Solido zurruna 2: dinamika eta estatika

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Solido zurruna 2: dinamika eta estatika"

Transcript

1 Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak Masa-zentroarekiko ekuazioak Solido zurrunaren biraketaren dinamika Masa zentroaren inguruko biraketa Ardatz finko batekiko biraketa Higidura konbinatua eta errodadura Labainketarik gabeko errodadura Solido zurrunaren energia eta lana Energia zinetikoa Energia balantzea solido zurrunean Estatika Grabitate-zentroa Erreferentziak Física Universitaria 13. edizioa. Sears eta Zemansky. Pearson: 9. eta 10. kapituluak Fisika zientzialari eta ingeniarientzat. Fishbane, Gasiorowicz eta Thornton. UPV/EHU: 9. eta 10. kapituluak Fisika orokorra. UEUko Fisika Saila. UEU: 8. eta 9. kapituluak 1 Solido zurrunaren dinamikaren ekuazioak Solido zurrunaren higidura nolakoa den zehaztu badugu ere, ez dugu oraindik aipatu zergatik higituko den solido zurrun bat. Hau da, solido zurrunaren zinematika aztertu dugu, ez dinamika. 1

2 Solido zurruna partikula-sistema bat denez, partikula-sistemaren dinamikaren ekuazioek zehaztuko dute ere solido zurrunaren dinamika. Alde batetik, erreferentzia-sistema inertzial batean, solido zurrunaren masa-zentroaren azelerazioak F kanpo = d P = M a MZ (1) ekuazioa beteko du, non F kanpo kanpo-indar erresultantea, P solido zurrunaren momentu lineala eta M solido zurrunaren masa totala baitiren. Solido zurrunaren M masa denborarekin aldatzen ez dela suposatu dugu bertan. Bestetik, solido zurrunaren momentu angeluarra kanpo-indarrek egindako indarmomentuaren arabera aldatuko da M kanpo = d L ekuazioak zehaztu bezala. Solido zurrun batek erreferentzia-sistema inertzial batean duen momentu angeluarra L = M r MZ v MZ + I ω (3) denez, non I inertzia-tentsorea baiten, ikus dezagun nolakoa den solido zurrunaren momentu angeluarraren denborarekiko deribatua: (2) d L = d (M r MZ v MZ + I ω) = M d r MZ v MZ + M r MZ d v MZ + I d ω = M v MZ v MZ + M r MZ a MZ + I α = r MZ F kanpo + I α. (4) Berdintza hau ondorioztatzeko masa-zentroaren azelerazioa (1) ekuazioak ematen digula erabili dugu eta, bestetik, azelerazio-angeluar bektorea α = d ω abiadura-angeluar bektorearen denborarekiko deribatua dela. α bektoreak ω bektorearen norabidea du, hau da, biraketa ardatzaren norabidea, bere noranzkoa ω-ren berdina izango da abiadura angeluarra handitzen bada eta kontrakoa txikitzen bada, eta bere modulua azelerazio angeluarraren berdina izango da. Laburbilduz, solido zurrunaren dinamika erreferentzia-sistema inertzial batean ondorengo bi ekuazioek zehaztuko dute: F kanpo = d P = M a MZ (6) M kanpo = d L = r MZ F kanpo + I α. (7) Bigarren ekuazioa ondorioztatzeko (2) eta (4) ekuazioak erabili ditugu. Bi ekuazioen interpretazioa nahiko zuzena da. Alde batetik kanpo-indar erresultanteak zehaztuko du masa-zentroaren azelerazioa zein den, hau da, solido zurruna non (5) 2

3 dagoen. Bestetik, kanpo-indarrek sortutako indar-momentuak zehaztuko du zein den solido zurrunaren azelerazio-angeluar bektorea, hau da, solido zurrunak nolako biraketa duen masa-zentroaren inguruan. Solido zurruna guztiz zehazteko nahikoa denez jakitea masa-zentroa non dagoen eta solidoak nolako biraketa duen masa-zentroarekiko, (6) eta (7) ekuazioak nahikoak dira solido zurruna denboran nola higituko den zehazteko. 1.1 Masa-zentroarekiko ekuazioak Askotan komenigarria izaten da (7) ekuazioa masa-zentroaren erreferentzia sisteman idaztea. Nolakoa izango litzake indar-momentua masa-zentrotik kalkulatuko bagenu? M kanpo = r i F i,kanpo (8) da, non r i kanpoko erreferentzia-sisteman solido zuzrruneko i partikulak duen posizio den eta F i,kanpo partikula horren gaineko kanpo-indar erresultantea. Posizio hori r i = r MZ + r i (9) izango da, non r i partikulak masa-zentroaren erreferentzia-sisteman duen posizioa baiten. Hortaz, M kanpo = r MZ F i,kanpo + r i F i,kanpo. (10) F kanpo = n F i,kanpo denez eta M kanpo = n r i F i,kanpo masa-zentroaren erreferentzia-sistematik neurtutako indar-momentua denez: M kanpo = r MZ F kanpo + M kanpo. (11) Ekuazio hau (7) ekuazioarekin konparatuz argi ikusten dugu M kanpo = I α (12) dela. Normalean askoz ere errazagoa izaten da kanpoko indarrek sortutako indarmomentua masa-zentroaren erreferentzia-sisteman kalkulatzea. Horregatik, solido zurrunaren dinamika zehazteko (6) eta (7) ekuazioak beharrean F kanpo = d P = M a MZ (13) M kanpo = d L = I α (14) ekuazioa baliokideak erabiltzen dira, non orain kanpo-indarrek sortutako indarmomentua masa-zentroaren erreferentzia-sisteman kalkulatzen den. Bi ekuazio hauen esangura are argiagoa da orain: lehenak masa-zentroaren azelerazioa ematen digu eta bigarrenak solidoaren biraketa masa-zentroaren inguruan. 3

