Uvod Newton-Leibnizova formula Glavne metode integriranja. Integrali. Franka Miriam Brückler
|
|
- Κλυταιμνήστρα Κασιδιάρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Integrli Frnk Mirim Brückler
2 Antiderivcije Koj je vez izmedu x 2 i 2x?
3 Antiderivcije Koj je vez izmedu x 2 i 2x? Antiderivcij (primitivn funkcij) zdne funkcije f : I R (gdje je I otvoren intervl) je svk funkcij F : I R s svojstvom F (x) = f (x) z sve x I. Mor li ntiderivcij postojti? Ako postoji, im li ih više? Kko ih nći?
4 Primjer Funkcij f : R R zdn s f (x) = 3x 2 ko ntiderivciju im npr. F : R R, F (x) = x 3. No, uočimo d su primjerice i F 2 (x) = x 3 10 i F 3 (x) = x 3 + π tkoder ntiderivcije od f. Teorem Ako funkcij f : I R posjeduje ntiderivciju, ond ih im beskončno mnogo. Ako je F jedn ntiderivcij od f, ond je z svku konstntu C R funkcij F C zdn s F C (x) = F (x) + C tkoder ntiderivcij od f i sve ntiderivcije su tog oblik.
5 Primjer Uzmemo li funkciju f (x) = 1 x, lko bismo pogodili d su njene ntiderivcije oblik F C (x) = ln x + C. No, ln je definirn z x > 0, f z x 0! Z x < 0 uzmimo G(x) = ln( x) p je G (x) = 1 x = 1 x. Dkle, možemo reći d su ntiderivcije od f F C (x) = C + ln x, x I I = R.
6 Neodredeni integrl Neodredeni integrl funkcije f je skup svih njenih ntiderivcij. Oznk neodredenog integrl funkcije f, ko joj je vrijbl oznčen s x, je f (x) dx Funkcij f zove se podintegrln funkcij. Trebli bismo pisti f (x) dx = {FC : C R}, li iz prktičnih rzlog uobičjen je jednostvniji zpis: f (x) dx = F (x) + C. Konstnt C zove se konstnt integrcije. Primjer Pišemo npr. 3x 2 dx = x 3 + C.
7 Teorem (Linernost neodredenog integrl) Nek su funkcije f i g zdne n istom intervlu te K nek konstnt. Td vrijedi: (f (x) + g(x)) dx = f (x) dx + g(x) dx, Kf (x) dx = K f (x) dx.
8 Pod tbličnim integrirnjem podrzumijev se integrirnje temeljem osnovne tblice integrl uz eventulno korištenje svojstv linernosti i trnsformcij podintegrlne funkcije formulm iz elementrnije mtemtike. Primjer Odredimo cos 2 x 2 dx. Znmo d je cos2 1+cos 2 = 2 p immo cos 2 x 1 2 dx = cos x dx = 2 = 1 2 dx cos x dx = x 2 + sin x 2 + C.
9 Odredeni integrli Simbolom b f (x) dx bilježimo odredeni integrl funkcije f u grnicm i b (tj. n intervlu [, b]). Ukoliko je f pozitivn i neprekidn n segmentu [, b], ond je po iznosu b f (x) dx isto što i površin omeden s osi pscis, vertiklm x = i x = b te grfom y = f (x). Ako je f neprekidn, li dijelom negtivn n tom segmentu, površine dijelov ispod osi pscis pribrjju se s negtivnim predznkom.
10 Zdtk Kolik je površin omeden grfom y = sin x izmedu x = 0 i x = 3π 2?
11 Zdtk Kolik je površin omeden grfom y = sin x izmedu x = 0 i x = 3π 2? No, odredeni (ili: Riemnnov) integrl im smisl i z mnoge funkcije koje nisu neprekidne n segmentu (području integrirnj).
