztegitik hartuta honela definitzen da informatika: ordenadoreen diseinu eta erabilerari eta informazioaren tratamendu automatikoari dagozkion alderdi guztiak biltzen dituen jakintza-arloa. Informatika zientziaren definizioan elementu pare bat azpimarratuko genituzke. Batetik, Informatikak darabilen gaia informazioa dela (bigarren kapituluan zehaztuko dugu informazioa zer den), eta informazioaren prozesaketa edo tratamendua du helburu. Bestetik informazioaren tratamendua automatikoa dela, hots, informazioaren tratamendua makinaz egingo dela ordenadoreez 1 alegia. Zientzia bezala Informatikaren 2 ikergaiak, besteak beste, hauek lirateke: Algoritmoak eta datu-egiturak. Ordenadoreen arkitektura Adimen artifiziala eta Robotika Datu-baseak Gizaki-makina arteko komunikazioa Kalkulua Sistema Eragileak Programazio-lengoaiak Software ingeniaritza Nabaria denez sarrerako kurtso honetan ezin dira aipatu diren arlo guztiak arakatu, gure helburua ordenadore batek nola egiten duen lan ikastea da, hori bai, oso modu praktikoan irakatsiko dugu ordenadoreen funtzionamendua. Ondorioz ikasleak goi-mailako lengoaia batean programatzen ikasiko du, proposaturiko arazoa era formal batean formulatzen ohituko da eta haren ebazpidea programatzen gai izango da. 1.2 ALGORITMOA Konputazio Zientziaren (Informatikaren) oinarrizko kontzeptua algoritmoa da. Hura formalki definitu aurretik intuitiboki zer den azalduko dugu, edo behintzat saiatuko gara esplikatzen. Ordenadoreen programazioa zeregin berria da, baina programazioa funtsean arazoen soluzioa bilatzeko metodoa da eta esan genezake arazoak bezain zaharrak direla haien 1 Guri ordenadore terminoa baino konputagailu gehiago gustatzen zaigu. Logikoagoa iruditzen zaigu bi arrazoiagatik angloxaxoniarren artean ordenadore hitza ezagutu ere ez delako egiten, eta, makina algoritmikoa den ordenadorea definitzean konputagailu hobeto egokitzen da eta ez ordenadore (ordenadore batek lan egiten duenean beti konputatuko du, baina ez du halabeharrez ordenatu behar) 2 Informatika berba Frantzian sortua da 1962an bi hitz elkartuz Informazio Automatikoa, guretzat horren ezaguna den hitza erabat arrotza da gainerako munduan (Amerika eta Europa barne). J-M Romo Uriarte 1-5

20 Informatikarako sarrera 1. kapitulua ebazpideak. Planteaturiko arazo bat soluzionatzeko lau urrats betetzen dira, ordena-doreen programazioan beteko ditugunak: 1. Arazoaren ulermena. Problema zehaztasunez deskribatu beharra dago, hau da, zer egin behar den prezisio osoz jakitea halabeharrezkoa da. Urrats hau ez da beti behar bezala betetzen eta oso ondorio txarrak ekartzen ditu. 2. Arazoaren ebazteko plana egin. Zer egin behar den ziurtasunez dakigunean bestelako galderak erantzun genitzake, arazoari nola ekingo diogun bidea erakusten digutenak: Zer baliabide daukagu? Zer nolako tresneria? Nolakoak dira langileak? Zer epetan amaitu behar da? Erosgairik behar da? Errekurtso edo baliabide guztiak nola konbinatuko dira?. 3. Plana gauzatu. Zer egin behar den dakigula nola egingo den hausnartu ondoren lanean hasiko gara, helburu zehatz eta hura lortzeko plangintza egokiarekin. 4. Soluzioa ebaluatu. Gure produktuak hasierako espezifikazioak betetzen ditu?. Soluzioa bilatzeko lau urrats horietan ez da esan arazoa Informatikoa izan behar denik, Informatikaren mundura jauzi eginez problema bati erantzuten dion programa lortzeko lau urratsak hauek dira: 1. Arazoaren definizioa 2. Algoritmoa asmatu 3. Algoritmoa programa bezala idatzi 4. Soluzioa ebaluatu Beraz programa bat idatzi aurretik algoritmo bat sortu beharra daukagu. Baina algoritmoa zer da?. Intuitibori 3 erraz definitzen da: lan bat exekutatzeko behar diren instrukzioen multzoa da algoritmoa. Algoritmoen adibiderik klasikoenak errezetak dira, jarraian Pedro Subijana maisu famatuaren Denok Sukaldari liburutik hartutako algoritmoa ematen da: Lau lagunentzat gaiak Nola egin PORRUSALDA-KREMA BAKAILAOAREKIN porruak: 375 gr tipula: 180 gr patata: 470 gr bakailaoa: 200 gr bi baratxuri-atal olioa 1. Porruak txikitu eta zatirik samurrenak azkenerako utzi hornigaitarako erabiltzeko 2. Gainerakoak kazola batean jarri egosten 3. Gehitu tipula txikitua eta patata zatituak, olio zorrotada bat bota eta su motelean utzi irakiten, 40 minutu edo. 3 Algoritmo instrukzioen multzo finitua da, instrukzioak exekutagarriak dira eta euren arteko anbiguotasunik (zalantzagarritasunik) ez dago, eta, instrukzioek gidatzen duten zereginak amaiera du. 1-6 J-M Romo Uriarte

21 1. kapitulua Informatikarako sarrera 4. Bitartean, gezatutako bakailaoa prestatu eta mamitu. Zartaginean pasa baratxuri txikitu eta olio pixkarekin, eta lurrintzen utzi botatako ur guztia. 5. Porrusalda egin eta gero, xehatu eta iragazi (fin-fin gera dadila), gehitu bakailaomamiak eta nahastu. 6. Azkenerako utzitako porru-zatiak erdi egosi zartaginean eta krema gainean bota. Algoritmoak ideiak transmititzeko tresnak direnez grafikoak izan daitezke, jostailuak muntatzeko orrietan agertzen diren bezalakoak: J-M Romo Uriarte 1-7

22 Informatikarako sarrera 1. kapitulua Algoritmoen erabilpena Algoritmoak betidanik erabili dira, badira algoritmoak janariak prestatzeko errezetak deitzen ditugunak, musika jotzeko partiturak bezala ezagutzen ditugunak, etxeko landareak zaintzeko prozedurak algoritmoak izan daitezke, magia egiteko liburuak algoritmoen liburuak dira (amarrua urratsez urrats enumeratzen baita), mendi liburuetako ibilbideak algoritmikoki deskribatu ohi dira. Antzinako Mesopotamian algoritmoak erabiltzen ziren, Grezia zaharrean ere Euklides matematikariak gure egunetara iritsi den algoritmoa asmatu zuen. Euklides-en algoritmoak bi zenbakien z.k.h. (zatitzaile komunetako handiena) aurkitzeko balio du eta honela dio: Arazo orokorra: Bi zenbakien zatitzaile komunetako handiena lortu. Sarrerako datuak: Osoak eta positiboak diren bi kopuru. Prozesua: Algoritmoak hiru urrats ditu lehenengoa hasieraketa da eta beste biak behin baino gehiagotan errepika daitezke. 1. Datuetan kopuru handienari M deituko diogu, kopuru txikiena N izango da. 2. M eta N arteko zatiketa osoa lortu hondarrari H deituz. 3. H zero ez denean, N balioa M-ri erantsi (esleitu) H balioa N-ri erantsi bigarren urratsera itzuli; bestela, z.k.h. N-ren uneko balioa da Adibidea: Datuak 36 eta 16 M N H Zatidura z.k.h. 4 Behin algoritmoa asmatu eta sortu ondoren bi zenbaki osoen z.k.h. lortzea hura aplikatzea aski da, ez da ulertu behar zer egiten dugun urratsak egoki betetzea besterik ez zaigu gelditzen. Esaterako 7 eta 11 arteko zatitzaile komunetako handiena kalkulatu nahi badugu, taula hau beteko litzateke larregirik pentsatu gabe: Datuak 11 eta 7 M N H Zatidura z.k.h. 1 Nolabait esateko z.k.h. kalkulatzeko behar den adimena algoritmoan txertatuta dago eta horren erabiltzailea ez da oso burutsua izan behar, areago, makina automata bat izan daiteke taula eraikiz soluzioa eskura dezakeena. Alderantziz formulatuta, arazo bat emanik hura ebazteko algoritmorik aurkitzen ez badugu, ezinezkoa izango zaio ordenadore bati arazo horren soluzioa bilatzea. 1-8 J-M Romo Uriarte