4 2 Solido zurrunaren biraketaren dinamika (13) eta (14) ekuaziek zehaztuko dute solido zurrunaren dinamika. Ekuazio hauek guztiz orokorrak dira, horregatik kasu orokorrean hauek ebaztea ez da erraza. Hemen biraketa bi egoera aztertuko ditugu: inertzia-ardatz nagusi baten inguruko biraketa hutsa eta ardatz finko batekiko biraketa hutsa. 2.1 Masa zentroaren inguruko biraketa Suposa dezagun masa-zentroaren posizio finkoa dela kanpoko erreferentzia-sistema intzial batean. Kasu honetan, beraz, kanpo-indarren baturak nulua izan behar du ( F kanpo = 0) (13) ekuazioaren arabera a MZ = 0 izateko. Honela, solido zurrunaren dinamikaren ekuazioak honela sinplifikatzen zaizkigu: F kanpo = 0 (15) M kanpo = d L = I α. (16) Beraz, kanpo-indarrek sortzen duten indar-momentuak zehaztuko du nolako izango den biraketa. M kanpo = 0 bada solido zurrunaren azelerazio angeluarra nulua izango da eta bere abiadura angeluarra ez da aldatuko. Hau da, biratzen baldin bazegoen abiadura angeluar berdinarekin jarraituko du biratzen eta biratzen ez bazegoen biraketarik gabe jarraituko du. M kanpo inertzia-ardatz nagusi batean baldin badago, orduan I α matrizebiderkadurak ere inertzia-ardatz nagusi batekoa izan behar du. Demagun inertziaardatz nagusi hori adibidez x dela. Badakigu ω bektorea ardatz horretakoa denean L = I x ω izango dela, hau da, paraleloak direla abiadura angeluarra dl eta momentu angeluarra. Ondorioz, = I x α izango da ere eta, orduan, α bektorea ere inertzia-ardatz nagusi berdineko bektorea da. Beraz, M kanpo = I x α = I x d ω (17) eta ez dugu matrize biderkadurarik egin behar I x, x ardatzeko inertzia-ardatz nagusiko inertzia-momentua, eskalar bat delako. Inertzia-momentuen esangura fisikoa zein den ulertzeko bidea irekitzen digu (17) ekuazioak. Ikusten badugu, biraketarako dugun ekuazioa partikula puntual batentzako dugun Newton-en F tot = m a ekuazioaren baliokidea da M kanpo F tot I x m α a aldaketak eginez gero. Hortaz, masa partikula puntualaren higidurarako dena da inertzia-momentua biraketarako. Masa partikula puntual baten inertzia intrintsekoa da, hau da, bere abiadura mantentzeko duen berezko joera. Honela, inertzia-ardatz nagusi batekiko inertzia-momentua solido zurrun batek 4

5 ardatz horretan biratzeko duen berezko inertzia da, beste hitz batzuetan, ardatz horrekiko biraketan duen abiadura angeluarra mantentzeko joera. Beraz, inertzia-ardatz nagusi batekiko inertzia-momentu handia duen solido zurrun baten ardatz horrekiko abiadura angeluarra aldatzeko indar momentu handia ezarri beharko dugu, eta inertzia-momentua txikia bada indar-momentu txikia. Modu berean, partikula baten masa handia denean indar handi bat egin behar dugu bere gainean bere abiadura aldatzeko, eta masa txikia denean indar txikia. 2.2 Ardatz finko batekiko biraketa Suposa dezagun orain A ardatz finko batekiko ari dela biratzen solido zurruna eta ardatz hori ez dela masa-zentrotik igarotzen. Suposatuko dugu ordea A ardatz finko hori paraleloa dela inertzia-ardatz nagusi batekiko. Kasu honetan solido zurrunaren momentu angeluarra L = I A ω dela badakigu, non I A ardatz finkoarekiko inertzia-momentua baiten. Ekuazio hau betetzeko geure erreferentzia-sistema inertziala A ardatz horretako puntu batean kokatu dugu. Ondorioz, (7) ekuazioa erreferentzia-sistema honetan kalkulatuz, M kanpo = I A α = I A d ω (18) berdintza izango dugu. Azpimarratu behar dugu (18) ekuazioa erabiltzeko M kanpo indar-momentua A ardatzean kokatuta dugun erreferentzia-sistema batean kalkulatu behar dugula eta ez masa-zentroaren erreferentzia-sisteman. Izatez, (7) ekuazioari begiratzen badiogu, kasu honetan masa-zentroa biratzen ari denez, bere gainean kanpo-indar batek eragin behar du. 3 Higidura konbinatua eta errodadura Higidura konbinatuan translazioa eta biraketa izango dugu, (13) eta (14) ekuazioak kontuan hartu beharko ditugularik. Masa-zentroaren translazioa (13) ekuazioak zehaztuko du. Ekuazio honek diosku masa-zentroaren translazioa masa-zentroaren posizioan kokatuta dagoen eta solido zurrunaren masa totala duen partikula puntual baten berdina dela. Solido zurrunaren biraketa (14) ekuazioak zehaztuko du. Suposa dezagun biraketa masa-zentroarekiko gertatzen dela inertzia-ardatz nagusi baten inguruan, hots x ardatza. Kasu horretan inertzia-tentsorea diagonala izango da eta α bektorea ere x ardatzekoa izango da. Hortaz, (14) ekuazioa M kanpo = I x α (19) biraketa ardatz nagusiarekiko inertzia- moduan idatzi ahalko dugu, non I x momentua baiten. 5

6 Irudia 1: Gurpil baten errodadura labainketarik gabe bi higiduren batura bezala ulertu daiteke, translazioa eta biraketa. Gurpila labaintzen ez bada kontaktu puntuaren abiadura nulua da. 3.1 Labainketarik gabeko errodadura Translazioa eta biraketa duguneko kasu berezi bat da labainketarik gabeko errodadura. Har dezagun R erradioa duen solido zurruna (gurpil bat, zilindro bat, esfera bat, etab.), zeinen masa-zentroa erdigunean dagoen. Labainketarik ez badago masa-zentroaren abiadura eta masa-zentroarekiko biraketa abiadura angeluarra erlazionaturik daude. Izan ere, T biraketa periodo batean masa-zentroak aurrera egiten duen distantzia 2πR izan behar da. Hau da, eta, honela, labainketarik ez badugu, 2πR = v MZ T = v MZ 2π ω (20) v MZ = Rω. (21) 1 irudian erakusten den bezala, labainketarik gabeko errodaduraren higidura masa-zentroaren translazio eta masa-zentroarekiko biraketetan deskonposatzen badugu, erraz ikus daiteke solido zurrunaren eta lurzoruaren arteko kontaktu puntua geldi dagoela bere abiadura nulua baita. Beraz, labainketarik gabeko errodadura dugunean solido zurrunaren eta lurzoruaren arteko marruskadura estatikoa da. Solidoa labaintzen balego kontaktu puntuaren abiadura ez-nulua litzake eta, ondorioz, marruskadura zinetikoa. (13) ekuazioaren arabera, kanpo-indarrak nuluak ez badira masa-zentroaren abiadura aldatuko da. Nahiz eta masa-zentroaren abiadura aldatu solido zurrunak labaindu gabeko errodaduran egon daiteke, hots bizikleta bat maldan behera abiatzen denean. Kasu horietan masa-zentroaren azelerazioa eta masazentroaren inguruko biraketaren azelerazio angeluarra egongo dira loturik. (21) 6

