Sondajul statistic -III

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Sondajul statistic -III"

Transcript

1 STATISTICA Sodajul statstc -III tema 9 sapt.3-7 aprle 1 al.sac-mau Dstrbuta ormala Dstrbuta ormala Cea ma mportata dstrbute cotua: umeroase varable aleatoare pot f adecvat modelate daca sut ormal dstrbute. Multe dstrbut pot f apromate prtr-o dstrbute ormala. Dstrbuta ormala este patra de temele a ferete statstce. 3 1

2 Legea ormală (Gauss-Laplace) Ua d potezele fudametale sodajul statstc este ormaltatea (aparteeţa la legea Gauss-Laplace) a caracterzăr vestgate este ecesar să dscutăm despre această lege statstcă. Modelul Gauss-Laplace uzual, d puct de vedere matematc repreztă o repartţe statstcă deftă de fucţa de repartte ude 1 ( ) ( µ ) ; µ ; = ep F π µ R, >, R d Respectv fucta de frecveta f ( ) 1 ep π ( µ ) = sau fucţa de destatearepartte varable aleatoare mărmea fzcă măsurată ş care reprezetată grafc are becuoscuta formă de clopot (aşa-umtul clopot al lu Gauss ) Se şte că o fucţe de destatetrebue să îdeplească următoarele cerţe: () f( ), D ş () f( ) d 1 = ude D este domeul de defţe al varable, î D cazul ostru dreapta reală, R. Scurt storc legea ormala (1) Orgea acestu model o găsm î lucrarea Dalog despre cele două ssteme fudametale ale lum a lu Galleo GALILEI ( ), î care el îş epue părerle refertoare la măsurarea dstaţelor dtre dferte corpur cereşt: Galle cosdera că: erorle îtâmplătoare sut evtable î observaţle obţute cu dverse mjloace de măsurare erorle mc au şase ma mar de aparţe decât cele mar sau foarte mar măsurărle td să se dstrbue apromatv egal la stâga ş la dreapta ue valor de referţă majortatea valorlor observate td să se grupeze ( să se acuască ) î jurul aceste valor de referţă

3 ( ) Repartţa ormală apare de fapt petru prma oară î 1733 îtr-o lucrare a lu Abraham de MOIVRE ( ), matematca cuoscut ma curâd pr formula Movre refertoare la umerele complee Aba odată cu lucrărle lu Carl Fredrch GAUSS ( ) ş cele ale lu Perre Smo, Marqus de LAPLACE ( ) se pu î lumă propretăţle ş mportaţa deosebtă a aceste leg statstce ca descrptor ţal al comportăr erorlor de observaţe (Gauss, 189 î Theora Motus Corpum Caelestum Laplace (181/1811 î Theore aaltque des Probabltes d 181) arată rolul teoretc (ş practc) ecepţoal jucat de legea ormală pr aşa-umta TEOREMĂ LIMITĂ CETRALĂ. Cateva propretat ale leg ormale grafcul fucţe are u sgur mamum petru =µ s două fleu de abscse =µ± µ parametr descrptor ş au semfcaţa mede ş dspersa teoretce: M ( ) = µ ; var( ) = tervalul [ µ 3 µ, + 3] coţe apromatv 99,73% d valorle mărm. Varabla U= ( µ/ )se umeste varabla ormală stadard(sau stadardzată) ş are fucţa de destate respectv de repartţe F f 1 ( u) = ep( / ) u π t / ( u) = e dt varabla U are meda Oş dspersa 1. 1 π u Aceste fucţ au fost tabelate ţal de către Laplace. 3

4 Grafce ale leg ormale Eror verfcarea potezelor statstce (Hypothess testg errors) Eror î procesul de verfcare a potezelor statstce: H / H1 Eroare de geul îtâ: poteza H se respge, câd ea este adevărată. Eroare de geul al dolea: poteza H1 se admte, câd ea este falsă. Probabltăţle de a f comse cele două tpur de eror sut: probabltatea eror de geul îtâ rsc de geul I ş respectv probabltatea eror de geul al dolea-rsc de geul II. 4