23 1. kapitulua Informatikarako sarrera Algoritmoak hobeto ulertzeko urratsen zerrenda baten ordez fluxu-eskemen bitartez adieraz daitezke, lantzen ari garen adibiderako eskema hauxe litzateke: Datu handiena M Datu txikiena N N balioa M-ri esleitu H balioa N-ri esleitu M eta N-ren arteko zatiketa egin eta EZ H-k 0 balio du? BAI z.k.h. = N Algoritmoen mailaketa Euklides-en algoritmoarekin jarraituz, eta azken puntuan emandako fluxu-eskemari begiratuz, zatiketak nola egiten diren ezagutzen dela suposatu dugu. Edo porrusalda-kremaren prestaketan deskribatzen den bosgarren urratsan: 5. Porrusalda egin eta gero, xehatu eta iragazi (fin-fin gera dadila), gehitu bakailaomamiak eta nahastu. Ez denez ezer gehiagorik zehaztu, porrusalda fin-fin gera dadin irakurleak nola egin behar duen badakiela suposatu da errezeta idatzi denean. Honek esan nahi du algoritmo bat formulatzean abstrakzio maila bat aukeratu behar dela, eta horren arabera algoritmoak zatika adieraz daitezkeela. Esate baterako Euklides-en algoritmoan zatiketak nola egiten diren zehaztu nahi izanez gero, txikiak ginenean erakutsi ziguten zatiketa operazioari dagokion algoritmoa bilatu beharko genuke (honek behartzen gaitu biderketa definitzera). Edo bestela kontutan izan dezakegu zatiketa operazioa kenketa multzo bat dela, horrela jokatuz hona hemen zatiketa definitzen duen algoritmoari dagokion eskema: M eta N zehaztu M ken N kalkulatu eta M-ri esleitu EZ N > M? BAI H = M J-M Romo Uriarte 1-9

24 Informatikarako sarrera 1. kapitulua Kenketa nola kalkulatzen den suposatuz, Euklides-en algoritmoari dagokion eskema osatua hau litzateke: Datu handiena M Datu txikiena N M eta N zehaztu N balioa M-ri esleitu H balioa N-ri esleitu M ken N kalkulatu eta M-ri esleitu EZ N > M? BAI H = M EZ H-k 0 balio du? BAI z.k.h. = N Algoritmoa formulatuta dagoen bezala ordenadoreak ezingo du ulertu, ordenadoreak interpreta ditzakeen aginduak oso elementalak baitira. Algoritmoa osatzen duten instrukzioetatik makinak onartzen dituen aginduetara jauzi egin beharra dago. Azken honi programa esaten zaio eta jarraian garatzen den puntuan horren ideia hartuko dugu Algoritmotik programara Demagun ordenadorearen bitartez joko bat antolatu nahi dugula. Programaren zeregina honela deskribatzen da: erabiltzaileak, guk, 0 eta 100 artean dagoen zenbaki oso bat pentsatuko dugu eta ordenadoreak zein den asmatu beharko du. Konputagailuak saiakera ezberdinak izango ditu, eta bakoitzean 0 eta 100 arteko zenbaki bat aukeratuko du eta guk pentsatutako kopurutzat harturik soluzio bezala aurkeztuko digu erabiltzailearekiko honelako elkarrizketa izanik: 1. saiakeran ordenadoreak aukeratutako zenbakia: 50 zurearekin konparatuta, nolakoa da? B Berdina H Handiagoa T Txikiagoa Erantzuna: T 1-10 J-M Romo Uriarte

25 1. kapitulua Informatikarako sarrera 1. saiakeran erabiltzaileak, teklatuz, dagokion erantzuna emango dio ordenadoreari, horretarako erabiltzaileak pentsatutako zenbakia eta ordenadoreak aukeratu duena kontutan edukiko ditu. Eta, horren arabera hauek izan daitezke konputagailuaren ekintzak: Erantzuna B izatean, zenbakia asmatu du eta programa amaituko da Erantzuna H edo T izatean beste soluzio berri bat proposatuko du eta aurreko menuaren bitartez erakutsiko digu Esaterako, lehenengo saiakeran 50 kopurua gure zenbakia baino txikiagoa delako T erantzun da, baina bigarren txandan ordenadoreak hau erakutsiko digunean gure erantzuna H izango da guk asmatutako zenbakia 50 eta 75 artean baitago: 2. saiakeran ordenadoreak aukeratutako zenbakia: 75 zurearekin konparatuta, nolakoa da? B Berdina H Handiagoa T Txikiagoa Erantzuna: H Azken informazio honekin ordenadoreak soluziotzat 62 hartuko luke. Hau erakutsi eta programa bukatu B erantzun baitzaio: 3. saiakeran ordenadoreak aukeratutako zenbakia: 62 zurearekin konparatuta, nolakoa da? B Berdina H Handiagoa T Txikiagoa Erantzuna: B Pentsatu duzun zenbakia 62 da Falta zaigu azaltzea ordenadoreak zergatik aukeratu dituen 50, 75 eta 62 zenbakiak, nola dakien guk pentsatutako zenbakia mugatzen? ordenadoreak zein estrategia darabilen?. Konputagailuak, hasieran baliagarria den 0 eta 100 arteko esparrua gure erantzunen arabera aldatu egiten du, eta saiakera bakoitzean ordenadoreak proposatzen digun soluzioa uneko esparruaren erdian aurkitzen den zenbakia da. Algoritmoa laburbiltzen duen taula: Uneko esparrua Saiakera Behemuga Goimuga Erdia (0+100) / 2 = (51+100) / 2 = (51+74) / 2 =62 Algoritmoa grafikoki adierazita, non gezien muturrek saiakera bakoitzari dagozkion behemuga eta goimuga azaltzen duten: saiakera saiakera saiakera 100 J-M Romo Uriarte 1-11

26 Informatikarako sarrera 1. kapitulua Zenbakia asmatzen duen algoritmoak hiru zati nagusi ditu: jokoa hasi, saiakerak errepikatu eta jokoaren bukaera. Hona hemen algoritmoa: Jokoa hasi: Esparruaren behemuga 0 izan dadila Esparruaren goimuga 100 izan dadila Esparruaren erdia kalkulatu: (behemuga + goimuga) / 2 Saiakerak zenbatzen dituen kontagailua 1 izan dadila Saiakerak errepikatu: Uneko esparruaren erdia soluziotzat hartu eta pantailaratu Erabiltzailearen erantzuna jaso Proposatutako zenbakia guk pentsatutakoa baino handiagoa bada (erantzuna H) esparrua aldatuko da goimuga txikiagoa jarriz. Hurrengo saiakerarako behemuga dagoen bezala mantendu eta goimuga uneko esparruaren erdia ken 1 izan dadila Proposatutako zenbakia guk pentsatutakoa baino txikiagoa bada (erantzuna T) esparrua aldatuko da behemuga handituz. Hurrengo saiakerarako goimuga ez da aldatzen baina behemuga uneko esparruaren erdia gehi 1 izan dadila Behemuga edo goimuga berriekin, hasieraketan bezala, hurrengo saiakerari dagokion esparruaren erdia kalkulatu: (behemuga + goimuga) / 2 Saiakerak zenbatzen dituen kontagailua unitate batean inkrementatu Saiakera berri bat behar den ala ez erabaki. Ordenadoreak proposatutako zenbakia eta guk pentsatutakoa berdinak izan badira (erantzuna B) algoritmoaren hirugarren zatira joan, bestela algoritmoaren bigarren zatiarekin hasieratik jarraitu. Errepikapenak eteteko bigarren arrazoi bat dago, hots, saiakerak 7 baino gehiago izan badira erabiltzaileak ez du erantzunetan zuzen jokatu eta algoritmoaren hirugarren zatira joan. Jokoaren bukaera: Algoritmoaren bigarren zatitik irtetea ziurtaturik dago (erantzuna B izan delako edo saiakera kopurua 8raino heldu delako) eta prozesu errepikakorra nola eten den aztertuz soluzioa erakutsiko zaio erabiltzaileari. Erantzuna B izan denean guk pentsatutako zenbakia azken esparruaren erdia da, bestela erabiltzaileak ez du zuzentasunez erantzun Zenbakia asmatzen digun algoritmoa hizkuntza naturalean formulatu dugu, algoritmo horrek asmaketa lortzeko zein bide jorratu behar den argi eta garbi azaltzen digu, nahiz eta ondo ulertu ez helburua erdiesten dela froga dezake ikasleak. Beraz, zenbakia asmatzeko prozedura hau edozeinek aplika dezake era mekaniko batean, makina batek zenbakia asma dezan algoritmoa ezarri behar zaio. Tamalez hizkuntza naturalean formulaturiko algoritmo hori uler dezakeen ordenadorerik ez dago oraindik, hizkuntza naturala oso aberatsa da baina oso konplexua ere eta ideiak adierazteko anbiguatasun handiak egon daitezke gaizki-ulertze eta erroreak eragiten dituztenak. Esandakoagatik ordenadoreei algoritmoak ematean ez da hizkuntza naturala erabiltzen programazio-lengoaia bat baizik. Programazio-lengoaia bat lengoaia naturalaren azpimultzo bat da (lengoaiaren hiztegia txikia da eta bere arauak oso zehatzak), ondorioz programaziolengoaia batek edukiko dituen ezaugarriak argitasuna, sinpletasuna eta prezisioa izango dira J-M Romo Uriarte