12 Primjer Kolik je površin koju s x-osi ztvr grf pozitivne funkcije f : [0, L] R, koj je omeden vertiklm x = 0 i x = L? Ako f nije fin, nem jednostvnog nčin z izrčunvnje te površine. Aproksimtivno, mogli bismo intervl [0, L] podijeliti n puno dijelov širine x i ukupnu površinu proksimirti zbrojem površin prvokutnik širine x i visine f (x i ). Dobili bismo P x i f (x i ).
13 Nek je f : [, b] R nek ogrničen 1 funkcij. Podijelimo intervl [, b] n puno dijelov (kže se: nprvimo subdiviziju: = x 0 x 1... x n = b). U prvoj definiciji odredenog integrl rzmci izmedu dv susjedn x i - ne trebju biti jednki, li ćemo rdi jednostvnosti pristup uzeti d jesu: x i+1 x i = x z sve indekse i. 1 Funkcij je ogrničen n svojoj domeni ko joj se grf može ncrtti izmedu dv horizontln prvc y = m i y = M.
14 Nek je f : [, b] R nek ogrničen 1 funkcij. Podijelimo intervl [, b] n puno dijelov (kže se: nprvimo subdiviziju: = x 0 x 1... x n = b). U prvoj definiciji odredenog integrl rzmci izmedu dv susjedn x i - ne trebju biti jednki, li ćemo rdi jednostvnosti pristup uzeti d jesu: x i+1 x i = x z sve indekse i. Donj i gornj integrln (Drbouxov) sum n 1 n 1 s = m i x, S = M i x i=0 1 Funkcij je ogrničen n svojoj domeni ko joj se grf može ncrtti izmedu dv horizontln prvc y = m i y = M. i=0
15 Očigledno će z rzličite odbire subdivizije slike izgledti donekle rzličito: svk subdivizij odreduje po jednu gornju i jednu donju sumu. Ndlje, intuitivno je jsno d što je mnji x (uži prvokutnici) to će gornj i donj sum biti bliže točnoj površini izmedu grf funkcije i osi pscis (odnosno tmo gdje je funkcij negtivn, bit će bliže točnoj površini s predznkom minus).
16 Definicij (Odredeni (Riemnnov) integrl) Gornji integrl I ogrničene funkcije f : [, b] R je limes gornjih integrlnih sum kd x 0 (ko tj limes postoji). Donji integrl I ogrničene funkcije f : [, b] R je limes donjih integrlnih sum kd x 0 (ko tj limes postoji). Ako postoje i gornji i donji integrl i jednki su, ond se broj I = I = I zove odredenim (ili Riemnnovim) integrlom funkcije f : [, b] R i oznčv s b f (x) dx; kžemo d je f (Riemnn-)integrbiln n segmentu [, b]. Brojevi i b zovu se grnice (donj i gornj) odredenog integrl b f (x) dx.
17 Osnovn svojstv odredenog integrl f (x) dx = 0 z svku funkciju f definirnu u (jer površin dužine iznosi 0); b f (x) dx = c f (x) dx + b c f (x) dx z c [, b] (površinu možemo rzbiti n dv dijel vertiklom x = c); ne ssvim očito, li tkoder direktno iz definicije 2 slijedi i b f (x) dx = b f (x) dx (zmjen grnic integrl mijenj predznk odredenog integrl). 2 Rdi se o sljedećem: u definiciji smo od do b išli tko d je svki sljedeći x i bio veći, tj. uz pozitivn x. Ako pk trebmo ići od b do mormo ići ulijevo, tj. dodvti negtivn x.
18 Tkoder, ko je f zdn n simetričnom segmentu [ c, c] i prn je ili neprn, immo još dv korisn svojstv: Nek je f : [ c, c] R integrbiln n [ c, c]. Ako je f prn, ond je c c f (x) dx = 2 f (x) dx, c 0 ko je f neprn, ond je c c f (x) dx = 0.