5 vel de îcredere (Cofdece level) Valoarea P = ( 1 α) a probabltăţ asocate uu terval de îcredere. Prob = ( 1 α) poate f eprmat î procete [ ( 1 α) 1]. vel (prag) de îcredere (α ) (Cofdece level or sgfcace level) Terme folost petru a dca probabltatea eror de geul îtâ (α ). Som: vel de semfcaţe. vel de semfcaţe (Sgface level) Valoarea dată a lmte superoare a probabltăţ de eroare de tpul I. velul de semfcaţe se otează cu α. Test statstc (Statstcal test) Procedura statstcă pr care se decde dacă poteza ulă poate f respsă î favoarea poteze alteratve sau u Î geeral, u test prea apror o aumtă poteză, care trebue verfcată (de eemplu, poteza de depedeţă a observaţlor, poteza de ormaltate etc.). Testele pot f costrute cu ajutorul mede artmetce ş cu ajutorul altor varable aleatoare de sodaj, acestea umdu-se de regulă statstc deczoale ale testulu statstc Testarea ormaltăţ Verfcarea faptulu că datele epermetale obţute sut repartzate după legea Gauss-Laplace se poate face î ma multe modur, ş aume: algebrc (utlzâd dcator de eşatoaj cu propretăţle lor specfce î cazul leg ormale); grafc (folosd aşa-umtele hârt sau reţele de tp probablst) aaltc (utlzâd procedee statstce specale aşa umtele teste de cocordaţă ). 5

6 Testul h-pătrat - testul χ (Ch-squared test) Testul statstc î care, petru valdarea poteze ule, statstca utlzată presupue esteţa repartţe χ. Testul este aplcat, de eemplu, la următoarele probleme: a. testul de egaltate ître varata ue populaţ ormale ş o valoare specfcată, statstca testulu avâd la bază varata eşatoulu; b. comparaţa ître efectvele teoretce ş cele observate; c. î valdarea ue leg de repartţe, ca de pldă cea ormală. O formă clască de costrure a regu crtce a testulu χ este următoarea: Fe o varablă care poate lua valorle 1,,, m, cu probabltăţle p1, p,, pm. Fe 1,,,m frecveţele de aparţe a valorlor 1,,, m, îtr-u eşato de volum. Reguea crtcă a testulu χ petru verfcarea poteze p1 = p = = pm se costrueşte pe baza dcatorulu statstc de forma: ( p ) p = 1 care petru are repartţa χ cu 1 grade de lbertate. Dstrbut de esatoare 1.Itroducere Ipractca, parametr ue populat u se calculeaza deoarece populatle sut foarte mar Decat sa se vestgheze treaga populate, se a u esato, se calculeaza o statstcalegata de u parameterude teres, s se realzeaza o fereta. Dstrbuta de esatoare astatstceste u strumet care e arata cat de apropata este statstca de parametru 17 Dstrbuta de esatoare a mede U eemplu: U zar este arucat de foarte multe or. Fe umarul orcare arucar. Probabltatea de dstrbute a lu este: P() 1/6 1/6 1/6 1/6 1/6 1/6 M() = 1(1/6) + (1/6) + 3(1/6)+ = 3.5 V() = (1-3.5) + (-3.5) +. =

7 Presupuem ca dorm sa estmam µd meda uu esato de dmesue =. Care este dstrbuta pe care o urmeaza? Esato Mede Esato Mea Esato Mede 1 1, ,1 5 5,1 3 1, 1,5 14 3,,5 6 5, 3,5 3 1,3 15 3, , ,4,5 16 3,4 3,5 8 5,4 4,5 5 1, , , ,6 3,5 18 3,6 4,5 3 5,6 5,5 7,1 1,5 19 4,1,5 31 6,1 3,5 8, 4, 3 3 6, 4 9,3,5 1 4,3 3,5 33 6,3 4,5 1,4 3 4, ,4 5 11,5 3,5 3 4,5 4,5 35 6,5 5,5 1, , , /36 5/36 4/36 3/36 /36 Esato Mede Esato Mede Esato Mede 1 1, ,1 5 5,1 3 1, 1,5 14 3,,5 6 5, 3,5 3 1,3 15 3, , ,4,5 16 3,4 3,5 8 5,4 4,5 5 1, , , ,6 3,5 18 3,6 4,5 3 5,6 5,5 7 otam,1 1,5 : µ 19 = µ 4,1 s,5 31 = 6,1 3,5 8, 4, 3 3 6, 4 9,3,5 1 4,3 3,5 33 6,3 4,5 1,4 3 4, ,4 5 11,5 3,5 3 4,5 4,5 35 6,5 5,5 1, , ,6 6 M( ) =1.(1/36)+ (/36)+.=3.5 V() = ( ) (1/36)+ (-3.5) (/36)... = / Varata mede esatoulu este ma mca decat varata populate. Mede = Mede = Mede =..5 Populate Compara mprasterea d.5.5 populate cu Sa luam esatoae mprasterea.5 mede esatoulu. d cele doua.5.5 observat De asemeea, Valoarea asteptata a populate = ( )/3 = Valoarea asteptata a mede esatoulu = ( + +.5)/3 = 1 7