27 1. kapitulua Informatikarako sarrera Zenbakiaren asmaketa jokoa konputagailu batek exekuta dezan, algoritmoa hizkuntza naturaletik programazio-lengoaia batetara igaroko dugu. Lengoaia formal batean adierazitako algoritmoari programa deritzo. Adibidez Turbo Pascal izenez ezagutzen den lengoaiara igaro ondoren hona hemen zenbakia asmatzen digun programa: PROGRAM ZenbakiaAsmatzen ; { \TP70\01\ASMATU.PAS } { Zenbakiak memorian gordetzeko } { aldagaiak definitzen dira } VAR Soluzioa, Saiakera, Behemuga, Goimuga : Byte ; Erantzuna: Char ; BEGIN { Algoritmoaren lehen zatia } Behemuga := 0 ; { Jokoa hasi } Goimuga := 100 ; Soluzioa := (Goimuga + Behemuga) DIV 2 ; Saiakera := 1 ; { Algoritmoaren bigarren zatia } REPEAT { Saiakerak errepikatu } WriteLn ; Write (Saiakera, ', saiakeran ordenadoreak aukeratutako zenbakia: ') ; WriteLn (Soluzioa) ; WriteLn ('zurearekin konparatuta, nolakoa da?') ; WriteLn (' B Berdina' ) ; WriteLn (' H Handiagoa' ) ; WriteLn (' T Txikiagoa' ) ; Write ('Erantzuna: ') ; Readln (Erantzuna) ; Erantzuna := UpCase (Erantzuna) ; IF Erantzuna='H' THEN Goimuga := Soluzioa - 1 ; IF Erantzuna='T' THEN Behemuga := Soluzioa + 1 ; Soluzioa := (Goimuga + Behemuga) DIV 2 ; Saiakera := Saiakera + 1 ; UNTIL (Erantzuna = 'B') OR (Saiakera > 7) ; { Algoritmoaren hirugarren zatia } { Emaitza erakutsiz jokoa bukatu } IF Erantzuna='B' THEN WriteLn ('Pentsatu duzun zenbakia ', Soluzioa, ' da') ELSE WriteLn ('Erantzunetan okertu zara ala gezurti hutsa zara') ; END. Irakurleak ez ditu ZenbakiaAsmatzen programaren sententziak ulertuko baina bai ikus dezake lengoaia naturalean idatziko algoritmoarekiko duen lotura estua, izan ere liburu eta kurtso honen asmoetatik bat algoritmoak Turbo Pascal lengoaia formalean idazten ikastea izango da. Onar dezagun ere algoritmoa programa bezala adierazita dagoenean ordenadore batek hura exekutatzeko aukera duela, eta algoritmoari guk barneratu diogun adimena bereganatzen duela. Hurrengo puntuan makinei buruz arituko gara, algoritmoak exekutatzeko ahalmena duten makinak sailkatu eta aurkeztuko ditugu. J-M Romo Uriarte 1-13

28 Informatikarako sarrera 1. kapitulua Makina algoritmikoak Algoritmoa exekuta dezakeen gailuari makina algoritmiko esango diogu. Ordena-doreei zer egin behar duten programa baten bitartez zehazki esan behar zaienez algoritmoren bat erabiliko dute euren funtzionamenduan, horregatik ordenadoreak makina algoritmikoak dira. Algoritmo kontzeptua Informatika baino zaharrago denez, makina algoritmikoak ere aspaldiko asmakizunak dira (makinaren bat algoritmikoa izan dadin bere funtzionamenduan algoritmoren bat jarraitzen duela kontsideratuz). Makina algoritmikoen bilakaera historikoa 1.3 MAKINA ALGORITMIKOEN MUGARRI HISTORIKOAK puntuan garatuko dugu, baina horren aurretik makinen sailkapen bat egin dezagun Makina algoritmikoen sailkapena Makina bat lan bat egin edo funtzioren bat betetzen duen aparatu edo aparatu-multzoa da, makinak bere kabuz funtziona dezake edo erabiltzaileak maneiatuta ibil daiteke. Makina nola kontrolatzen den aintzat harturik makinen sailkapen berezi hau egin daiteke: 1. Makina ez-automatikoak 2. Makina automatikoak 3. Makina programagarriak Banan-banan azal ditzagun: 1. Makina ez-automatikoak Erabiltzaile batek uneoro maneiatu behar duen aparatua da. Lana burutu dadin erabiltzailearen partehartzea ezinbestekoa da, nahiz eta makina ez-automatikoak bere kabuz zenbait funtzio bete izan. Adibidez, idazmakinak letrak paperean inprimatzen ditu idazleak teklak sakatzen dituen heinean, baina mekano-grafiatzeari utziz gero idazmakina gelditzen da. 2. Makina automatikoak Makina automatiko batean operadorea ez da uneoro aparatua kontrolatzen ariko. Automatikoak kontsidera daitezkeen makinek duten funtzioa betetzeko, euren kabuz ibiltzen dira kanpotik aginduak hartu eta gero. Esate baterako modernoagoak diren idazmakinekin lan egitean, lerro muturrera iristean orga atzeratu eta papera igotzen du automatikoki. Automatizazioa gradu bat da eta makina automatikoen adibideak amai ezinak lirateke. Denek onartzen dute erabiltzailearengandik nolabaiteko agindua eta funtzionamendua nahikoa autonomoa izaten da. Adibidez, gaur eguneko igogailuek teklatu txiki baten bitartez hartzen dituzte erabiltzailearen eskakizunak eta bere kabuz jaitsi eta igotzeko mugimenduak gobernatzen ditu (igo, jaitsi eta abar luzeko eginkizunak: abiadura eta azelerazioaren kontrola, ateen irekitzea eta ixtea, argitxo adierazgarriak piztea, bidaiarien eta kargaren pisua neurtzea,...). Makina automatiko bat eraikitzen denean etorkizunean izango duen funtzionamendua erabakitzen da, eta bere osagaietan era finko batean ezartzen da. Horrela, zirkuitu elektriko edo eta pneumatiko baten bitartez gobernatzen dira igogailuaren ateak, 1-14 J-M Romo Uriarte

29 1. kapitulua Informatikarako sarrera eta sistema ongi dabilen bitartean ateak beti ireki eta itxi egingo dira modu berean. Baina ateak astiroago ixtea nahi izango bagenu ez litzateke erraza izango, igogailuaren barne egituretan jantziak izateaz gain fisikoki zaila delako (igogailua desmuntatu beharko litzatekeelako). Igogailu batek, makina automatikoa den aldetik, algoritmo bat dauka bere zirkuituetan ezarririk, eta funtzionatzean eskema honi erantzuten dio beti: eszitazioak + Algoritmoa Makina automatikoa irteerako erantzunak Makina automatikoaren algoritmoa aldatzea zaila da, ondorioz funtzionamendu autonomoa baina zurruna dauka. 3. Makina programagarriak Makina programagarriak makina automatiko sofistikatuak dira. Izan ere, erabiltzailearen eskakizunak jasoko ditu baina makina automatikoak ez bezala ez dute portaera finko bat. Esan nahi da makinaren funtzionamendua unez une egokitzeko erraztasunak nabariak daudela makina programagarrietan. Igogailuaren adibidera atxikiz, horrek duen funtzionamendua automatikoa baina zurruna da, botoi bat sakatuz ondoriotzen diren sekuentziak beti izango dira berdinak. Baina programa-garria den makina batean eszitazio bat jasoz izan daitekeen portaera desberdina litzateke, orain azalduko den arrazoiagatik. Makina programagarria bi zatiz osaturik dago. Batetik oinarrizko makina deituko dugun zatia (aldaezina dela onar daiteke), eta, bestetik makinaren osagaia den programa (bigarren zati hau erraz aldatu eta moldatzeko diseinaturik dago): programa programa makina makina Makina programagarriaren osagaiak Makina progr Makina programagarriaren funtzionamendua bi osagaien partebestera aldatzea erraza dela kontsideratuz makina programagarriaren funtzionamendua Egindako sailkapenarekin gogoratuz: 1. Pianoa: -automatikoa, pianojoleak teklak sakatzen dituen bitartean musika entzungo da. 2. Musika kutxa: J-M Romo Uriarte 1-15