19 Tkoder, ko je f zdn n simetričnom segmentu [ c, c] i prn je ili neprn, immo još dv korisn svojstv: Nek je f : [ c, c] R integrbiln n [ c, c]. Ako je f prn, ond je c c f (x) dx = 2 f (x) dx, c 0 ko je f neprn, ond je c c f (x) dx = 0. Ako je f : [, b] R funkcij koj im njviše končno mnogo točk prekid u segmentu [, b], ond je on integrbiln n [, b], tj. može se izrčunti b f (x) dx. Ako su sve točke prekid c 1, c 2,..., c m (nbrojne po veličini, tj. < c 1 < c 2 <... < c m < b), ond je b f (x) dx = c1 c2 b f (x) dx + c 1 f (x) dx f (x) dx. c m
20 Tkoder, ko je f zdn n simetričnom segmentu [ c, c] i prn je ili neprn, immo još dv korisn svojstv: Nek je f : [ c, c] R integrbiln n [ c, c]. Ako je f prn, ond je c c f (x) dx = 2 f (x) dx, c 0 ko je f neprn, ond je c c f (x) dx = 0. Ako je f : [, b] R funkcij koj im njviše končno mnogo točk prekid u segmentu [, b], ond je on integrbiln n [, b], tj. može se izrčunti b f (x) dx. Ako su sve točke prekid c 1, c 2,..., c m (nbrojne po veličini, tj. < c 1 < c 2 <... < c m < b), ond je b f (x) dx = c1 c2 b f (x) dx + c 1 f (x) dx f (x) dx. c m Iz derivbilnosti slijedi neprekidnost, iz neprekidnosti integrbilnost.
21 Teorem (Osnovni teorem infinitezimlnog rčun) Nek je reln funkcij f neprekidn n segmentu [, b]. Td je formulom F (x) = x f (t) dt, x [, b] definirn funkcij F i on je ntiderivcij z f n, b. Ndlje, z svku ntiderivciju F od f vrijedi Newton-Leibnizov formul b f (x) dx = F (x) b = F (b) F (). Iz tog slijedi:
22 Zprvo je smo jedn integrl Korolr Z relnu funkciju f neprekidnu n [, b] i njenu ntiderivciju F vrijedi: x F (x) = F () + f (t) dt, x [, b], ( x f (x) = f (t) dt). U terminim neodredenih integrl: ( ) d f (x) dx = f (x), dx df dx = f (x) + C. dx
23 Posljedic Newton-Leibnizove formule je d i odredeni integrl, ko i neodredeni, im svojstvo linernosti: b (f (x) + g(x)) dx = b b Kf (x) dx = K b f (x) dx + b f (x) dx. g(x) dx,
24 Posljedic Newton-Leibnizove formule je d i odredeni integrl, ko i neodredeni, im svojstvo linernosti: b (f (x) + g(x)) dx = b b Kf (x) dx = K b f (x) dx + b f (x) dx. g(x) dx, Primijetimo d Newton-Leibnizov formul vrijedi smo z neprekidne funkcije, no može se (temeljem propozicije??) primijeniti i z funkcije s končno mnogo točk prekid c 1, c 2,..., c m [, b]. Uz oznke c 0 = i c m+1 = b dobivmo formulu b m ci+1 f (x) dx = f (x) dx = c i+1 F i (x) c i i i=0 c i, gdje su F i ntiderivcije od f n pojedinim podintervlim.
25 Primjer Nek je zdn funkcij f : R R s e x, x > 0 f (x) = x 2, 1 < x 0 x + 2, x 1 Izrčunjmo 2 2 f (x) dx..
26 Prcijln integrcij u dv = uv d du (uv) = dx dx v + u dv dx u dv dx = d du (uv) dx dx v v du ( u(x)v (x) dx = u(x)v(x) v(x)u (x) dx).
27 Prcijln integrcij u dv = uv d du (uv) = dx dx v + u dv dx u dv dx = d du (uv) dx dx v v du ( u(x)v (x) dx = u(x)v(x) v(x)u (x) dx). Njčešći slučjevi primjene ovog prvil su sljedeći: Funkcij u im reltivno jednostvnu derivciju, dv = dx; Funkcij u je potencij od x (u prvilu u(x) = x n, n N), dv je eksponencijln ili trigonometrijsk funkcij pomnožen s dx; Funkcij u je nek logritmsk funkcij, dv je oblik x n dx z n R.