7 adierazpena denborarekiko deribatuz adierazpena lortuko dugu. a MZ = Rα (22) 4 Solido zurrunaren energia eta lana Solido zurrunaren higidura zehazteko nahikoak dira (13) eta (14) ekuazioak. Ekuazio hauek partikula puntualaren dinamikarentzako Newtonen ekuazioa denaren baliokideak dira. Ordea, energiaren analisia oso erabilgarria da partikula puntualaren dinamikako problemak ebazteko, askotan Newtonen ekuazioak ebaztea baino errazagoa. Solido zurrunean ere energia eta lana oso kontzeptu erabilgarriak dira problema asko ebazteko. 4.1 Energia zinetikoa Lehenik azter dezagun nola kalkulatzen den solido zurrun baten energia zinetikoa. Solido zurruna partikula-sistema bat denez, bere energia zinetikoa erreferentzia-sistema inertzial batean E z = 1 2 Mv2 MZ + E z (23) bezala kalkula daiteke, hau da, masa-zentroaren energia zinetikoaren eta masazentroaren erreferentzia-sisteman neurtutako energia zinetikoaren arteko batura bezala. Suposa dezagun orain solido zurruna masa-zentroarekiko biratzen ari dela inertzia-ardatz nagusi baten inguruan, hots, x ardatzaren inguruan. Kasu honetan erraz kalkulatu daiteke masa-zentroaren erreferentzia-sisteman solidoak duen energia zinetikoa, solidoko partikula bakoitzak izango duen abiadura v i = ω r i baita: E z = 1 2 m iv 2 i = 1 2 m i( ω r i) 2 = 1 2 m id 2 i ω 2 = 1 2 I xω 2, (24) non I x biraketa ardatz-nagursiarekiko inertzia-momentua baiten. Honela, solido zurrunaren energia zinetikoa E z = 1 2 Mv2 MZ I xω 2 (25) ekuazioaren bidez kalkula daiteke. (25) ekuazioa erraz interpreta daiteke: lehenengo batugaia solidoa tranladatzen ari delako duen energia zinetikoa da eta bigarren batugaia solidoaren biraketari dagokion energia zinetikoa. 7

8 4.2 Energia balantzea solido zurrunean Partikula sistema batean energia balantzearen ekuazioak zera zioen: E z = W kanpo + W barne. (26) Solido zurruna osatzen duten partikulen arteko distantziak aldatzen ez direnez, barne-indarrek ez dute lanik egiten solido zurrun batean. Beraz, solido zurrenean E z = W kanpo, (27) hau da, solidoaren energia zinetikoa aldatuko da soilik kanpo-indarrek lan egiten badute. Kanpo-indarrak kontserbakorrak direnean, eurek egiten duten lana energia potentzialaren aldakuntzaren aurkakoa izango da: W kanpo = E p,kanpo. (28) Ondorioz, kasu hauetan sistemaren energia osoa, E = E z + E p,kanpo, ez da aldatuko: E = E z + E p,kanpo = 0. (29) Kasu hauetan energia osoa kontserbatuko da. 5 Estatika Solido zurrun bat orekan dagoela diogunean esan nahi dugu badagoela erreferentziasistema inertzial bat non solidoa ez den transladatzen eta ez duen biratzen. Hori hala izateko bi baldintza bete behar dira, masa-zentroaren azelerazioak eta azelerazio angeluarrak nuluak izan behar dute. Solido zurrunaren dinamikaren (6) eta (7) ekuazioei so eginez gero, ikusten dugu oreka baldintzak F kanpo = 0 (30) M kanpo = 0 (31) direla. Kanpo-indarrek sortzen duten indar-momentua edozein erreferentziasistema inertzial horretako edozein puntutik izan behar da nulua. 5.1 Grabitate-zentroa Oreka baldintzak aplikatzerako beharrezkoa den M kanpo kalkulatzeko jakin behar dugu solido zurrun bati indarrak non aplikatzen zaizkion. Kontaktu-indarrekin, hots, normalak eta marruskadura indarrak, hau erraza da: kontaktu puntuan eragiten dute. Baina kontaktu indarrak ez direnak, hots, pisua, non aplikatzen dira? Suposa dezagun solido zurrun batean grabitateak eragiten duela eta jakin nahi dugu zein den grabiteteak sortzen duen indar-momentua: M kanpo = r i F i,kanpo = r i (m i g) (32) 8

9 pisuak solidoko partikula guztiei eragiten baitie. Beraz, ( n ) M kanpo = m i r i g = M r MZ g = r MZ (M g). (33) Ekuazio honen esangura oso garbia da, pisua masa-zentroan aplikatzen da solidoaren masa totala kontuan harturik. Solido batean pisua aplikatzen den puntuari grabitate-zentroa deritzo. Beraz, grabitate-zentroa bat dator masazentroarekin. Solidoko partikula guztiei azelerazio berdina ezarriko liekeen beste edozein kanpo-indar ere masa-zentroan aplikatuko litzake, pisua bezalaxe. 9

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10

Διαβάστε περισσότερα

5. GAIA Mekanismoen Analisi Dinamikoa

5. GAIA Mekanismoen Analisi Dinamikoa HELBURUAK: HELBURUAK: sistema sistema mekaniko mekaniko baten baten oreka-ekuazioen oreka-ekuazioen ekuazioen planteamenduei planteamenduei buruzko buruzko ezagutzak ezagutzak errepasatu errepasatu eta

Διαβάστε περισσότερα

1 GEOMETRIA DESKRIBATZAILEA...

1 GEOMETRIA DESKRIBATZAILEA... Aurkibidea 1 GEOMETRIA DESKRIBATZAILEA... 1 1.1 Proiekzioa. Proiekzio motak... 3 1.2 Sistema diedrikoaren oinarriak... 5 1.3 Marrazketarako hitzarmenak. Notazioak... 10 1.4 Puntuaren, zuzenaren eta planoaren

Διαβάστε περισσότερα

1. Oinarrizko kontzeptuak

1. Oinarrizko kontzeptuak 1. Oinarrizko kontzeptuak Sarrera Ingeniaritza Termikoa deritzen ikasketetan hasi berri den edozein ikaslerentzat, funtsezkoa suertatzen da lehenik eta behin, seguru aski sarritan entzun edota erabili

Διαβάστε περισσότερα

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula

Fisika BATXILERGOA 2. Jenaro Guisasola Ane Leniz Oier Azula Fisika BATXILERGOA 2 Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena, legeak aurrez ikusitako

Διαβάστε περισσότερα

1 Aljebra trukakorraren oinarriak

1 Aljebra trukakorraren oinarriak 1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,

Διαβάστε περισσότερα

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2 Fisika BATXILEGOA Irakaslearen gidaliburua Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena,

Διαβάστε περισσότερα

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a

1. INGENIARITZA INDUSTRIALA. INGENIARITZAREN OINARRI FISIKOAK 1. Partziala 2009.eko urtarrilaren 29a 1. Partziala 2009.eko urtarrilaren 29a ATAL TEORIKOA: Azterketaren atal honek bost puntu balio du totalean. Hiru ariketak berdin balio dute. IRAUPENA: 75 MINUTU. EZ IDATZI ARIKETA BIREN ERANTZUNAK ORRI

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: OPTIKA

SELEKTIBITATEKO ARIKETAK: OPTIKA SELEKTIBITATEKO ARIKETAK: OPTIKA TEORIA 1. (2012/2013) Argiaren errefrakzioa. Guztizko islapena. Zuntz optikoak. Azaldu errefrakzioaren fenomenoa, eta bere legeak eman. Guztizko islapen a azaldu eta definitu

Διαβάστε περισσότερα

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA Datu orokorrak: Elektroiaren masa: 9,10 10-31 Kg, Protoiaren masa: 1,67 x 10-27 Kg Elektroiaren karga e = - 1,60 x 10-19 C µ ο = 4π 10-7 T m/ampere edo 4π