30 Informatikarako sarrera 1. kapitulua 3. Disko-jogailua: Makina programagarria, diskoa kenduz portaera ezberdinak izan ditzakeelako (kontzertu barrokoa izatetik folk jaia izatera pasa daiteke, modu oso errazean). Soinua automatikoki jotzeaz gain apatuaren portaera unez une egokitzea berehalakoa da. Ordenadore batek makina programagarria dela esango dugu, bi osagai baititu. Oinarrizko dispositiboekin batera (Informatikaren munduan hardware esaten zaio sailkapena egitean oinarrizko makina izendatu duguna), erraz karga daitekeen programa agertuko da ordenadorearen partaide bezala. Honez gero ordenadore batek duen funtzionamendua erabat alda daiteke exekutatzen duen programaren arabera: inprimagailuarekin batera idazmakina izan daiteke baldin eta testu prozesadore bat kargatzen badiogu, planoak marrazteko lanpostua izan daiteke CAD programa (marrazketa teknikorako programa) kargatzen badiogu, musika sor daiteke, etxeko kontabilitatea, irudi digitalak tratatu, sistemen ekuazioak ebatzi, zenbakizko datuak eman eta grafikoak marraztu,... A programa A programa B programa B programa oinarrizko oinarrizko oinarrizko oinarrizko makina makina makina makina portaera berezia duen A Makina portaera berezia duen B Makina Makina algoritmikoen arkitektura Bi zenbakien zatitzaile komunetako handiena kalkulatzeari ekingo bagenio, eta eskuz egin beharko bagenu paper orria eta arkatza baliabide fisikoz lagundurik eta Euklides-en algoritmoa baliabide intelektualaz, hau egingo genuke: Euklides-en algoritmoaren prozesua gogoratuz: 1. Datuetan kopuru handienari M deituko diogu, kopuru txikiena N izango da. 2. M eta N arteko zatiketa osoa lortu hondarrari H deituz. 3. H zero ez denean, N balioa M-ri esleitu, H balioa N-ri erantsi eta bigarren urratsera itzuli; bestela, z.k.h. N-ren uneko balioa da Beraz, datuak 36 eta 16 izanik z.k.h. eskuz kalkulatzeko betetzen ditugun zereginak bi dira. Batetik balio bat nonbaiten gorde behar dugu, geroago balio hori eskuratu ahal izateko, 1-16 J-M Romo Uriarte

31 1. kapitulua Informatikarako sarrera adibidean 36 datua M deituriko aldagaian 4, zeregin hau informazioaren biltegitzea izango da. Bete beharreko bigarren zeregina informazioaren prozesaketa izango da, informazioa prozesatzean eragiketa matematiko eta eragiketa logikoak burutzen dira; adibidez H-ri dagokion balioa lortzeko M eta N-ren arteko eragiketa matematikoa den zatiketa egin behar da, prozesu errepikakorra eteteko H-k zero balio duen frogatzen da (eragiketa logikoa). 36 eta 16 datuen z.k.h. eskuz kalkulatu ordez makina batek egin beharko balu, honek ere informazioa biltegitzeko (gordetzeko) eta informazioa prozesatzeko (eragiketak) ahalmena izan beharko luke. Ordenadoreetan atal berezi bi daude funtzio horietaz arduratzen direnak: memoria eta unitate prozesatzailea: Memoria Unitate Prozesatzailea Baina makina automatiko eta programagarriei eszitazioak ematen dizkio erabiltzaileak martxan jarri daitezen. Ordenadoreari ere, algoritmo programatua eta datuak eman beharko zaizkio eta programa hori exekuta dezan agindu beharko zaio. Horrez gain ordenadoreak kalkulatu duen emaitza erabiltzaileari erakutsiko dio (informazioa ordenadoretik kanporatuz). Beraz, ordenadore baten zereginak lau izango dira, aurreko biak eta sarrera/irteera nozioekin loturik daudenak. Hona hemen makina algoritmiko baten zereginen zerrenda eta eskemarik sinpleena: 1. Sarrerak onartu Erabiltzaileak informazioa ordenadoreri emango dio, informazioa diogunean datuak eta programari buruz ari gara. 2. Irteerak sortu Informazioa ordenadoretik kanporatzen denean. 3. Informazioa biltegitu Informazioa ordenadorearen memorian pilatzen da, informazio hori memoriatik ordenadorearen beste ataletara mugi daiteke, eta, ordenadorearen gainerako barne-osagaietatik memoriara mugi daiteke ere. 4. Informazioa prozesatu Informazioa prozesatzeak alderdi bi izango ditu. Eragiketa aritmetikoak eta logikoak burutu behar ditu ordenadoreak, eta, programaren instrukzioak ulertu eta exekutatuko ditu. Sarrerak / Irteerak Memoria Unitate Prozesatzailea Elementu hauen konbinazioak ordenadorearen hardwarea osatzen du eta makina programagarriaren aldaezina den zatia litzateke, hots, oinarrizko makina deitutakoa. Zati finko horri aldagarria den atala gehituko zaio makina algoritmiko osatua lortzeko, lehen aurreratu dugulako badakigu erraz alda daitekeen zatiari programa deitzen zaiola. programa programa oinarrizko makina oinarrizko makina 4 M-ri aldagaia esaten zaio berak adierazten duen balioa aldagarria delako prozesuaren zehar, hasieran M-k 36 sarrerako datua ordezkatzen du baina aurrerago M-ren balioa 16 da. J-M Romo Uriarte 1-17

32 Informatikarako sarrera 1. kapitulua 1.3 MAKINA ALGORITMIKOEN MUGARRI HISTORIKOAK Gizakion artean lan minimoaren legea edonon eta edonoiz aplikatu den araua izan da, da, eta izango da. Lan astunak eta errepikakorrak ekidin nahirik gabiltza mundu honetan; eta kalkuluak modu atsegin batean burutu ahal izateko asmatu dira hainbat tresna fisiko eta prozedura adimendutsu, horien artean ordenadoreak dira kate luze baten azken kat ak. Egungo ordenadoreetara iristeko bide luze bat jorratu da, makina algoritmikoak nola bilakatu diren ikus dezagun. Mugarri historikoak multzoka taldekatu ditugu, nahiz eta euren artean jarraipen estua egon Ordenadoreen aurretikoak Ordenadoreen aurretikoak hiru etapetan azalduko ditugu: aritmetikaren hastapenak zeintzuk ziren, kalkulugintza nola hasi zen automatizatzen eta historiako lehen makina programagarriek erakarri zituzten aurrerakuntzak Aritmetikaren hastapenak Hasiera batean zenbaketak egiteko gizakiak atzamarrak erabiliko zituen, atzamarrak eta harrien bitartez lortuko zuen kopuruen adierazpidea. Kalkulurako ezagutzen dugun tresnarik zaharrena hortik ondoriotuko zen, dakigunez K.a inguruan abakoa Mesopotamian ibiltzen zen eta handik Grezia eta Txinara zabaldu omen zen. Abako batek hainbat ardatz ditu eta bakoitzean egurrezko, harrizko edo zeramikazko bolak mugi daitezke gora eta behera, bola horiek dituzten posizioak behaturik jakin daiteke zein zenbaki adierazten duten. Esate baterako kopurua abako batean idatzi ondoren honelako egoera izango genuke: Abakoa eskuz maneiatzen den tresna da zenbaki bat adieraz dezan. Behin kopuruaren matematikoak burutzeko arauak definitu ziren (ikus kapitulu aldizkariko artikuluak). Matematikari hinduek asmatutako errepresentazio sistema hamartarra arabiarren eta kulturetan. Baina, abakoa herri askotan J-M Romo Uriarte

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa PROGRAMAZIO-TEKNIKAK Programazio-teknikak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION PROFESIONAL Hizkuntz