8 Dstrbuta de esatoare a mede esatoulu 1. µ = µ. = 3. Daca este Daca u este ormala, este ormala ormala. este apromat v ormal dstrbut a petru o dmesue a esatoul u sufcet de mare. Termologe Meda populańe vestgate = = 1 Meda de eşato (de selecţe) estmator petru meda populaţe vestgate Dspersa populańe vestgate Dspersa de eşato (de selecţe) estmator petru dspersa populaţe vestgate ( ) = 1 S = 1 < < + = = 1 = = 1 ( ) Iterval de îcredere dublă egaltate probablstă ce apare î urma fereţe statstce Sodajul aleator smplu cu revere 1. Itervalul de îcredere petru meda artmetcă < < +. Eroarea lmtă sau mam admsblă = µ Z 3. Eroarea mede de reprezetatvtate µ = dacă >3 atuc: S vom avea: µ = S 4. Stablrea volumulu eşatoulu = S Z Z S rezultă: = 8

9 Sodajul aleator smplu fără revere 1. Itervalul de îcredere petru meda artmetcă µ = < < +. Eroarea lmtă sau mam admsblă 3. Eroarea mede de reprezetatvtate 1 (factor de corecńe) S = 1 Z dacă >3 atuc: vom avea: 4. Stablrea volumulu eşatoulu rezultă: = µ Z S S µ = 1 Z S = Z S + Sodajul statstc ş regula de aduare a dsperslor Regula aduăr dsperslor spuea că: = δ + (5) Sodaj Aleator Smplu Sodaj Cluster Sodaj Stratfca t 11.Aprle.11 6 Sodajul aleator stratfcat-cu revere 1. Itervalul de îcredere petru meda artmetcă < < +. Eroarea lmtă sau mam admsblă = µ Z 3. Eroarea mede de reprezetatvtate(eroarea mede ) (1' ') ('') µ = dacă >3 atuc: S vom avea: µ = S (3' ') 7 4. Stablrea volumulu eşatoulu = S Z de ude rezultă: 11.Aprle.11 Z S = (4'') 9

10 Sodajul aleator stratfcat-fără revere 8 1. Itervalul de îcredere petru meda artmetcă µ = < < +. Eroarea lmtă sau mam admsblă 3. Eroarea mede de reprezetatvtate 1 (factor de corecńe) S = 1 Z = µ Z dacă >3 atuc: S dec : 4. Stablrea volumulu eşatoulu 11.Aprle.11 de ude rezultă: S µ = 1 Z S = Z S + (1' '') (''') (3' '' ) (4''') Repartzarea volumulu eşatoulu pe stratur (grupe) Să presupuem că avem u eşato de volum utăţ statstce dtr-o populaţe de utăţ statstce grupate î r grupe (stratur) după o aumtă varablă: repartzareaegală Î fecare dtre cele r grupe se repartza câte /r utăţ statstce repartzarea proporńoală Î fecare dtre cele r grupe se repartza utăţle statstce proporţoal cu poderle g celor r grupe. Formula petru g = poder: repartzarea optmă Formula de repartzare: = g Î fecare dtre cele r grupe se repartza utăţle statstce proporţoal cu poderle y celor r grupe ş ţâd cot ş de mărmea dsperse d terorul fecăre grupe. * S * Formula petru g = Formula de S = g 11.Aprle.11 9 poder: repartzare: Tema -aplcaţe (1) Petru a cuoaşte velul medu al producţe zlce obţute de agajaţ ue frme, s-a etras aleator, proporţoal ş erepetat u eşato de =1 de agajaţ ce repreztă 1%d umărul total de agajaţ a frme Î prealabl agajaţ au fost împărţt, î fucţe de vechme, î tre grupe: I) agajaţ cu vechme ma mcă de 5 a; II) agajaţ cu vechme ître 5 ş 1 a ş III) agajaţ cu vechme ma mare de 1 a. S-au cules formaţle, s-au efectuat prelucrărle ş s-au obţut următoarele rezultate: 11.Aprle