Διαβάστε περισσότερα

0.Gaia: Fisikarako sarrera. ARIKETAK

0.Gaia: Fisikarako sarrera. ARIKETAK 1. Zein da A gorputzaren gainean egin behar dugun indarraren balioa pausagunean dagoen B-gorputza eskuinalderantz 2 m desplazatzeko 4 s-tan. Kalkula itzazu 1 eta 2 soken tentsioak. (Iturria: IES Nicolas

Διαβάστε περισσότερα

Jose Miguel Campillo Robles. Ur-erlojuak

Jose Miguel Campillo Robles. Ur-erlojuak HIDRODINAMIKA Hidrodinamikako zenbait kontzeptu garrantzitsu Fluidoen garraioa Fluxua 3 Lerroak eta hodiak Jarraitasunaren ekuazioa 3 Momentuaren ekuazioa 4 Bernouilli-ren ekuazioa 4 Dedukzioa 4 Aplikazioak

Διαβάστε περισσότερα

1.1. Aire konprimituzko teknikaren aurrerapenak

1.1. Aire konprimituzko teknikaren aurrerapenak 1.- SARRERA 1.1. Aire konprimituzko teknikaren aurrerapenak Aire konprimitua pertsonak ezagutzen duen energia-era zaharrenetarikoa da. Seguru dakigunez, KTESIBIOS grekoak duela 2.000 urte edo gehiago katapulta

Διαβάστε περισσότερα

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma)

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Termodinamika Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Erreakzio kimikoetako transformazio energetikoak. Espontaneotasuna 1. Energia eta erreakzio kimikoa. Prozesu exotermikoak

Διαβάστε περισσότερα

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana

6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana 6. Aldagai kualitatibo baten eta kuantitatibo baten arteko harremana GAITASUNAK Gai hau bukatzerako ikaslea gai izango da: - Batezbestekoaren estimazioa biztanlerian kalkulatzeko. - Proba parametrikoak

Διαβάστε περισσότερα

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea. Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia

Διαβάστε περισσότερα

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA 1. JARDUERA. KORRONTE ELEKTRIKOA. 1 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa

Διαβάστε περισσότερα

Oinarrizko mekanika:

Oinarrizko mekanika: OINARRIZKO MEKANIKA 5.fh11 /5/08 09:36 P gina C M Y CM MY CY CMY K 5 Lanbide Heziketarako Materialak Oinarrizko mekanika: mugimenduen transmisioa, makina arruntak eta mekanismoak Gloria Agirrebeitia Orue

Διαβάστε περισσότερα

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK 1.-100 m 3 aire 33 Km/ordu-ko abiaduran mugitzen ari dira. Zenbateko energia zinetikoa dute? Datua: ρ airea = 1.225 Kg/m 3 2.-Zentral hidroelektriko batean ur Hm

Διαβάστε περισσότερα

OREKA KIMIKOA GAIEN ZERRENDA

OREKA KIMIKOA GAIEN ZERRENDA GAIEN ZERRENDA Nola lortzen da oreka kimikoa? Oreka konstantearen formulazioa Kc eta Kp-ren arteko erlazioa Disoziazio-gradua Frakzio molarrak eta presio partzialak Oreka kimikoaren noranzkoa Le Chatelier-en

Διαβάστε περισσότερα

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa. Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar

Διαβάστε περισσότερα

Oxidazio-erredukzio erreakzioak

Oxidazio-erredukzio erreakzioak Oxidazio-erredukzio erreakzioak Lan hau Creative Commons-en Nazioarteko 3.0 lizentziaren mendeko Azterketa-Ez komertzial-partekatu lizentziaren mende dago. Lizentzia horren kopia ikusteko, sartu http://creativecommons.org/licenses/by-ncsa/3.0/es/

Διαβάστε περισσότερα

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 AURKIBIDEA Or. I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 1.1. MAGNITUDEAK... 7 1.1.1. Karga elektrikoa (Q)... 7 1.1.2. Intentsitatea (I)... 7 1.1.3. Tentsioa ()... 8 1.1.4. Erresistentzia elektrikoa

Διαβάστε περισσότερα

I. KAPITULUA Zenbakia. Aldagaia. Funtzioa

I. KAPITULUA Zenbakia. Aldagaia. Funtzioa I. KAPITULUA Zenbakia. Aldagaia. Funtzioa 1. ZENBAKI ERREALAK. ZENBAKI ERREALEN ADIERAZPENA ZENBAKIZKO ARDATZEKO PUNTUEN BIDEZ Matematikaren oinarrizko kontzeptuetariko bat zenbakia da. Zenbakiaren kontzeptua

Διαβάστε περισσότερα

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9 Magnetismoa manak eta imanen teoriak... 2 manaren definizioa:... 2 manen arteko interakzioak (elkarrekintzak)... 4 manen teoria molekularra... 4 man artifizialak... 6 Material ferromagnetikoak, paramagnetikoak

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA

FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ETA KIMIKA 4. DBH BIRPASO TXOSTENA FISIKA ZINEMATIKA KONTZEPTUAK: 1. Marraz itzazu txakurraren x/t eta v/t grafikoak, txakurrraren higidura ondoko taulan ageri diren araberako higidura zuzena dela

Διαβάστε περισσότερα

1. MATERIAREN PROPIETATE OROKORRAK

1. MATERIAREN PROPIETATE OROKORRAK http://thales.cica.es/rd/recursos/rd98/fisica/01/fisica-01.html 1. MATERIAREN PROPIETATE OROKORRAK 1.1. BOLUMENA Nazioarteko Sisteman bolumen unitatea metro kubikoa da (m 3 ). Hala ere, likido eta gasen

Διαβάστε περισσότερα

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 1. AKTIBITATEA Lan Proposamena ARAZOA Zurezko oinarri baten gainean joko elektriko bat eraiki. Modu honetan jokoan asmatzen dugunean eta ukitzen dugunean

Διαβάστε περισσότερα

6. Errodamenduak 1.1. DESKRIBAPENA ETA SAILKAPENAK

6. Errodamenduak 1.1. DESKRIBAPENA ETA SAILKAPENAK 2005 V. IOL 6. Errodamenduak 1.1. ESKRIPEN ET SILKPENK Errodamenduak biziki ikertu eta garatu ziren autoak, abiadura handiko motorrak eta produkzio automatikorako makineria agertu zirenean. Horren ondorioz,

Διαβάστε περισσότερα

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):...

MOTOR ASINKRONOAK TRIFASIKOAK Osaera Funtzionamendua Bornen kaxa: Konexio motak (Izar moduan edo triangelu moduan):... Makina Elektrikoak MAKINA ELEKTRIKOAK... 3 Motak:... 3 Henry-Faradayren legea... 3 ALTERNADOREA:... 6 DINAMOA:... 7 Ariketak generadoreak (2010eko selektibitatekoa):... 8 TRANSFORMADOREAK:... 9 Ikurrak...