28 Metod supstitucije Lnčno prvilo: df dx = df dy dy dx ; Nek je df dy = f (y) pri čemu je y = y(x). Slijedi df = f (y(x))y (x) dx odnosno (jer df = f (y) dy) f (y) dy = f (y(x))y (x) dx, dkle: f (y(x))y (x) dx = f (y) dy. Primjer dx x+b =? Primjer xe x 2 dx =?
29 Integrirnje rcionlnih funkcij Primjer Zdn je integrl x 3 dx. Prvo dijelimo x 2 1 i osttk je x te je x 3 : (x 2 1) = x dkle x 3 x 2 1 = x + x x 2 1, x 3 x 2 1 = x x x 2 1 dx. Dkle: Ukoliko je brojnik rcionlne funkcije stupnj većeg ili jednkog stupnju nzivnik, prvi kork je dijeljenje brojnik s nzivnikom kko bismo izdvojili polinomijlni dio.
30 Integrirnje prvih rcionlnih funkcij Ukoliko treb integrirti prvu rcionlnu funkciju, koristi se rstv n prcijlne rzlomke, u kombinciji s metodom supstitucije i tbličnim integrirnjem. Rstv n prcijlne rzlomke rcionlne funkcije p(x) q(x) je njezin zpis u obliku zbroj rzlomk koji su oblik A (x + b) k ili Ax + B (x 2 + bx + c) k.
31 Isključivo jednostruke relne nultočke nzivnik Njjednostvniji slučj: q(x) im točno onoliko (rzličitih) relnih nultočk koliki mu je stupnj. U tom slučju možemo dobiti rstv oblik p(x) q(x) = n i=1 A i i x + b i, gdje su i x + b i rzličiti fktori nzivnik, treb odrediti konstntne brojnike A 1,..., A n. Ilustrirjmo to nstvkom primjer Primjer x x 2 1 = A x 1 + B x + 1 / (x 2 1) x = A(x + 1) + B(x 1). Uvrstimo x = 1 i x = 1 i dobivmo 1 = 2A,
32 Isključivo relne nultočke nzivnik Ako se u q(x) neki fktor i x + b i pojvljuje s potencijom k većom od 1, tom fktoru odgovr k prcijlnih rzlomk po principu p(x) (x + b) k = B 1 x + b + B 2 (x + b) B k 1 (x + b) k 1 + B k (x + b) k. Primjer Izrčunjmo integrl x (2x + 3)(x 3) 2 dx. Primijetimo: kd god q(x) im smo relne nultočke, integrirnje rcionlne funkcije se svodi n integrirnje funkcij oblik (x + b) n dx koje je lko integrirti linernom supstitucijom.
33 Kompleksne nultočke nzivnik U slučju d q(x) nem smo relne nultočke u rstvu se po Ax+B sličnom principu pojvljuju prcijlni rzlomci oblik, (x 2 +bx+c) k tj. prcijlni rzlomci kojim su brojnici fine funkcije, nzivnici potencije promtrnog fktor. Primjer Izrčunjmo dx (x 2 +1)(x 1).
4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i
Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine
2.6 Nepravi integrali
66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,
= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi
Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim
Rijeseni neki zadaci iz poglavlja 4.5
Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz
MATEMATIKA 2. seminari. studij: Prehrambena tehnologija i Biotehnologija
MATEMATIKA seminri studij: Prehrmben tehnologij i Biotehnologij Sdržj Integrlni rčun funkcije jedne vrijble. Uvod................................. Odredeni (Riemnnov) integrl. Problem površine........
Matematika 2. Boris Širola
Mtemtik 2 (. Riemnnov integrl) Boris Širol predvnj . Riemnnov integrl 3 Pretpostvimo d immo neku neprekidnu relnu funkciju f, definirnu n nekom segmentu; tj., nek je dn neprekidn funkcij f : [, b] R.