11 Aplcaţe () I) î prma grupă de vechme, ce 5 de agajaţ au produs î mede 15 bucăţ pe z cu o dsperse de 1 II) î a doua grupă de vechme, ce 5 de agajaţ au produs î mede bucăţ pe z, cu u coefcet de varaţe de % III) î a trea grupă, dtre ce 5 de agajaţ ce ma mulţ au produs 7 de bucăţ, meda artmetcă a fost de 5 bucăţ ar coefcetul de asmetre (Pearso) a îregstrat o valoare de -,33 11.Aprle Aplcaţe (3) Cu o probabltate de 95,45% (Z=) se cere: a) Să se stablească lmtele ître care se va îcadra producţa mede la velul îtreg frme b) Să se stablească u terval de îcredere petru producţa totală a fabrc îtr-o z c) Să se determe volumul oulu eşato dacă dorm să reducem eroarea lmtă de 1,5 or ş să se repartzeze optm pe grupe (stratur) 11.Aprle.11 3 Aplcaţe (4) Sstematzarea formaţe dspoble =1 agajaţ =1%* =1 agajaţ P=95,45% Z= Grupa de vechme I (vechme sub 5 a) I = 15 buc I =5 agajaţ S I=1 11.Aprle

12 Aplcaţe (5) Grupa de vechme II (vechme ître 5 ş 1 a) II =5 agajaţ CVII = SII II 1= % II = buc CV=% II S II = = 4 buc 1 S II=16 Grupa de vechme III (vechme peste 1 a) III =5 agajaţ Mo=7 bucăţ III = 5 buc C as =-, Cas III = =,333 III MoIII SIII 11.Aprle ,333= SIII S III =6 bucăţ S III=36 Aplcaţe (6) Tabel 1. Iformaţle calculate ş sstematzate coloaa 1 repreztă împărţrea ţală (proporţoală a eşatoulu pe stratur/ grupe) coloaa repreztă valoarea mede petru fecare strat/ grupă coloaa 3 repreztă dspersa d terorul fecăru strat/ grupă 11.Aprle

Sondajul statistic- II

Sondajul statistic- II 08.04.011 odajul statstc- II EŞATIOAREA s EXTIDEREA REZULTATELOR www.amau.ase.ro al.sac-mau@cse.ase.ro Data : 13 aprle 011 Bblografe : ursa I,cap.VI,pag.6-70 11.Aprle.011 1 odajul aleator smplu- cu revere

Διαβάστε περισσότερα

Cercetarea prin sondajul II Note de curs prelegere master data 24 oct.2013

Cercetarea prin sondajul II Note de curs prelegere master data 24 oct.2013 Cercetarea pr sodajul II ote de curs prelegere master data 4 oct.13 al.sac-mau www.amau.ase.ro http://www.ase.ro/ase/studet/de.asp?tem=fsere&id=88.oct.13 1 Dstrbuta ormala.oct.13 Dstrbuta ormala Cea ma

Διαβάστε περισσότερα

Noţiuni de verificare a ipotezelor statistice

Noţiuni de verificare a ipotezelor statistice Noţu de verfcare a potezelor statstce Verfcarea potezelor statstce este legată de compararea dfertelor poteze asupra ue populaţ statstce (ş u asupra uu eşato) cu datele obţute pr îcercăr expermetale Dacă

Διαβάστε περισσότερα

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate

Cursul 7. Spaţii euclidiene. Produs scalar. Procedeul de ortogonalizare Gram-Schmidt. Baze ortonormate Lector uv dr Crsta Nartea Cursul 7 Spaţ eucldee Produs scalar Procedeul de ortogoalzare Gram-Schmdt Baze ortoormate Produs scalar Spaţ eucldee Defţ Exemple Defţa Fe E u spaţu vectoral real Se umeşte produs

Διαβάστε περισσότερα

Statistica matematica

Statistica matematica Statstca matematca probleme de dfcultate redusa ) Dtr-o popula e ormal repartzat cu dspersa ecuoscut se face o selec e de volum. Itervalul de îcredere petru meda m a popula e cu dspersa ecuoscut s s este

Διαβάστε περισσότερα

LUCRARE DE LABORATOR NR. 1 MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA

LUCRARE DE LABORATOR NR. 1 MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA LUCRARE DE LABORATOR NR. MASURARI IN INSTALATII TERMICE. PRELUCRAREA DATELOR EXPERIMENTALE CARACTERISTICILE METROLOGICE ALE APARATELOR DE MASURA. OBIECTIVELE LUCRARII Isusrea uor otu refertoare la: - eror

Διαβάστε περισσότερα

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z :

T R A I A N. Numere complexe în formă algebrică z a. Fie z, z a bi, Se numeşte partea reală a numărului complex z : Numere complexe î formă algebrcă a b Fe, a b, ab,,, Se umeşte partea reală a umărulu complex : Re a Se umeşte coefcetul părţ magare a umărulu complex : Se umeşte modulul umărulu complex : Im b, ş evdet

Διαβάστε περισσότερα

CURS 10. Regresia liniară - aproximarea unei functii tabelate cu o functie analitica de gradul 1, prin metoda celor mai mici patrate