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,

Διαβάστε περισσότερα

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK 4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK GAI HAU IKASTEAN GAITASUN HAUEK LORTU BEHARKO DITUZU:. Sistema ireki eta itxien artea bereiztea. 2. Masa balantze sinpleak egitea.. Taula estekiometrikoa

Διαβάστε περισσότερα

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK Zenbaki errealak ZENBAKI ERREALAK ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK ZENBAKI IRRAZIONALAK HURBILKETAK LABURTZEA BIRIBILTZEA GEHIAGOZ ERROREAK HURBILKETETAN Lagun ezezaguna Mezua premiazkoa zirudien

Διαβάστε περισσότερα

Ordenadore bidezko irudigintza

Ordenadore bidezko irudigintza Ordenadore bidezko irudigintza Joseba Makazaga 1 Donostiako Informatika Fakultateko irakaslea Konputazio Zientziak eta Adimen Artifiziala Saileko kidea Asier Lasa 2 Donostiako Informatika Fakultateko ikaslea

Διαβάστε περισσότερα

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu) UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko

Διαβάστε περισσότερα

9. GAIA: ZELULAREN KITZIKAKORTASUNA

9. GAIA: ZELULAREN KITZIKAKORTASUNA 9. GAIA: ZELULAREN KITZIKAKORTASUNA OHARRA: Zelula kitzikatzea zelula horretan, kinada egokiaren bidez, ekintza-potentziala sortaraztea da. Beraz, zelula kitzikatua egongo da ekintza-potentziala gertatzen

Διαβάστε περισσότερα

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du.

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du. Korronte zuzena 1 1.1. ZIRKUITU ELEKTRIKOA Instalazio elektrikoetan, elektroiak sorgailuaren borne batetik irten eta beste bornera joaten dira. Beraz, elektroiek desplazatzeko egiten duten bidea da zirkuitu

Διαβάστε περισσότερα

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia 1. MAKROEKONOMIA: KONTZEPTUAK ETA TRESNAK. 1.1. Sarrera Lehenengo atal honetan, geroago erabili behar ditugun oinarrizko kontzeptu batzuk gainbegiratuko ditugu, gauzak nola eta zergatik egiten ditugun

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa Analisia eta Kontrola Materialak eta entsegu fisikoak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): HOSTEINS UNZUETA, Ana Zuzenketak:

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren

Διαβάστε περισσότερα

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK

Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK Funtzioak FUNTZIO KONTZEPTUA FUNTZIO BATEN ADIERAZPENAK ENUNTZIATUA TAULA FORMULA GRAFIKOA JARRAITUTASUNA EREMUA ETA IBILTARTEA EBAKIDURA-PUNTUAK GORAKORTASUNA ETA BEHERAKORTASUNA MAIMOAK ETA MINIMOAK

Διαβάστε περισσότερα

BIZIDUNEN OSAERA ETA EGITURA

BIZIDUNEN OSAERA ETA EGITURA BIZIDUNEN OSAERA ETA EGITURA 1 1.1. EREDU ATOMIKO KLASIKOAK 1.2. SISTEMA PERIODIKOA 1.3. LOTURA KIMIKOA 1.3.1. LOTURA IONIKOA 1.3.2. LOTURA KOBALENTEA 1.4. LOTUREN POLARITATEA 1.5. MOLEKULEN ARTEKO INDARRAK

Διαβάστε περισσότερα

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz.

LAN PROPOSAMENA. Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. - 1-1. JARDUERA. LAN PROPOSAMENA. 1 LAN PROPOSAMENA Alarma bat eraiki beharko duzu, trantsistorizatuta dagoen instalazio bat eginez, errele bat eta LDR bat erabiliz. BALDINTZAK 1.- Bai memoria (txostena),

Διαβάστε περισσότερα

EIB sistemaren oinarriak 1

EIB sistemaren oinarriak 1 EIB sistemaren oinarriak 1 1.1. Sarrera 1.2. Ezaugarri orokorrak 1.3. Transmisio teknologia 1.4. Elikatze-sistema 1.5. Datuen eta elikatzearen arteko isolamendua 5 Instalazio automatizatuak: EIB bus-sistema

Διαβάστε περισσότερα

MARRAZKETA TEKNIKOA. Batxilergoa 1. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein

MARRAZKETA TEKNIKOA. Batxilergoa 1. Rafael Ciriza Roberto Galarraga Mª Angeles García José Antonio Oriozabala. erein MRRZKET TEKNIKO atxilegoa 1 Rafael Ciiza Robeto Galaaga Mª ngeles Gacía José ntonio Oiozabala eein Eusko Jaulaitzako Hezkuntza, Unibetsitate eta Ikeketa sailak onetsia (2003-09-25) zalaen diseinua: Itui

Διαβάστε περισσότερα

1. GAIA PNEUMATIKA. Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da.

1. GAIA PNEUMATIKA. Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da. 1. GAIA PNEUMATIKA Aire konprimitua, pertsonak bere baliabide fisikoak indartzeko erabili duen energia erarik antzinatakoa da. Pneumatika hitza grekoek arnasa eta haizea izendatzeko erabiltzen zuten. Pneumatikaz

Διαβάστε περισσότερα

FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia)

FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia) FK1 irakaslearen gida-liburua (dok1afk1gidalehenzatia) 1.- Proiektuaren zergatia eta ezaugarri orokorrak Indarrean dagoen curriculumean zehazturiko Batxilergoko zientzietako jakintzagaiei dagozkien lanmaterialak

Διαβάστε περισσότερα

Dokumentua I. 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago:

Dokumentua I. 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago: Dokumentua I Iruzkin orokorrak 2010ean martxan hasiko den Unibertsitatera sarrerako hautaproba berria ondoko arauen bidez erregulatuta dago: 1. BOE. 1467/2007ko azaroaren 2ko Errege Dekretua. (Batxilergoaren

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa ELEKTROTEKNIA Makina elektriko estatikoak eta birakariak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION

Διαβάστε περισσότερα

2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK

2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK 2. GAIA: DISOLUZIOAK ETA EZAUGARRI KOLIGATIBOAK 1. DISOLUZIOAK Disoluzioa (def): Substantzia baten partikulek beste substantzia baten barnean egiten duten tartekatze mekanikoa. Disolbatzaileaz eta solutuaz

Διαβάστε περισσότερα

SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK

SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK SISTEMA PNEUMATIKOAK ETA OLIOHIDRAULIKOAK... Zer da sistema Pneumatikoa? Fluido mota, erabilerak, abantailak eta desabantailak... ABANTAILAK... DESABANTAILAK...3

Διαβάστε περισσότερα

KOSMOLOGIAREN HISTORIA

KOSMOLOGIAREN HISTORIA KOSMOLOGIAREN HISTORIA Historian zehar teoria asko garatu dira unibertsoa azaltzeko. Kultura bakoitzak bere eredua garatu du, unibertsoaren hasiera eta egitura azaltzeko. Teoria hauek zientziaren aurrerapenekin

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4 DBH Lana eta energia

FISIKA ETA KIMIKA 4 DBH Lana eta energia 5 HASTEKO ESKEMA INTERNET Edukien eskema Energia Energia motak Energiaren propietateak Energia iturriak Energia iturrien sailkapena Erregai fosilen ustiapena Energia nuklearraren ustiapena Lana Zer da