Διαβάστε περισσότερα

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x

Διαβάστε περισσότερα

1 Aljebra trukakorraren oinarriak

1 Aljebra trukakorraren oinarriak 1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,

Διαβάστε περισσότερα

Solido zurruna 2: dinamika eta estatika

Solido zurruna 2: dinamika eta estatika Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak 1 1.1 Masa-zentroarekiko ekuazioak.................... 3 2 Solido zurrunaren biraketaren dinamika 4 2.1

Διαβάστε περισσότερα

I. KAPITULUA Zenbakia. Aldagaia. Funtzioa

I. KAPITULUA Zenbakia. Aldagaia. Funtzioa I. KAPITULUA Zenbakia. Aldagaia. Funtzioa 1. ZENBAKI ERREALAK. ZENBAKI ERREALEN ADIERAZPENA ZENBAKIZKO ARDATZEKO PUNTUEN BIDEZ Matematikaren oinarrizko kontzeptuetariko bat zenbakia da. Zenbakiaren kontzeptua

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren

Διαβάστε περισσότερα

Ordenadore bidezko irudigintza

Ordenadore bidezko irudigintza Ordenadore bidezko irudigintza Joseba Makazaga 1 Donostiako Informatika Fakultateko irakaslea Konputazio Zientziak eta Adimen Artifiziala Saileko kidea Asier Lasa 2 Donostiako Informatika Fakultateko ikaslea

Διαβάστε περισσότερα

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana 6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana GAITASUNAK Gai hau bukatzerako ikaslea gai izango da: - Batezbestekoaren estimazioa biztanlerian kalkulatzeko. - Proba parametrikoak

Διαβάστε περισσότερα

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 AURKIBIDEA Or. I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 1.1. MAGNITUDEAK... 7 1.1.1. Karga elektrikoa (Q)... 7 1.1.2. Intentsitatea (I)... 7 1.1.3. Tentsioa ()... 8 1.1.4. Erresistentzia elektrikoa

Διαβάστε περισσότερα

1 GEOMETRIA DESKRIBATZAILEA...

1 GEOMETRIA DESKRIBATZAILEA... Aurkibidea 1 GEOMETRIA DESKRIBATZAILEA... 1 1.1 Proiekzioa. Proiekzio motak... 3 1.2 Sistema diedrikoaren oinarriak... 5 1.3 Marrazketarako hitzarmenak. Notazioak... 10 1.4 Puntuaren, zuzenaren eta planoaren

Διαβάστε περισσότερα

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK GORAKORTASUNA ETA BEHERAKORTASUNA MAIMOAK ETA MINIMOAK

Διαβάστε περισσότερα

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK Zenbaki errealak ZENBAKI ERREALAK ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK ZENBAKI IRRAZIONALAK HURBILKETAK LABURTZEA BIRIBILTZEA GEHIAGOZ ERROREAK HURBILKETETAN Lagun ezezaguna Mezua premiazkoa zirudien

Διαβάστε περισσότερα

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK 1.-100 m 3 aire 33 Km/ordu-ko abiaduran mugitzen ari dira. Zenbateko energia zinetikoa dute? Datua: ρ airea = 1.225 Kg/m 3 2.-Zentral hidroelektriko batean ur Hm

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: OPTIKA

SELEKTIBITATEKO ARIKETAK: OPTIKA SELEKTIBITATEKO ARIKETAK: OPTIKA TEORIA 1. (2012/2013) Argiaren errefrakzioa. Guztizko islapena. Zuntz optikoak. Azaldu errefrakzioaren fenomenoa, eta bere legeak eman. Guztizko islapen a azaldu eta definitu

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10

Διαβάστε περισσότερα

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu) UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko

Διαβάστε περισσότερα

1.1. Aire konprimituzko teknikaren aurrerapenak

1.1. Aire konprimituzko teknikaren aurrerapenak 1.- SARRERA 1.1. Aire konprimituzko teknikaren aurrerapenak Aire konprimitua pertsonak ezagutzen duen energia-era zaharrenetarikoa da. Seguru dakigunez, KTESIBIOS grekoak duela 2.000 urte edo gehiago katapulta

Διαβάστε περισσότερα

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea. Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia

Διαβάστε περισσότερα

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA 1. JARDUERA. KORRONTE ELEKTRIKOA. 1 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa

Διαβάστε περισσότερα

1. Oinarrizko kontzeptuak

1. Oinarrizko kontzeptuak 1. Oinarrizko kontzeptuak Sarrera Ingeniaritza Termikoa deritzen ikasketetan hasi berri den edozein ikaslerentzat, funtsezkoa suertatzen da lehenik eta behin, seguru aski sarritan entzun edota erabili

Διαβάστε περισσότερα

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2 Fisika BATXILEGOA Irakaslearen gidaliburua Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena,

Διαβάστε περισσότερα

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 1. AKTIBITATEA Lan Proposamena ARAZOA Zurezko oinarri baten gainean joko elektriko bat eraiki. Modu honetan jokoan asmatzen dugunean eta ukitzen dugunean

Διαβάστε περισσότερα

Dokumentua I. 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago:

Dokumentua I. 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago: Dokumentua I Iruzkin orokorrak 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago: 1. BOE. 1467/2007ko azaroaren 2ko Errege Dekretua. (Batxilergoaren

Διαβάστε περισσότερα

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK 4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK GAI HAU IKASTEAN GAITASUN HAUEK LORTU BEHARKO DITUZU:. Sistema ireki eta itxien artea bereiztea. 2. Masa balantze sinpleak egitea.. Taula estekiometrikoa

Διαβάστε περισσότερα

EIB sistemaren oinarriak 1

EIB sistemaren oinarriak 1 EIB sistemaren oinarriak 1 1.1. Sarrera 1.2. Ezaugarri orokorrak 1.3. Transmisio teknologia 1.4. Elikatze-sistema 1.5. Datuen eta elikatzearen arteko isolamendua 5 Instalazio automatizatuak: EIB bus-sistema

Διαβάστε περισσότερα

OREKA KIMIKOA GAIEN ZERRENDA

OREKA KIMIKOA GAIEN ZERRENDA GAIEN ZERRENDA Nola lortzen da oreka kimikoa? Oreka konstantearen formulazioa Kc eta Kp-ren arteko erlazioa Disoziazio-gradua Frakzio molarrak eta presio partzialak Oreka kimikoaren noranzkoa Le Chatelier-en

Διαβάστε περισσότερα

0.Gaia: Fisikarako sarrera. ARIKETAK

0.Gaia: Fisikarako sarrera. ARIKETAK 1. Zein da A gorputzaren gainean egin behar dugun indarraren balioa pausagunean dagoen B-gorputza eskuinalderantz 2 m desplazatzeko 4 s-tan. Kalkula itzazu 1 eta 2 soken tentsioak. (Iturria: IES Nicolas

Διαβάστε περισσότερα

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9 Magnetismoa manak eta imanen teoriak... 2 manaren definizioa:... 2 manen arteko interakzioak (elkarrekintzak)... 4 manen teoria molekularra... 4 man artifizialak... 6 Material ferromagnetikoak, paramagnetikoak

Διαβάστε περισσότερα

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz.

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. - 1-1. JARDUERA. LAN PROPOSAMENA. 1 LAN PROPOSAMENA Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. BALDINTZAK 1.- Bai memoria (txostena),

Διαβάστε περισσότερα

Oxidazio-erredukzio erreakzioak

Oxidazio-erredukzio erreakzioak Oxidazio-erredukzio erreakzioak Lan hau Creative Commons-en Nazioarteko 3.0 lizentziaren mendeko Azterketa-Ez komertzial-partekatu lizentziaren mende dago. Lizentzia horren kopia ikusteko, sartu http://creativecommons.org/licenses/by-ncsa/3.0/es/

Διαβάστε περισσότερα

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du.