CURS 10. Regresia liniară - aproximarea unei functii tabelate cu o functie analitica de gradul 1, prin metoda celor mai mici patrate Y CURS 0 Regresa lară - aproxmarea ue fuct tabelate cu o fucte aaltca de gradul, pr metoda celor ma mc patrate 30 300 90 80 70 60 50 40 30 0 y = -78.545x + 33.4 R² = 0.983 0 0. 0.4 0.6 0.8. X Fe o fucţe:

Διαβάστε περισσότερα

CAPITOLUL 4 CERCETAREA STATISTICĂ PRIN SONDAJ

CAPITOLUL 4 CERCETAREA STATISTICĂ PRIN SONDAJ CAPITOLUL 4 CERCETAREA STATISTICĂ PRIN SONDAJ Coderaţ prelmare Î captolele precedete am dcutat depre pobltăţle de culegere a datelor pe baza metodelor de obervare totală au parţală, ca ş depre modaltăţle

Διαβάστε περισσότερα

Statistica descriptivă. Şef de Lucrări Dr. Mădălina Văleanu

Statistica descriptivă. Şef de Lucrări Dr. Mădălina Văleanu Statstca descrptvă Şef de Lucrăr Dr. Mădăla Văleau mvaleau@umfcluj.ro MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medaa, Modul, Meda geometrca, Meda armoca, Valoarea cetrala MĂSURI DE DE DISPERSIE Mm, Maxm,

Διαβάστε περισσότερα

ELEMENTE DE STATISTICA DESCRIPTIVA

ELEMENTE DE STATISTICA DESCRIPTIVA ELEMENTE DE STATISTICA DESCRIPTIVA Cursul CERMI Facultatatea Costruct de Mas www.cerm.utcluj.ro Cof.dr.g. Marus Bulgaru STATISTICA DESCRIPTIVA STATISTICA DESCRIPTIVA Populate, Caracterstca dscreta, cotua

Διαβάστε περισσότερα

Elemente de teoria probabilitatilor

Elemente de teoria probabilitatilor Elemete de teora probabltatlor CONCEPTE DE BAZA VARIABILE ALEATOARE DISCRETE DISTRIBUTII DISCRETE VARIABILE ALEATOARE CONTINUE DISTRIBUTII CONTINUE ALTE VARIABILE ALEATOARE Spatul esatoaelor, pucte esato,

Διαβάστε περισσότερα

Curs 3. Biostatistica: trecere in revista a metodelor statistice clasice

Curs 3. Biostatistica: trecere in revista a metodelor statistice clasice Curs 3. Bostatstca: trecere revsta a metodelor statstce clasce Bblo: W.Ewes, G.R. Grat Statstcal methods boformatcs, Sprger, 005 Cap. -3, cap.5 Structura Teste de asocere (depedeță) Teste de cocordață

Διαβάστε περισσότερα

Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu

Statistica descriptivă (continuare) Şef de Lucrări Dr. Mădălina Văleanu Statstca descrptvă (contnuare) Şef de Lucrăr Dr. Mădălna Văleanu mvaleanu@umfcluj.ro VARIABILE CANTITATIVE MĂSURI DE TENDINŢA CENTRALA Meda artmetca, Medana, Modul, Meda geometrca, Meda armonca, Valoarea

Διαβάστε περισσότερα

Productia (buc) Nr. Salariaţi Total 30

Productia (buc) Nr. Salariaţi Total 30 Î vederea aalze productvtăţ obţute î cadrul ue colectvtăţ de salaraţ formată d 50 de persoae, s-a extras u eşato format d de salaraţ. Datele refertoare la producţa zle precedete sut prezetate î tabelul

Διαβάστε περισσότερα

ELEMENTE DE TEORIA PROBABILITĂŢILOR

ELEMENTE DE TEORIA PROBABILITĂŢILOR CAPITOLUL ELEMENTE DE TEORIA PROAILITĂŢILOR Câmp de evemete U feome îtâmplător se poate observa, de regulă, de ma multe or Faptul că este îtâmplător se mafestă pr aceea că u ştm date care este rezultatul

Διαβάστε περισσότερα

Sisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori)

Sisteme cu partajare - continut. M / M /1 PS ( numar de utilizatori, 1 server, numar de pozitii pentru utilizatori) Ssteme cu partajare - cotut Recaptulare: modelul smplu de trafc M / M / PS ( umar de utlzator, server, umar de pozt petru utlzator) M / M / PS ( umar de utlzator, servere, umar de pozt petru utlzator)