Διαβάστε περισσότερα

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA eman ta zabal zazu Euskal Herriko Unibertsitatea Informatika Fakultatea Konputagailuen Arkitektura eta Teknologia saila KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA KTL'2000-2001 Oinarrizko dokumentazioa lehenengo

Διαβάστε περισσότερα

4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA. 20 urte euskal hezkuntza ospatuz

4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA. 20 urte euskal hezkuntza ospatuz 4 EURO 2014KO ABENDUA EUSKAL HEZIKETARAKO ALDIZKARIA hh hik hasi 193 20 urte euskal hezkuntza ospatuz REGGIO EMILIAKO ESPERIENTZIA JESUS MARI MUJIKA LOMCE-RI EZ ANTZERKHIZKUNTZA PROIEKTUA HIK HASI OSPAKIZUNETAN

Διαβάστε περισσότερα

LAN PROPOSAMENA. ASKATASUNA BHI. Unitatea: MEKANISNOAK Orri zk: 1 Burlata 1. JARDUERA. IRAKASLEA: Arantza Martinez Iturri

LAN PROPOSAMENA. ASKATASUNA BHI. Unitatea: MEKANISNOAK Orri zk: 1 Burlata 1. JARDUERA. IRAKASLEA: Arantza Martinez Iturri ASKATASUNA BHI. Uitatea: MEKANISNOAK Orri zk: 1 1. JARDUERA LAN PROPOSAMENA LAN PROPOSAMENA Diseiatu eta eraiki ERAKUSLEIHO ZINETIKOA jedeare arreta erakartzeko edo produktu bat iragartzeko. Erakusleihoare

Διαβάστε περισσότερα

KIMIKA UZTAILA. Ebazpena

KIMIKA UZTAILA. Ebazpena KIMIKA 009- UZTAILA A1.- Hauspeatze-ontzi batean kobre (II) sulfatoaren ur-disoluzio urdin bat dugu, eta haren barruan zink-xafla bat sartzen dugu. Kontuan hartuta 5 C-an erredukzio-- potentzialak E O

Διαβάστε περισσότερα

NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ

NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ NEURRI-IZENAK ETA NEURRI-ESAMOLDEAK EUSKARAZ 2006-VI-19 J.R. Etxebarria Gure inguruko hizkuntzetan, neurri-izenen eta neurri-esamoldeen normalizazioa XIX. mendearen bigarren erdialdean abiatu zela esan

Διαβάστε περισσότερα

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin:

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1 Tentsio gorakada edo pikoa errele batean: Ikertu behar dugu

Διαβάστε περισσότερα

Laborategiko materiala

Laborategiko materiala Laborategiko materiala Zirkuitu elektronikoak muntatzeko, bikote bakoitzaren laborategiko postuan edo mahaian, besteak beste honako osagai hauek aurkituko ditugu: Mahaiak berak dituen osagaiak: - Etengailu

Διαβάστε περισσότερα

Mikroekonomia I. Gelan lantzeko ikasmaterialak.

Mikroekonomia I. Gelan lantzeko ikasmaterialak. Mikroekonomia I. Gelan lantzeko ikasmaterialak. Egilea(k) Andoni Maiza Larrarte* * Eduki gehienak Zurbanok (1989), eta Ansa, Castrillón eta Francok (2011) prestatutako ikasmaterialetatik hartu dira. Egileak

Διαβάστε περισσότερα

Lan honen bibliografia-erregistroa Eusko Jaurlaritzako Liburutegi Nagusiaren katalogoan aurki daiteke: http://www.euskadi.net/ejgvbiblioteka ARGITARATUTAKO IZENBURUAK 1. Prototipo elektronikoen garapena

Διαβάστε περισσότερα

ALKENOAK (I) EGITURA ETA SINTESIA

ALKENOAK (I) EGITURA ETA SINTESIA ALKENOAK (I) EGITURA ETA SINTESIA SARRERA Karbono-karbono lotura bikoitza agertzen duten konposatuak dira alkenoak. Olefina ere deitzen zaiete, izen hori olefiant-ik dator eta olioa ekoizten duen gasa

Διαβάστε περισσότερα

Makroekonomiarako sarrera

Makroekonomiarako sarrera Makroekonomiarako sarrera Galder Guenaga Garai Segundo Vicente Ramos EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA Aurkibidea Hitzaurrea. 1. GAIA: Makroekonomiaren ikuspegi orokorra. 1.1. Makroekonomia:

Διαβάστε περισσότερα

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua.

Polimetroa. Osziloskopioa. Elikatze-iturria. Behe-maiztasuneko sorgailua. Elektronika Analogikoa 1 ELEKTRONIKA- -LABORATEGIKO TRESNERIA SARRERA Elektronikako laborategian neurketa, baieztapen eta proba ugari eta desberdinak egin behar izaten dira, diseinatu eta muntatu diren

Διαβάστε περισσότερα

TAILERREKO ESKULIBURU TEKNIKOA

TAILERREKO ESKULIBURU TEKNIKOA TAILERREKO ESKULIBURU TEKNIKOA 1. edizioa 2004. Tailerreko Eskuliburu Teknikoa. Danobaten 50. urteurrena ospatzeko. 2. edizioa 2009 Egilea: Danobat Kooperatiba Elkartea Laguntzailea: Mondragon Unibertsitatea

Διαβάστε περισσότερα

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J.

ENERGIA ARIKETAK Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z= ,47 J. ENERGIA ARIKETAK OINARRIZKO KONTZEPTUAK 1.- 1000 Kg. eta 100 Km/h-tara mugitzen den kotxe baten energia zinetikoa kalkulatu. (Emaitza: E z=385.802,47 J.) 2.- 500Kg.tako eta 10m-tara zintzilik dagoen masa

Διαβάστε περισσότερα

ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA

ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA Informatika Fakultatea / Facultad de Informática ELEKTROKARDIOGRAFO BATEN DISEINU ETA ERAIKUNTZA Ikaslea: Hurko Mendiguren Quevedo Zuzendaria: Txelo Ruiz Vázquez Karrera Amaierako Proiektua, 2013-ekaina

Διαβάστε περισσότερα

Oscar Wilde. De profundis

Oscar Wilde. De profundis Oscar Wilde De profundis Izenburua: De profundis Egilea: Oscar Wilde Itzulpena: Aitor Arana Argitaratzea: Txalaparta argitaletxea e.m. Nabaz-Bides karrika, 1-2 78. posta-kutxa 31300 Tafalla NAFARROA Tel.