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du. Korronte zuzena 1 1.1. ZIRKUITU ELEKTRIKOA Instalazio elektrikoetan, elektroiak sorgailuaren borne batetik irten eta beste bornera joaten dira. Beraz, elektroiek desplazatzeko egiten duten bidea da zirkuitu

Διαβάστε περισσότερα

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin:

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1 Tentsio gorakada edo pikoa errele batean: Ikertu behar dugu

Διαβάστε περισσότερα

FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia)

FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia) FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia) 1.- Proiektuaren zergatia eta ezaugarri orokorrak Indarrean dagoen curriculumean zehazturiko Batxilergoko zientzietako jakintzagaiei dagozkien lanmaterialak

Διαβάστε περισσότερα

Jose Miguel Campillo Robles. Ur-erlojuak

Jose Miguel Campillo Robles. Ur-erlojuak HIDRODINAMIKA Hidrodinamikako zenbait kontzeptu garrantzitsu Fluidoen garraioa Fluxua 3 Lerroak eta hodiak Jarraitasunaren ekuazioa 3 Momentuaren ekuazioa 4 Bernouilli-ren ekuazioa 4 Dedukzioa 4 Aplikazioak

Διαβάστε περισσότερα

IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA

IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA 1. HELBURUAK Kurtso honetarako prestatu den materialarekin, irakurlearentzat ohikoak diren matematikako sinboloak, notazioak, lengoaia matematikoa eta aritmetikako

Διαβάστε περισσότερα

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula Fisika BATXILERGOA 2 Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena, legeak aurrez ikusitako

Διαβάστε περισσότερα

Oinarrizko mekanika:

Oinarrizko mekanika: OINARRIZKO MEKANIKA 5.fh11 /5/08 09:36 P gina C M Y CM MY CY CMY K 5 Lanbide Heziketarako Materialak Oinarrizko mekanika: mugimenduen transmisioa, makina arruntak eta mekanismoak Gloria Agirrebeitia Orue

Διαβάστε περισσότερα

1. MATERIAREN PROPIETATE OROKORRAK

1. MATERIAREN PROPIETATE OROKORRAK http://thales.cica.es/rd/recursos/rd98/fisica/01/fisica-01.html 1. MATERIAREN PROPIETATE OROKORRAK 1.1. BOLUMENA Nazioarteko Sisteman bolumen unitatea metro kubikoa da (m 3 ). Hala ere, likido eta gasen

Διαβάστε περισσότερα

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa. Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar

Διαβάστε περισσότερα

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma)

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Termodinamika Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Erreakzio kimikoetako transformazio energetikoak. Espontaneotasuna 1. Energia eta erreakzio kimikoa. Prozesu exotermikoak

Διαβάστε περισσότερα

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK]

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK] 1. Partzialeko ariketak 1 ARIKETAK (1) : KNPSATU RGANIKEN EGITURA KIMIKA [1 3. IKASGAIAK] 1.- ndorengo konposatuak kontutan hartuta, adierazi: Markatutako atomoen hibridazioa. Zein lotura diren kobalenteak,

Διαβάστε περισσότερα

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a 1. Partziala 2009.eko urtarrilaren 29a ATAL TEORIKOA: Azterketaren atal honek bost puntu balio du totalean. Hiru ariketak berdin balio dute. IRAUPENA: 75 MINUTU. EZ IDATZI ARIKETA BIREN ERANTZUNAK ORRI

Διαβάστε περισσότερα

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia 1. MAKROEKONOMIA: KONTZEPTUAK ETA TRESNAK. 1.1. Sarrera Lehenengo atal honetan, geroago erabili behar ditugun oinarrizko kontzeptu batzuk gainbegiratuko ditugu, gauzak nola eta zergatik egiten ditugun

Διαβάστε περισσότερα

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA Datu orokorrak: Elektroiaren masa: 9,10 10-31 Kg, Protoiaren masa: 1,67 x 10-27 Kg Elektroiaren karga e = - 1,60 x 10-19 C µ ο = 4π 10-7 T m/ampere edo 4π

Διαβάστε περισσότερα

NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ

NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ 2006-VI-19 J.R. Etxebarria Gure inguruko hizkuntzetan, neurri-izenen eta neurri-esamoldeen normalizazioa XIX. mendearen bigarren erdialdean abiatu zela esan

Διαβάστε περισσότερα

6. Errodamenduak 1.1. DESKRIBAPENA ETA SAILKAPENAK

6. Errodamenduak 1.1. DESKRIBAPENA ETA SAILKAPENAK 2005 V. IOL 6. Errodamenduak 1.1. ESKRIPEN ET SILKPENK Errodamenduak biziki ikertu eta garatu ziren autoak, abiadura handiko motorrak eta produkzio automatikorako makineria agertu zirenean. Horren ondorioz,

Διαβάστε περισσότερα

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua.

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua. Elektronika Analogikoa 1 ELEKTRONIKA- -LABORATEGIKO TRESNERIA SARRERA Elektronikako laborategian neurketa, baieztapen eta proba ugari eta desberdinak egin behar izaten dira, diseinatu eta muntatu diren

Διαβάστε περισσότερα

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA eman ta zabal zazu Euskal Herriko Unibertsitatea Informatika Fakultatea Konputagailuen Arkitektura eta Teknologia saila KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA KTL'2000-2001 Oinarrizko dokumentazioa lehenengo

Διαβάστε περισσότερα

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):...

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):... Makina Elektrikoak MAKINA ELEKTRIKOAK... 3 Motak:... 3 Henry-Faradayren legea... 3 ALTERNADOREA:... 6 DINAMOA:... 7 Ariketak generadoreak (2010eko selektibitatekoa):... 8 TRANSFORMADOREAK:... 9 Ikurrak...

Διαβάστε περισσότερα

Teknologia Elektrikoa I Laborategiko Praktikak ISBN:

Teknologia Elektrikoa I Laborategiko Praktikak ISBN: Teknologia Elektrikoa I Laborategiko Praktikak ISBN: 978-84-9860-669-0 Agurtzane Etxegarai Madina Zigor Larrabe Uribe EUSKARA ETA ELEANIZTASUNEKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa ELEKTROTEKNIA Makina elektriko estatikoak eta birakariak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION

Διαβάστε περισσότερα

BIZIDUNEN OSAERA ETA EGITURA

BIZIDUNEN OSAERA ETA EGITURA BIZIDUNEN OSAERA ETA EGITURA 1 1.1. EREDU ATOMIKO KLASIKOAK 1.2. SISTEMA PERIODIKOA 1.3. LOTURA KIMIKOA 1.3.1. LOTURA IONIKOA 1.3.2. LOTURA KOBALENTEA 1.4. LOTUREN POLARITATEA 1.5. MOLEKULEN ARTEKO INDARRAK

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa Analisia eta Kontrola Materialak eta entsegu fisikoak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): HOSTEINS UNZUETA, Ana Zuzenketak:

Διαβάστε περισσότερα

4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA. 20 urte euskal hezkuntza ospatuz

4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA. 20 urte euskal hezkuntza ospatuz 4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA hh hik hasi 193 20 urte euskal hezkuntza ospatuz REGGIO EMILIAKO ESPERIENTZIA JESUS MARI MUJIKA LOMCE-RI EZ ANTZERKHIZKUNTZA PROIEKTUA HIK HASI OSPAKIZUNETAN

Διαβάστε περισσότερα

Laborategiko materiala

Laborategiko materiala Laborategiko materiala Zirkuitu elektronikoak muntatzeko, bikote bakoitzaren laborategiko postuan edo mahaian, besteak beste honako osagai hauek aurkituko ditugu: Mahaiak berak dituen osagaiak: - Etengailu

Διαβάστε περισσότερα

9. GAIA: ZELULAREN KITZIKAKORTASUNA

9. GAIA: ZELULAREN KITZIKAKORTASUNA 9. GAIA: ZELULAREN KITZIKAKORTASUNA OHARRA: Zelula kitzikatzea zelula horretan, kinada egokiaren bidez, ekintza-potentziala sortaraztea da. Beraz, zelula kitzikatua egongo da ekintza-potentziala gertatzen

Διαβάστε περισσότερα

ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA

ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA Informatika Fakultatea / Facultad de Informática ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA Ikaslea: Hurko Mendiguren Quevedo Zuzendaria: Txelo Ruiz Vázquez Karrera Amaierako Proiektua, 2013-ekaina

Διαβάστε περισσότερα

MARRAZKETA TEKNIKOA. Batxilergoa 1. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein

MARRAZKETA TEKNIKOA. Batxilergoa 1. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein MRRZKET TEKNIKO atxilegoa 1 Rafael Ciiza Robeto Galaaga Mª ngeles Gacía José ntonio Oiozabala eein Eusko Jaulaitzako Hezkuntza, Unibetsitate eta Ikeketa sailak onetsia (2003-09-25) zalaen diseinua: Itui

Διαβάστε περισσότερα

5. GAIA Mekanismoen Analisi Dinamikoa

5. GAIA Mekanismoen Analisi Dinamikoa HELBURUAK: HELBURUAK: sistema sistema mekaniko mekaniko baten baten oreka-ekuazioen oreka-ekuazioen ekuazioen planteamenduei planteamenduei buruzko buruzko ezagutzak ezagutzak errepasatu errepasatu eta