Διαβάστε περισσότερα

Analiza univariata a datelor

Analiza univariata a datelor Aalza uvarata a datelor Chestu orgazatorce Nota: Exame fal (mart, 13 ma): 70% Proect semar: 30% Suport curs: Cătou I. (coord.), Băla C., Dăeţu T., Orza Gh., Popescu I., Vegheş C., Vrâceau D. "Cercetăr

Διαβάστε περισσότερα

ANALIZA STATISTICĂ A VARIABILITĂŢII (ÎMPRĂŞTIERII) VALORILOR INDIVIDUALE

ANALIZA STATISTICĂ A VARIABILITĂŢII (ÎMPRĂŞTIERII) VALORILOR INDIVIDUALE 4. ANALIZA STATISTICĂ A VARIABILITĂŢII (ÎMPRĂŞTIERII) VALORILOR INDIVIDUALE Feomeele de masă studate de statstcă se mafestă pr utăţle dvduale ale colectvtăţ cercetate care preztă o varabltate (împrăştere)

Διαβάστε περισσότερα

Pentru această problemă se consideră funcţia Lagrange asociată:

Pentru această problemă se consideră funcţia Lagrange asociată: etoda ultplcatorlor lu arae ceastă etodă de optzare elară elă restrcţle de tp ealtate cluzâdu-le îtr-o ouă fucţe oectv ş ărd sulta uărul de varale al prolee de optzare. e urătoarea proleă: < (7. Petru

Διαβάστε περισσότερα

Curs 3. Spaţii vectoriale

Curs 3. Spaţii vectoriale Lector uv dr Crsta Nartea Curs Spaţ vectorale Defţa Dacă este u îtreg, ş x, x,, x sut umere reale, x, x,, x este u vector -dmesoal Mulţmea acestor vector se otează cu U spaţu vectoral mplcă patru elemete:

Διαβάστε περισσότερα

Evaluare : 1. Continuitatea funcţiilor definite pe diferite spaţii metrice. 2. Răspunsuri la problemele finale.

Evaluare : 1. Continuitatea funcţiilor definite pe diferite spaţii metrice. 2. Răspunsuri la problemele finale. Modulul 4 APLICAŢII CONTINUE Subecte :. Cotutatea fucţlor defte pe spaţ metrce.. Uform cotutatate. 3. Lmte. Dscotutăţ lmte parţale lmte terate petru fucţ de ma multe varable reale. Evaluare :. Cotutatea

Διαβάστε περισσότερα

TEMA 3 - METODE NUMERICE PENTRU DESCRIEREA DATELOR STATISTICE

TEMA 3 - METODE NUMERICE PENTRU DESCRIEREA DATELOR STATISTICE TEMA 3 - METODE NUMERICE PENTRU DESCRIEREA DATELOR STATISTICE Obectve Cuoaşterea metodelor umerce de descrere a datelor statstce Aalza rcalelor metode umerce etru descrerea datelor cattatve egruate Aalza

Διαβάστε περισσότερα

2. Metoda celor mai mici pătrate

2. Metoda celor mai mici pătrate Metode Nuerce Curs. Metoda celor a c pătrate Fe f : [a, b] R o fucţe. Fe x, x,, x + pucte dstcte d tervalul [a, b] petru care se cuosc valorle fucţe y = f(x ) petru orce =,,. Aproxarea fucţe f prtr-u polo

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Procese stocastice (2) Fie un proces stocastic de parametru continuu si avand spatiul starilor discret. =

Procese stocastice (2) Fie un proces stocastic de parametru continuu si avand spatiul starilor discret. = Xt () Procese stocastce (2) Fe u proces stocastc de parametru cotuu s avad spatul starlor dscret. Cu spatul starlor S = {,,, N} sau S = {,, } Defta : Procesul X() t este u proces Markov daca: PXt { ( )

Διαβάστε περισσότερα

Universitatea din București, Facultatea de Chimie, Specializarea: Chimie Medicală/Farmaceutică

Universitatea din București, Facultatea de Chimie, Specializarea: Chimie Medicală/Farmaceutică Uverstatea d Bucureșt, Facultatea de Chme, Specalzarea: Chme Medcală/Farmaceutcă Statstcă & Iformatcă TEME ș aplcaț Laborator (M. Vlada, 07 Laborator Tema. Calcule statstce, fucț matematce ș statstce facltăț

Διαβάστε περισσότερα

Cu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,,

Cu ajutorul noţiunii de corp se defineşte noţiunea de spaţiu vectorial (spaţiu liniar): Fie V o mulţime nevidă ( Ø) şi K,, Cursul 1 Î cele ce urmează vom prezeta o ouă structură algebrcă, structura de spaţu vectoral (spaţu lar) utlzâd structurle algebrce cuoscute: mood, grup, el, corp. Petru îceput să reamtm oţuea de corp:

Διαβάστε περισσότερα

Analiza bivariata a datelor

Analiza bivariata a datelor Aaliza bivariata a datelor Aaliza bivariata a datelor! Presupue masurarea gradului de asoiere a doua variabile sub aspetul: Diretiei (aturii) Itesitatii Semifiatiei statistie Variabilele omiale Tabele

Διαβάστε περισσότερα

Teste de autoevaluare

Teste de autoevaluare CAPITOLUL 4 Tete de autoevaluare 1. Maagerul ue compa de produe cometce doreşte ă ale vârta mede a emelor care achzţoează u produ recet promovat pe paţă. Petru aceata, e orgazează u odaj pe 100 de cumpărătoare

Διαβάστε περισσότερα

Sisteme cu asteptare - continut. Modelul simplu de trafic

Sisteme cu asteptare - continut. Modelul simplu de trafic Ssteme cu asteptare - cotut Recaptulare: modelul smplu de trafc Dscpla cadrul cozlor de asteptate M / M / Modelul ( server, pozt de asteptare ) Aplcat modelarea trafculu de date la vel de pachete M / M

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

VII. STATISTICĂ 7.1. INDICATORII TENDINŢEI CENTRALE Mărimile medii Media aritmetică

VII. STATISTICĂ 7.1. INDICATORII TENDINŢEI CENTRALE Mărimile medii Media aritmetică VII STATISTICĂ 7 INDICATORII TENDINŢEI CENTRALE 7 Mărmle med Meda velurlor dvduale ale ue varable (caracterstc) statstce este epresa stetzăr îtr-u sgur vel reprezetatv a tot ceea ce este eseţal, tpc ş

Διαβάστε περισσότερα

1. Modelul de regresie

1. Modelul de regresie . Modelul de regrese.. Câteva cosderete de ord geeral La fel ca ş î multe alte dome, î domeul ecoomc ş î partcular î cel al afacerlor se îtâlesc deseor stuaţ care presupu luarea uor decz, care ecestă progoze

Διαβάστε περισσότερα

PRELEVAREA SI PRELUCRAREA DATELOR DE MASURARE

PRELEVAREA SI PRELUCRAREA DATELOR DE MASURARE Lucrarea r. PRELEVAREA SI PRELUCRAREA DATELOR DE MASURARE. GENERALITATI I electrotehcă ş electrocă terv umeroase mărm fzce ca: tesue, curet, rezsteţă, eerge, etc., care se caracterzează pr mărme ş pr aumte

Διαβάστε περισσότερα

3. INDICATORII STATISTICI

3. INDICATORII STATISTICI 3. INDICATORII STATISTICI 3.. Necestatea folosr dcatorlor statstc. Idcator statstc prmar. Idcator statstc dervaţ Am văzut că obectul de studu al statstc îl costtue feomeele ş procesele de masă. Acestea

Διαβάστε περισσότερα

CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât

CAPITOLUL 2. Definiţia Se numeşte diviziune a intervalului [a, b] orice submulţime x [a, b] astfel încât Cp 2 INTEGRALA RIEMANN 9 CAPITOLUL 2 INTEGRALA RIEMANN 2 SUME DARBOUX CRITERIUL DE INTEGRABILITATE DARBOUX Defţ 2 Se umeşte dvzue tervlulu [, ] orce sumulţme,, K,, K, [, ] stfel îcât = { } = < < K< <

Διαβάστε περισσότερα

9. CIRCUITE ELECTRICE IN REGIM NESINUSOIDAL

9. CIRCUITE ELECTRICE IN REGIM NESINUSOIDAL 9. CRCE ELECRCE N REGM NESNSODAL 9.. DESCOMPNEREA ARMONCA Ateror am studat regmul perodc susodal al retelelor electrce, adca regmul permaet stablt retele lare sub actuea uor t.e.m. susodale s de aceeas

Διαβάστε περισσότερα

Probabilități și Statistică 1.1. Metoda Monte-Carlo

Probabilități și Statistică 1.1. Metoda Monte-Carlo Matematcă ș Iformatcă.. Metoda Mote-Carlo.. Metoda Mote Carlo. Aplcaţ. Precza metode. Termeul,,Metoda Mote Carlo este som cu termeul,,metoda epermetelor statstce. Aparţa aceste metode se raportează de

Διαβάστε περισσότερα

METODE DE ESTIMARE A PARAMETRILOR UNEI REPARTIŢII. METODA VEROSIMILITĂŢII MAXIME. METODA MOMENTELOR.