Διαβάστε περισσότερα

BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1)

BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1) BIOLOGIA ETA GEOLOGIA3DBH I. BLOKEA: GIZAKIA (1) Altitudea 600 km 80 km 50 km 12 km -100 C -50 C 0 C 50 C 100 C NOLAKOA DA LIBURU HAU? Unitateen egitura Unitatearen hasiera 3 Elikadura Elikadura osasuntsua

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa PROGRAMAZIO-TEKNIKAK Programazio-teknikak LANBIDE EKIMENA LANBIDE EKIMENA LANBIDE EKIMENA Proiektuaren bultzatzaileak Laguntzaileak LANBIDE HEZIKETAKO ZUZENDARITZA DIRECCION DE FORMACION PROFESIONAL Hizkuntz

Διαβάστε περισσότερα

KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik:

KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik: KLASIKOAK, S.A. lukro-asmorik gabeko elkarteak argitaratu du obra hau, elkartearen sustatzaile eta partaideak honako erakunde hauek izanik: BBVA Fundazioa Bilbao Bizkaia Kutxa BBK Gipuzkoa Donostia Kutxa

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika I

Giza eta Gizarte Zientziak Matematika I Gia eta Giarte Zietiak Matematika I. eta. ebaluaioak Zue erreala Segida errealak Ekuaio espoetialak Logaritmoak Ekuaio lieale sistemak ESTATISTIKA Aldagai diskretuak eta jarraiak Parametro estatistikoak

Διαβάστε περισσότερα

KIMIKA 2008 Ekaina. Behar den butano masa, kj (1 mol butano / 2876,3 kj) (58 g butano/1mol butano) = 193,86 g butano

KIMIKA 2008 Ekaina. Behar den butano masa, kj (1 mol butano / 2876,3 kj) (58 g butano/1mol butano) = 193,86 g butano KIMIKA 008 Ekaina A-1.- Formazio-enta pia estandar hauek emanda (kj/mol-etan): C (g) =-393,5 ; H 0 (l) = -85,4 ; C 4 H 10 (g) = -14,7 a) Datu hauek aipatzen dituzten erreakzioak idatzi eta azaldu. b) Kalkulatu

Διαβάστε περισσότερα

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK]

ARIKETAK (1) : KONPOSATU ORGANIKOEN EGITURA KIMIKOA [1 3. IKASGAIAK] 1. Partzialeko ariketak 1 ARIKETAK (1) : KNPSATU RGANIKEN EGITURA KIMIKA [1 3. IKASGAIAK] 1.- ndorengo konposatuak kontutan hartuta, adierazi: Markatutako atomoen hibridazioa. Zein lotura diren kobalenteak,

Διαβάστε περισσότερα

2 Lanaren etekinak. Gipuzkoako Foru Aldundia

2 Lanaren etekinak. Gipuzkoako Foru Aldundia 2 Lanaren etekinak 2.1 Zer dira lanaren etekinak? 2.1.1 Zein prestazio sartzen dira lan etekinen barruan? 2.2 Joan-etorriko dietak eta bidai gastuak lan etekinak al dira? 2.2.1 Arau orokorrak 2.2.2 Arau

Διαβάστε περισσότερα

IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA

IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA IRAKASKUNTZA GIDA: MATEMATIKARAKO SARRERA 1. HELBURUAK Kurtso honetarako prestatu den materialarekin, irakurlearentzat ohikoak diren matematikako sinboloak, notazioak, lengoaia matematikoa eta aritmetikako

Διαβάστε περισσότερα

ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK

ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO GOMENDIOAK Ikasmaterialen Aholku Batzordea Estilo-liburuaren seigarren atala 22 Euskara Zerbitzua Hizkuntza Prestakuntza ZIENTZIA ETA TEKNIKAKO EUSKARA ARAUTZEKO

Διαβάστε περισσότερα

Teknologia Elektrikoa I Laborategiko Praktikak ISBN:

Teknologia Elektrikoa I Laborategiko Praktikak ISBN: Teknologia Elektrikoa I Laborategiko Praktikak ISBN: 978-84-9860-669-0 Agurtzane Etxegarai Madina Zigor Larrabe Uribe EUSKARA ETA ELEANIZTASUNEKO ERREKTOREORDETZAREN SARE ARGITALPENA Liburu honek UPV/EHUko

Διαβάστε περισσότερα

Enbriologia Orokorra eta Bereziko buruxka

Enbriologia Orokorra eta Bereziko buruxka Enbriologia Orokorra eta Bereziko buruxka Medikuntzako Ikasleen Elkartea Irakasgaieko irakaslea: Amale Caballero Lasquibar Ikasle-egilea: Adrian H. Llorente Aginagalde Oharra Apunte buruxka hau AEM/MIB

Διαβάστε περισσότερα

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak

ELEKTRIZITATEA. Elektrizitatearen atalak: 2.- Korronte elektrikoa. 1.- Karga elektrikoa Korronte elektrikoaren arriskuak ELEKTRIZITATEA D.B.H. 1 Joseba Arruabarrena 2007ko Otsaila ren atalak: 1. Karga elektrikoa 2. Korronte elektrikoa 3. Zirkuitu elektrikoa 4. Magnitudeak: : Ohmen legea 5. Irudikapena eta ikurrak 6. Korronte

Διαβάστε περισσότερα

KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ

KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ eman ta zabal zazu Universidad del País Vasco Euskal Herriko Unibertsitatea BILBOKO INGENIARIEN GOI ESKOLA TEKNIKOA KONPUTAGAILUEN PROGRAMAZIOA TURBO PASCAL BITARTEZ I EGILEA: Jesus-Mari Romo Uriarte (hirugarren

Διαβάστε περισσότερα

ENERGIA EOLIKOA. UEU. 2008ko Uztailak 11

ENERGIA EOLIKOA. UEU. 2008ko Uztailak 11 ENERGIA EOLIKOA UEU. 2008ko Uztailak 11 Sarrera - Definizioa - Erabilerak Teknologia - Aerosorgailuak AURKIBIDEA Abantailak eta desabantailak Energia eolikoa munduan Euskal Herria - Energetikoak - Ingurumenerako

Διαβάστε περισσότερα

XX. mendeko olerkari greziarrak

XX. mendeko olerkari greziarrak XX. mendeko olerkari greziarrak R Ko l d o Ru i z d e Az u a Matónoo aditzak odolustu esan nahi du grekoz. Odolustu egin zen Grezia ia bi mendez. Lehenik, mende bat baino gehiago iraun zuen independentzia

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika II

Giza eta Gizarte Zientziak Matematika II Giza eta Gizarte Zietziak Matematika II 3. ebaluazioa Probabilitatea Baaketa Normala eta Biomiala Lagi estatistikoak Iferetzia estatistikoa Hipotesiak Igacio Zuloaga B.H.I. (Eibar) 1 PROBABILITATEA Igazio

Διαβάστε περισσότερα

PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA. II. Itemen adibideak irakasleak erabiltzeko. 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua

PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA. II. Itemen adibideak irakasleak erabiltzeko. 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua 2009 PISA: MATEMATIKA ETA PROBLEMAK EBAZTEA II. Itemen adibideak irakasleak erabiltzeko 15 urteko Ikasleen Nazioarteko Ebaluaziorako Proiektua w w www.pisa.oecd.org ISEI-IVEIk argitaratuta: Irakas-Sistema

Διαβάστε περισσότερα

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK,

Ezaugarriak: Gaitasunak: Ikasgaia: KIMIKA ORGANIKOAREN OINARRIAK, Ikasgaia: KIMIKA GANIKAEN INAIAK, Urte Akademikoa: 2008-09 Titulazioa: Licenciatura en Química, Ingeniero Químico. Irakaslea: Jose Luis Vicario, (Kimika rganikoa II Saila) Ezaugarriak: Ikasgai honetan