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
1 Ekstremi funkcija više varijabli
1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,
Neodreeni integrali. Glava Teorijski uvod
Glv Neodreeni integrli. Teorijski uvod Nek je funkcij f :, b R. Definicij: ϕ- primitivn funkcij funkcije f ϕ f, b Teorem: ϕ- primitivn funkcij funkcije f ϕ+c- primitivn funkcij funkcije f Definicij: f
UVOD. Ovi nastavni materijali namijenjeni su studentima
UVOD Ovi nstvni mterijli nmijenjeni su studentim u svrhu lkšeg prćenj i boljeg rzumijevnj predvnj iz kolegij mtemtik. Ovi mterijli čine suštinu nstvnog grdiv p, uz obveznu literturu, mogu poslužiti studentim
Formule iz Matematike II. Mandi Orlić Tin Perkov
Formule iz Mtemtike II Mndi Orlić Tin Perkov INTEGRALI NEODREDENI INTEGRALI Svojstv 1. (f(x) ± g(x)) = ± g(x) 2. = Tblic integrl f(x) F(x) + C x + C x x +1 +1 + C 1 x ln x + C 1 x+b ln x + b + C e x e
Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f
Mte ijug: Rijeseni zdci iz vise mtemtike 8. ODREDJENI INTEGRALI 8. Opcenito o odredjenom integrlu Odredjeni integrl je grnicn vrijednost sume eskoncnog roj clnov svki cln tezi k nuli i ozncv se s : n n
OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA
OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza
Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog
Ako je f neprekinuta funkcija, definirana na intervalu [a,b], tad postoji barem jedna točka ξ [a,b] za koju je
Jednostvno, ili ne? Trpezn formul Neven Elezović, Zgreb Problem površine Teorem srednje vrijednosti Površin ispod grf pozitivne funkcije f jednk je odredenom - integrlu te funkcije, rčun se obično Newton-Leibnitzovom
SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F
SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost
Integralni raqun. F (x) = f(x)
Mterijl pripremio Benjmin Linus U mterijlu su e definicije, teoreme, dokzi teorem (rđenih n predvƭu i primeri. Dodo sm i neke done primere d bih ilustrovo prikznu teoriju. Integrlni rqun Definicij. Nek
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]
Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom
dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor
I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto
1. NEODREÐENI INTEGRAL
. NEODREÐENI INTEGRAL Pitnj: Je li dn reln funkcij f : A! R, A R, derivcij neke relne funkcije g : A! R? Riješiti jedndbu g = f, pri cemu se z dni f tri g. T jedndb ili nem rješenj ili ih im beskoncno
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
( ) p a. poklopac. Rješenje:
5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p
GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo
GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;
A MATEMATIKA Zadana je z = x 3 y + 1
A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte
4. Trigonometrija pravokutnog trokuta
4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz
R A D N I M A T E R I J A L I
Krmen Rivier R A D N I M A T E R I J A L I M A T E M A T I K A II. dio SPLIT 7. IV. FUNKCIJE 4.. POTREBNO PREDZNANJE 4.. REALNE FUNKCIJE JEDNE VARIJABLE 4.. INTERPOLACIJA 7 4.. NEKE OSNOVNE ELEMENTARNE
IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv
1.1 Neodre deni integral
. Neodre deni integrl.. Površinski problem Uvod u površinski problem Iko većin rzmišlj o integrlu isključivo ko o obrtu izvod, osnove integrlnog rčun sežu mnogo dlje u prošlost od modernih vremen. Jedn
1 Odredeni integral. Integrabilnost ograničene funkcije
Odredeni integrl. Integrbilnost ogrničene funkcije Njprije uvedimo dvije pretpostvke. Prv, d je reln funkcij segment[, b] končne dužine ( < < b < + ). Definicij 2. Podjel segment [, b], u oznci P, je svki
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Matematika 2 PODSJETNIK ZA UČENJE. Ivan Slapničar Marko Matić.