Διαβάστε περισσότερα

Lan honen bibliografia-erregistroa Eusko Jaurlaritzako Liburutegi Nagusiaren katalogoan aurki daiteke: http://www.euskadi.net/ejgvbiblioteka ARGITARATUTAKO IZENBURUAK 1. Prototipo elektronikoen garapena

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ZINEMATIKA KONTZEPTUAK: 1. Marraz itzazu txakurraren x/t eta v/t grafikoak, txakurrraren higidura ondoko taulan ageri diren araberako higidura zuzena dela

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika I

Giza eta Gizarte Zientziak Matematika I Gia eta Giarte Zietiak Matematika I. eta. ebaluaioak Zue erreala Segida errealak Ekuaio espoetialak Logaritmoak Ekuaio lieale sistemak ESTATISTIKA Aldagai diskretuak eta jarraiak Parametro estatistikoak

Διαβάστε περισσότερα

LAN PROPOSAMENA. ASKATASUNA BHI. Unitatea: MEKANISNOAK Orri zk: 1 Burlata 1. JARDUERA. IRAKASLEA: Arantza Martinez Iturri

LAN PROPOSAMENA. ASKATASUNA BHI. Unitatea: MEKANISNOAK Orri zk: 1 Burlata 1. JARDUERA. IRAKASLEA: Arantza Martinez Iturri ASKATASUNA BHI. Uitatea: MEKANISNOAK Orri zk: 1 1. JARDUERA LAN PROPOSAMENA LAN PROPOSAMENA Diseiatu eta eraiki ERAKUSLEIHO ZINETIKOA jedeare arreta erakartzeko edo produktu bat iragartzeko. Erakusleihoare

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ii ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Εισαγωγή - Βασικές έννοιες....1 1.1 Εσωτερική παράσταση δεδομένων....2 1.1.1 Παράσταση θέσης....3 1.1.2 Μετατροπές μεταξύ συστημάτων διαφορετικών βάσεων....5 1.1.3 Οι αριθμητικές

Διαβάστε περισσότερα

1. GAIA PNEUMATIKA. Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da.

1. GAIA PNEUMATIKA. Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da. 1. GAIA PNEUMATIKA Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da. Pneumatika hitza grekoek arnasa eta haizea izendatzeko erabiltzen zuten. Pneumatikaz

Διαβάστε περισσότερα

BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1)

BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1) BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1) Altitudea 600 km 80 km 50 km 12 km -100 C -50 C 0 C 50 C 100 C NOLAKOA DA LIBURU HAU? Unitateen egitura Unitatearen hasiera 3 Elikadura Elikadura osasuntsua

Διαβάστε περισσότερα

6. GAIA: Txapa konformazioa

6. GAIA: Txapa konformazioa II MODULUA: METALEN KONFORMAZIO PLASTIKOA 6. GAIA: Txapa konformazioa TEKNOLOGIA MEKANIKOA INGENIARITZA MEKANIKO SAILA Universidad del País s Vasco Euskal Herriko Unibertsitatea 6. Gaia: Txapa konformazioa

Διαβάστε περισσότερα

SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK

SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK... Zer da sistema Pneumatikoa? Fluido mota, erabilerak, abantailak eta desabantailak... ABANTAILAK... DESABANTAILAK...3

Διαβάστε περισσότερα

ALKENOAK (I) EGITURA ETA SINTESIA

ALKENOAK (I) EGITURA ETA SINTESIA ALKENOAK (I) EGITURA ETA SINTESIA SARRERA Karbono-karbono lotura bikoitza agertzen duten konposatuak dira alkenoak. Olefina ere deitzen zaiete, izen hori olefiant-ik dator eta olioa ekoizten duen gasa

Διαβάστε περισσότερα

KOSMOLOGIAREN HISTORIA

KOSMOLOGIAREN HISTORIA KOSMOLOGIAREN HISTORIA Historian zehar teoria asko garatu dira unibertsoa azaltzeko. Kultura bakoitzak bere eredua garatu du, unibertsoaren hasiera eta egitura azaltzeko. Teoria hauek zientziaren aurrerapenekin

Διαβάστε περισσότερα

Makroekonomiarako sarrera

Makroekonomiarako sarrera Makroekonomiarako sarrera Galder Guenaga Garai Segundo Vicente Ramos EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA Aurkibidea Hitzaurrea. 1. GAIA: Makroekonomiaren ikuspegi orokorra. 1.1. Makroekonomia:

Διαβάστε περισσότερα

ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK

ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK Ikasmaterialen Aholku Batzordea Estilo-liburuaren seigarren atala 22 Euskara Zerbitzua Hizkuntza Prestakuntza ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO

Διαβάστε περισσότερα

KIMIKA UZTAILA. Ebazpena

KIMIKA UZTAILA. Ebazpena KIMIKA 009- UZTAILA A1.- Hauspeatze-ontzi batean kobre (II) sulfatoaren ur-disoluzio urdin bat dugu, eta haren barruan zink-xafla bat sartzen dugu. Kontuan hartuta 5 C-an erredukzio-- potentzialak E O

Διαβάστε περισσότερα

KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik:

KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik: KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik: BBVA Fundazioa Bilbao Bizkaia Kutxa BBK Gipuzkoa Donostia Kutxa

Διαβάστε περισσότερα

Mikroekonomia I. Gelan lantzeko ikasmaterialak.

Mikroekonomia I. Gelan lantzeko ikasmaterialak. Mikroekonomia I. Gelan lantzeko ikasmaterialak. Egilea(k) Andoni Maiza Larrarte* * Eduki gehienak Zurbanok (1989), eta Ansa, Castrillón eta Francok (2011) prestatutako ikasmaterialetatik hartu dira. Egileak

Διαβάστε περισσότερα

Oscar Wilde. De profundis

Oscar Wilde. De profundis Oscar Wilde De profundis Izenburua: De profundis Egilea: Oscar Wilde Itzulpena: Aitor Arana Argitaratzea: Txalaparta argitaletxea e.m. Nabaz-Bides karrika, 1-2 78. posta-kutxa 31300 Tafalla NAFARROA Tel.

Διαβάστε περισσότερα

2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK

2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK 2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK 1. DISOLUZIOAK Disoluzioa (def): Substantzia baten partikulek beste substantzia baten barnean egiten duten tartekatze mekanikoa. Disolbatzaileaz eta solutuaz

Διαβάστε περισσότερα

TAILERREKO ESKULIBURU TEKNIKOA

TAILERREKO ESKULIBURU TEKNIKOA TAILERREKO ESKULIBURU TEKNIKOA 1. edizioa 2004. Tailerreko Eskuliburu Teknikoa. Danobaten 50. urteurrena ospatzeko. 2. edizioa 2009 Egilea: Danobat Kooperatiba Elkartea Laguntzailea: Mondragon Unibertsitatea

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τα επιμέρους τμήματα ΥΠΟΛΟΓΙΣΤΗ Η ΔΟΜΗ TOY ΥΠΟΛΟΓΙΣΤΗ. Αναπαράσταση μεγεθών. Αναλογική αναπαράσταση ΚΕΝΤΡΙΚΗ ΜΝΗΜΗ ΜΟΝΑΔΑ ΕΛΕΓΧΟΥ

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τα επιμέρους τμήματα ΥΠΟΛΟΓΙΣΤΗ Η ΔΟΜΗ TOY ΥΠΟΛΟΓΙΣΤΗ. Αναπαράσταση μεγεθών. Αναλογική αναπαράσταση ΚΕΝΤΡΙΚΗ ΜΝΗΜΗ ΜΟΝΑΔΑ ΕΛΕΓΧΟΥ ΥΠΟΛΟΓΙΣΤΕΣ Ι Η ΔΟΜΗ TOY ΥΠΟΛΟΓΙΣΤΗ Τα επιμέρους τμήματα ΕΙΣΟΔΟΣ ΚΕΝΤΡΙΚΗ ΜΝΗΜΗ ΕΛΕΓΧΟΥ ΑΡΙΘΜΗΤΙΚΗ ΛΟΓΙΚΗ ΕΞΟΔΟΣ ΚΕΝΤΡΙΚΗ ΕΠΕΞΕΡΓΑΣΙΑΣ 1 2 Αναπαράσταση μεγεθών ΜΕΤΡΟΥΜΕΝΟ ΜΕΓΕΘΟΣ ΑΝΑΛΟΓΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4 DBH Lana eta energia

FISIKA ETA KIMIKA 4 DBH Lana eta energia 5 HASTEKO ESKEMA INTERNET Edukien eskema Energia Energia motak Energiaren propietateak Energia iturriak Energia iturrien sailkapena Erregai fosilen ustiapena Energia nuklearraren ustiapena Lana Zer da

Διαβάστε περισσότερα

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J.