Διαβάστε περισσότερα

INGURUGIRO TEKNOLOGIA. Luis M. Camarero Estela M. Arritokieta Ortuzar Iragorri Natalia Villota Salazar

INGURUGIRO TEKNOLOGIA. Luis M. Camarero Estela M. Arritokieta Ortuzar Iragorri Natalia Villota Salazar INGURUGIRO TEKNOLOGIA Luis M. Camarero Estela M. Arritokieta Ortuzar Iragorri Natalia Villota Salazar OCW 2013 6. ISURI GASEOSOEN TRATAMENDUA II: PARTIKULA ELIMINAZIOA GARBITZAILE ETA JAULKITZAILE ELEKTROSTATIKOEN

Διαβάστε περισσότερα

6. GAIA: Txapa konformazioa

6. GAIA: Txapa konformazioa II MODULUA: METALEN KONFORMAZIO PLASTIKOA 6. GAIA: Txapa konformazioa TEKNOLOGIA MEKANIKOA INGENIARITZA MEKANIKO SAILA Universidad del País s Vasco Euskal Herriko Unibertsitatea 6. Gaia: Txapa konformazioa

Διαβάστε περισσότερα

Batxilergo Zientifiko-Teknikoa MATEMATIKA II GEOMETRIA. Ignazio Zuloaga B.H.I. (Eibar)

Batxilergo Zientifiko-Teknikoa MATEMATIKA II GEOMETRIA. Ignazio Zuloaga B.H.I. (Eibar) atilego Zientifiko-Teknikoa MTEMTIK II GEOMETRI Ignaio Zloaga.H.I. (Eiba) URKIIDE Geometia EKTOREK ESPZION... EKTOREK ESPZION... V EKTORE-ESPZIO. DEFINIZIOK... E V eta R MULTZOEN RTEKO ERLZIO... ERREFERENTZI

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΓΙΑ ΤΗΝ ΕΘΝΙΚΗ ΣΧΟΛΗ ΙΚΑΣΤΙΚΩΝ ΛΕΙΤΟΥΡΓΩΝ ΙΣΤ ΕΙΣΑΓΩΓΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΚΑΤΕΥΘΥΝΣΗ ΙΟΙΚΗΤΙΚΗΣ ΙΚΑΙΟΣΥΝΗΣ

ΑΠΟΤΕΛΕΣΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΓΙΑ ΤΗΝ ΕΘΝΙΚΗ ΣΧΟΛΗ ΙΚΑΣΤΙΚΩΝ ΛΕΙΤΟΥΡΓΩΝ ΙΣΤ ΕΙΣΑΓΩΓΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΚΑΤΕΥΘΥΝΣΗ ΙΟΙΚΗΤΙΚΗΣ ΙΚΑΙΟΣΥΝΗΣ 1 Αγγέλης ηµήτριος Παναγιώτης 7.000 6.000 6.5000 2.000 3.000 2.5000 4.000 2.700 3.3500 4.000 4.000 4.0000 5.000 7.000 6.0000 4.4700 2 Αγραπίδης Γεώργιος Χαράλαµπος 8.000 9.000 8.5000 6.000 6.000 6.0000

Διαβάστε περισσότερα

Ekonomiarako Sarrera II: Makroekonomiaren Oinarriak Ariketa ebatziak

Ekonomiarako Sarrera II: Makroekonomiaren Oinarriak Ariketa ebatziak Ekonomiarako Sarrera II: Makroekonomiaren Oinarriak Ariketa ebatziak Andoni Maiza Larrarte 1 Cip. Unibertsitateko Biblioteka Maiza Larrarte, José Antonio Ekonomiarako sarrera II [Recurso electrónico]:

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

Ilunpetik argitara 1. Birramona Maria. 1 XXXV. Errenteria Hiria ipuin lehiaketaren "Joxan Arbelaiz" sariaren lan irabazlea.

Ilunpetik argitara 1. Birramona Maria. 1 XXXV. Errenteria Hiria ipuin lehiaketaren Joxan Arbelaiz sariaren lan irabazlea. Ilunpetik argitara 1 M - bal oilarraren lehenengo kukurrukuak jo zuenean; goizeko seiak besterik ez ziren arren ordu bat baino gehiago zeraman sabaiari begira. Hasi berria zen eguneko lehen pentsamenduetan

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

H A N H E M E N K A K A N T A R I

H A N H E M E N K A K A N T A R I H A N H E M E N K A K A N T A R I 115 x 140 mm 080612 2 ABERRIAREN MUGAK: (EX5)AAG#F# (AM) Hitzak: Joserra Garzia - Musika: Txomin Artola Nire aberria lurra bezain zah rra da baina ez da lurra bakarrik

Διαβάστε περισσότερα

E 220 228 Διοξείδιο του θείου - θειώδη άλατα 20 (3) μόνο σιρόπι γλυκόζης, αφυδατωμένο ή μη

E 220 228 Διοξείδιο του θείου - θειώδη άλατα 20 (3) μόνο σιρόπι γλυκόζης, αφυδατωμένο ή μη Αριθμός κατηγορίας Αριθμός E Όνομα Ανώτατα επίπεδα (mg/l ή mg/kg ανάλογα με την περίπτωση) Υποσημειώσεις περιορισμοί/εξαιρέσεις 11 Σάκχαρα, σιρόπια, μέλι και επιτραπέζια γλυκαντικά 11.1 Σάκχαρα και σιρόπια

Διαβάστε περισσότερα

α/α Α.Μ. Ονοματεπώνυμο Σύλλογος Βαθμοί Έτος Πόλη1 Κτγ1

α/α Α.Μ. Ονοματεπώνυμο Σύλλογος Βαθμοί Έτος Πόλη1 Κτγ1 1 30537 ΒΟΛΤΥΡΑΚΗΣ ΒΑΣΙΛΗΣ Ο.Α.ΧΑΝΙΩΝ 117,0 2003 ΗΡΑ b12 2 32680 ΦΩΤΕΙΝΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ Α.Ο.Α.ΗΛΙΟΥΠΟΛΗΣ 110,5 2003 ΗΡΑ b12 3 30776 ΖΕΡΒΟΣ ΓΕΩΡΓΙΟΣ Ο.Α.ΧΑΝΙΩΝ 71,5 2003 ΗΡΑ b12 4 33545 ΛΥΜΠΕΡΗΣ ΑΡΗΣ-ΠΑΝΑΓΙΩΤΗΣ

Διαβάστε περισσότερα

0. Gaia: FISIKAREN SARRERA

0. Gaia: FISIKAREN SARRERA 0. G: FISIKREN SRRER 1.1.- MGNITUTE ESKLRRK ET EKTORILK. EKTOREK. EKTORE UNITRIOK. EKTOREEN OSGIK. EKTORE EKIPOLENTEK. URKKO EKTORE. EKTOREEN ERGIKETK. Mgntude neur eeen edoer gu d. Mgntude tuen neurr

Διαβάστε περισσότερα