Ivn Slpničr Mrko Mtić Mtemtik 2 PODSJETNIK ZA UČENJE http://www.fesb.hr/mt2 Fkultet elektrotehnike, strojrstv i brodogrdnje Split, 2003. Sdržj 1 Neodredeni integrl 3 2 Odredeni integrl 5 3 Funkcije više
VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su
ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
γ = 120 a 2, a, a + 2. a + 2
Zdtk (Slvi, gimnzij) Duljine strni trokut čine ritmetički niz (slijed) s rzlikom Jedn kut iznosi Koliki je opseg trokut? Rješenje inči udući d duljine strni trokut čine ritmetički niz (slijed) s rzlikom,
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote
Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Specijalna vrsta nepravih integrala jesu oni koji sadrze potencije ili geometrijski red u podintegralnoj funkciji.
Mt Vijug: Rijsni zdci iz vis mtmti 9. NEPRAVI INTEGRALI 9. Opcnito o nprvim intgrlim Intgrl oli f d s nziv nprviln o: ) jdn ili oj grnic intgrcij nisu oncn vc soncn:, ) pod intgrln funcij f j prinut u
Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,
Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10.
Zdtk (Mrij, gimzij) Koliko stric im prvili mogokut ko jed jegov uutrji kut izosi 8? Rješeje Formul z veličiu jedog uutrjeg kut prvilog mogokut je: ( ) 8 α = ( ) 8 8 = / 8 = ( ) 8 8 = 8 6 8 8 = 6 7 = 6
Integrali Materijali za nastavu iz Matematike 1
Integrali Materijali za nastavu iz Matematike Kristina Krulić Himmelreich i Ksenija Smoljak 202/3 / 44 Definicija primitivne funkcije i neodredenog integrala Funkcija F je primitivna funkcija (antiderivacija)
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Primjene odreženog integrala
VJEŽBE IZ MATEMATIKE Ivn Brnović Miroslv Jerković Lekcij 5 Primjen određenog integrl Poglvlje Primjene odreženog integrl. Povr²in rvninskog lik Z dni rvninski lik omežen krivuljm y = f(x) i y = g(x) te
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
7 Odreženi integrali. Neka je funkcija f(x) definisana na intervalu [a, b]. Ako ovaj interval podelimo
7 Odreženi integrli 63 7 Odreženi integrli Nek je funkcij f(x) definisn n intervlu [, ]. Ako ovj intervl podeo n n delov tčkm = x < x < x
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Polinomijalna aproksimacija
1 Polinomijln proksimcij 1.1 Problem njbolje proksimcije Rzmotrimo ponovo problem u kojem je zdn tblic brojev x x 0 x 1 x x 3 x 4 x n y y 0 y 1 y y 3 y 4 y n (1.1) z koju treb nći funkciju f koju t tblic
KUPA I ZARUBLJENA KUPA
KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p
Ivan Slapničar. Matematika 2 PODSJETNIK ZA UČENJE. Fakultet elektrotehnike, strojarstva i brodogradnje Split, 2012.
Ivn Slpničr Mtemtik 2 PODSJETNIK ZA UČENJE http://www.fesb.hr/mt2 Fkultet elektrotehnike, strojrstv i brodogrdnje Split, 2012. Sdržj 1 Neodredeni integrl 3 2 Odredeni integrl 5 3 Funkcije više vrijbli
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
1.PRIZMA ( P=2B+M V=BH )
.RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:
tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
4. Relacije. Teorijski uvod
VI, VII i VIII dvoqs veжbi Vldimir Blti 4. Relije Teorijski uvod Podsetimo se n neke od pojmov veznih z skupove, koji su nm potrebni z uvođeƭe pojm relije. Dekrtov proizvod skup iniemo n slede i nqin:
( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču
PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu
REPETITORIJ MATEMATIKE za studente elektrotehnike
REPETITORIJ MATEMATIKE z studente elektrotehnike Bojn Kovčić Luk Mrohnić Tihn Strmečki Tehničko veleučilište u Zgrebu Predgovor Ovj priručnik nmijenjen je studentim 1. godine stručnih studij elektrotehnike
Metode rješavanja izmjeničnih krugova
Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk
Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.
σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
SLUČAJNE PROMENLJIVE-FUNKCIJA RASPODELE
SLUČAJNE PROMENLJIVE-FUNKCIJA RASPODELE Do sd smo već definisli skup Ω elementrnih dogđj Ako se elementrni dogđji ω mogu predstviti ko relni brojevi, ond se eksperiment može zmisliti ko izbor jedne promenljive
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
FURIJEOVI REDOVI ZADACI ( II
FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Neprekinute slu cajne varijable
5 Neprekinute slu cjne vrijble Slu cjnevrijbleirzdiobe Funkcije neprekinutih slu cjnihvrijbli6 Rije senizdtci Zdtci z vje zbu 8 5 Slu cjne vrijble i rzdiobe U ovom ćemo poglvlju prou cvti slu cjne vrijble
2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos
. KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
FORMULE VEZANE UZ MATEMATIČKE KOLEGIJE PREDDIPLOMSKOG STUDIJA
FORMULE VEZANE UZ MATEMATIČKE KOLEGIJE PREDDIPLOMSKOG STUDIJA Vrijednoti inu i koinu π π π π ϕ 6 4 3 in ϕ 3 co ϕ 3 Trigonometrijke funkcije polovičnih rgument in x = co x co x = + co x Trigonometrijke
2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Tomislav Došlić. Numerička matematika. Gradevinski fakultet Sveučilište u Zagrebu
Tomislv Došlić Numeričk mtemtik Grdevinski fkultet Sveučilište u Zgrebu ii Sdržj 1 Uvod 1 1.1 Apsolutne i reltivne pogrješke.......................... 1 1.2 Osnovni izvori pogrješk............................
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Matematička analiza 4
Mtemtičk nliz 4 Drgn S. Dor dević 14.5.214. 2 Sdržj Predgovor 5 1 Integrcij 7 1.1 Žordnov mer u R n....................... 7 1.1.1 Mer prvougonik u R 2................ 7 1.1.2 Mer n-intervl u R n..................
Zadatak 1
PISMENI ISPIT IZ KLASIČNE MEHANIKE I 3.. 9. Zdtk Čestic mse m izbčen je s površine Zemlje pod kutem α brzinom v. Ako je otpor zrk proporcionln trenutnoj brzini konstnt proporcionlnosti je ), izrčunjte
( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,
Integracija funkcija više promenljivih
Integrcij funkcij više promenljivih Drgn S. Djordjević Univerzitet u Nišu, Prirodno-mtemtički fkultet Niš, Srbij Februry 18, 216 ii Predgovor Predvnj su nmenjen studentim, koji polžu ispit iz predmet Mtemtičk
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.
Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između
3. Rubni problem za obične diferencijalne jednadžbe Egizstencija i jedinstvenost rješenja... 64
Sdržj 1. Numeričk integrcij.......................... 1 1.1. Općenito o integrcijskim formulm................ 1 1.. Newton Cotesove formule...................... 3 1..1. Trpezn formul.......................
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
LAPLASOVA TRANSFORMACIJA
Mster rd LAPLASOVA TRANSFORMACIJA Snježn Mksimović Mentor: Akdemik dr Stevn Pilipović Novi Sd, pril 211. iii Sdržj Predgovor vi 1. Osnovn Lplce-ov trnsformcij 1 1.1. Egzistencij Lplce-ove trnsformcije...............
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Uvod u teoriju brojeva
Uvod u teoriju brojeva 2. Kongruencije Borka Jadrijević Borka Jadrijević () UTB 2 1 / 25 2. Kongruencije Kongruencija - izjava o djeljivosti; Teoriju kongruencija uveo je C. F. Gauss 1801. De nicija (2.1)
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log