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J. ENERGIA ARIKETAK OINARRIZKO KONTZEPTUAK 1.- 1000 Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z=385.802,47 J.) 2.- 500Kg.tako eta 10m-tara zintzilik dagoen masa

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Ο τύπος char Επιτρέπει να διαβάζουμε

Διαβάστε περισσότερα

PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA. II. Itemen adibideak irakasleak erabiltzeko. 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua

PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA. II. Itemen adibideak irakasleak erabiltzeko. 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua 2009 PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA II. Itemen adibideak irakasleak erabiltzeko 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua w w www.pisa.oecd.org ISEI-IVEIk argitaratuta: Irakas-Sistema

Διαβάστε περισσότερα

Οι δυσκολίες μαθητών δευτεροβάθμιας εκπαίδευσης στην εφαρμογή της δομής ελέγχου για την ανάπτυξη αλγορίθμων. Μία μελέτη περίπτωσης

Οι δυσκολίες μαθητών δευτεροβάθμιας εκπαίδευσης στην εφαρμογή της δομής ελέγχου για την ανάπτυξη αλγορίθμων. Μία μελέτη περίπτωσης Οι δυσκολίες μαθητών δευτεροβάθμιας εκπαίδευσης στην εφαρμογή της δομής ελέγχου για την ανάπτυξη αλγορίθμων. Μία μελέτη περίπτωσης Α. Τζιμογιάννης, Β. Γεωργίου 1. Εισαγωγή Η διδασκαλία του Προγραμματισμού

Διαβάστε περισσότερα

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak ELEKTRIZITATEA D.B.H. 1 Joseba Arruabarrena 2007ko Otsaila ren atalak: 1. Karga elektrikoa 2. Korronte elektrikoa 3. Zirkuitu elektrikoa 4. Magnitudeak: : Ohmen legea 5. Irudikapena eta ikurrak 6. Korronte

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika II

Giza eta Gizarte Zientziak Matematika II Giza eta Gizarte Zietziak Matematika II 3. ebaluazioa Probabilitatea Baaketa Normala eta Biomiala Lagi estatistikoak Iferetzia estatistikoa Hipotesiak Igacio Zuloaga B.H.I. (Eibar) 1 PROBABILITATEA Igazio

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ / Γ'ΕΠΑΛ ΗΜΕΡΟΜΗΝΙΑ: 25-10-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ-Α.ΚΑΤΡΑΚΗ-Χ.ΠΑΠΠΑ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ / Γ'ΕΠΑΛ ΗΜΕΡΟΜΗΝΙΑ: 25-10-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ-Α.ΚΑΤΡΑΚΗ-Χ.ΠΑΠΠΑ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ / Γ'ΕΠΑΛ ΗΜΕΡΟΜΗΝΙΑ: 25-10-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ-Α.ΚΑΤΡΑΚΗ-Χ.ΠΑΠΠΑ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν,

Διαβάστε περισσότερα

XX. mendeko olerkari greziarrak

XX. mendeko olerkari greziarrak XX. mendeko olerkari greziarrak R Ko l d o Ru i z d e Az u a Matónoo aditzak odolustu esan nahi du grekoz. Odolustu egin zen Grezia ia bi mendez. Lehenik, mende bat baino gehiago iraun zuen independentzia

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ΤΑΞΗ: 3 η ΤΑΞΗ ΕΠΑ.Λ. (Α Β ΟΜΑ Α) ΜΑΘΗΜΑ: ΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΙ ΙΚΟΤΗΤΑΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 14 Απριλίου 2013 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιο σας το γράµµα

Διαβάστε περισσότερα

KIMIKA 2008 Ekaina. Behar den butano masa, kj (1 mol butano / 2876,3 kj) (58 g butano/1mol butano) = 193,86 g butano

KIMIKA 2008 Ekaina. Behar den butano masa, kj (1 mol butano / 2876,3 kj) (58 g butano/1mol butano) = 193,86 g butano KIMIKA 008 Ekaina A-1.- Formazio-enta pia estandar hauek emanda (kj/mol-etan): C (g) =-393,5 ; H 0 (l) = -85,4 ; C 4 H 10 (g) = -14,7 a) Datu hauek aipatzen dituzten erreakzioak idatzi eta azaldu. b) Kalkulatu

Διαβάστε περισσότερα

Α3. Να γράψετε τους αριθμούς 1, 2, 3, 4, 5 από τη Στήλη Α και δίπλα το γράμμα α, β, γ, δ, ε, στ από τη Στήλη Β που δίνει τη σωστή αντιστοιχία.

Α3. Να γράψετε τους αριθμούς 1, 2, 3, 4, 5 από τη Στήλη Α και δίπλα το γράμμα α, β, γ, δ, ε, στ από τη Στήλη Β που δίνει τη σωστή αντιστοιχία. ΜΑΘΗΜΑ / ΤΑΞΗ : ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ / Γ'ΕΠΑΛ ΗΜΕΡΟΜΗΝΙΑ: 25-10-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ-Α.ΚΑΤΡΑΚΗ-Χ.ΠΑΠΠΑ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα

Διαβάστε περισσότερα

- Αναπαράσταση ακέραιας τιµής : - Εύρος ακεραίων : - Ακέραιοι τύποι: - Πράξεις µε ακεραίους (DIV - MOD)

- Αναπαράσταση ακέραιας τιµής : - Εύρος ακεραίων : - Ακέραιοι τύποι: - Πράξεις µε ακεραίους (DIV - MOD) Η Γλώσσα Pascal Χαρακτηριστικά Τύποι Δεδοµένων Δοµή προγράµµατος 1. Βασικές έννοιες Χαρακτηριστικά της γλώσσας Pascal Γλώσσα προγραµµατισµού Συντακτικό Σηµασιολογία Αλφάβητο της γλώσσας Pascal (Σύνολο

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #5

ιαφάνειες παρουσίασης #5 ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης #5!Παρουσίαση

Διαβάστε περισσότερα

Προγραμματισμός PASCAL

Προγραμματισμός PASCAL Προγραμματισμός PASCAL 1 PASCAL Η PASCAL σχεδιάστηκε από τον Worth το 1968 στη Ζυρίχη, αρχικά σαν εργαλείο για τη διδασκαλία προγραμματισμού. Είναι γλώσσα για σειριακό προγραμματισμό. 2 Απλή και εύκολη

Διαβάστε περισσότερα

Ilunpetik argitara 1. Birramona Maria. 1 XXXV. Errenteria Hiria ipuin lehiaketaren "Joxan Arbelaiz" sariaren lan irabazlea.

Ilunpetik argitara 1. Birramona Maria. 1 XXXV. Errenteria Hiria ipuin lehiaketaren Joxan Arbelaiz sariaren lan irabazlea. Ilunpetik argitara 1 M - bal oilarraren lehenengo kukurrukuak jo zuenean; goizeko seiak besterik ez ziren arren ordu bat baino gehiago zeraman sabaiari begira. Hasi berria zen eguneko lehen pentsamenduetan

Διαβάστε περισσότερα

Enbriologia Orokorra eta Bereziko buruxka

Enbriologia Orokorra eta Bereziko buruxka Enbriologia Orokorra eta Bereziko buruxka Medikuntzako Ikasleen Elkartea Irakasgaieko irakaslea: Amale Caballero Lasquibar Ikasle-egilea: Adrian H. Llorente Aginagalde Oharra Apunte buruxka hau AEM/MIB

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #8

ιαφάνειες παρουσίασης #8 ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης #8!Ταξινόµηση!Τεχνολογία

Διαβάστε περισσότερα

2 Lanaren etekinak. Gipuzkoako Foru Aldundia

2 Lanaren etekinak. Gipuzkoako Foru Aldundia 2 Lanaren etekinak 2.1 Zer dira lanaren etekinak? 2.1.1 Zein prestazio sartzen dira lan etekinen barruan? 2.2 Joan-etorriko dietak eta bidai gastuak lan etekinak al dira? 2.2.1 Arau orokorrak 2.2.2 Arau

Διαβάστε περισσότερα

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK,

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK, Ikasgaia: KIMIKA GANIKAEN INAIAK, Urte Akademikoa: 2008-09 Titulazioa: Licenciatura en Química, Ingeniero Químico. Irakaslea: Jose Luis Vicario, (Kimika rganikoa II Saila) Ezaugarriak: Ikasgai honetan

Διαβάστε περισσότερα