METODE DE ESTIMARE A PARAMETRILOR UNEI REPARTIŢII. METODA VEROSIMILITĂŢII MAXIME. METODA MOMENTELOR. Curs 6 OI ETOE E ETIARE A ARAETRILOR UNEI REARTIŢII. ETOA VEROIILITĂŢII AIE. ETOA OENTELOR.. Noţu troductve Î legătură cu evaluarea ş optzarea proceselor oraţoale apar ueroase problee de estare cu sut:

Διαβάστε περισσότερα

Prof. univ. dr. Constantin ANGHELACHE Prof. univ. dr. Gabriela-Victoria ANGHELACHE Lector univ. dr. Florin Paul Costel LILEA

Prof. univ. dr. Constantin ANGHELACHE Prof. univ. dr. Gabriela-Victoria ANGHELACHE Lector univ. dr. Florin Paul Costel LILEA Metode ş procedee de ajustare a datelor pe baza serlor croologce utlzate î aalza tedţe dezvoltăr dfertelor dome de actvtate socal-ecoomcă Prof. uv. dr. Costat ANGHELACHE Uverstatea Artfex/ASE - Bucureșt

Διαβάστε περισσότερα

def def punctul ( x, y )0R 2 de coordonate x = b a

def def punctul ( x, y )0R 2 de coordonate x = b a Cetrul de reutte rl-mhl Zhr CENTE E GEUTTE Î prtă este evoe să se luleze r plălor ple de ee vom det plăle ple u mulńm Ştm ă ms este o măsură ttăń de mtere dtr-u orp e ms repreztă o uńe m re soză eăre plă

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

METODE DE ANALIZĂ STATISTICĂ A LEGĂTURILOR DINTRE FENOMENE

METODE DE ANALIZĂ STATISTICĂ A LEGĂTURILOR DINTRE FENOMENE METODE DE ANALIZĂ STATISTICĂ A 0. LEGĂTURILOR DINTRE FENOMENE Asura feomeelor de masă studate de statstcă acţoează u umăr de factor rcal ş secudar, eseţal ş eeseţal, sstematc ş îtâmlător, obectv ş subectv,

Διαβάστε περισσότερα

STATISTICĂ MARINELLA - SABINA TURDEAN LIGIA PRODAN

STATISTICĂ MARINELLA - SABINA TURDEAN LIGIA PRODAN MARINELLA - SABINA TURDEAN LIGIA PRODAN STATISTICĂ STATISTICĂ CUPRINS Captolul NOŢIUNI INTRODUCTIVE... 5. Momete ale evoluţe statstc... 5. Obectul ş metoda statstc... 5.3 Noţu fudametale utlzate î statstcă...

Διαβάστε περισσότερα

ECUATII NELINIARE PE R n. (2) sistemul (1) poate fi scris si sub forma ecuatiei vectoriale: ) D

ECUATII NELINIARE PE R n. (2) sistemul (1) poate fi scris si sub forma ecuatiei vectoriale: ) D ANALIZA NUMERICA ECUATII NELINIARE PE R (http://bavara.utclu.ro/~ccosm) ECUATII NELINIARE PE R. INTRODUCERE e D R D R : s sstemul: ( x x x ) ( x x x ) D () Daca se cosdera aplcata : D R astel ca: ( x x

Διαβάστε περισσότερα

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite. CAPITOLUL SERII FOURIER Ser trgoometrce Ser Fourer Fe fucţ f :[, Remtm că puctu [, ] se umeşte puct de b dscotutte de prm speţă fucţe f dcă mtee tere f ( ş f ( + estă ş sut fte y Defţ Fucţ f :[, se umeşte

Διαβάστε περισσότερα

2. Sisteme de ecuaţii neliniare

2. Sisteme de ecuaţii neliniare Ssteme de ecuaţ elare 9 Ssteme de ecuaţ elare Î acest catol abordăm roblema reolvăr umerce a sstemelor de ecuaţ alebrce elare Cosderăm următorul sstem de ecuaţ î care cel uţ ua d ucţle u este lară Sub

Διαβάστε περισσότερα

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5

Statisticǎ - curs 2. 1 Parametrii şi statistici ai tendinţei centrale 2. 2 Parametrii şi statistici ai dispersiei 5 Statisticǎ - curs Cupris Parametrii şi statistici ai tediţei cetrale Parametrii şi statistici ai dispersiei 5 3 Parametrii şi statistici factoriali ai variaţei 8 4 Parametrii şi statistici ale poziţiei

Διαβάστε περισσότερα

Teoria aşteptării- laborator

Teoria aşteptării- laborator Teora aşteptăr- laborator Model de aşteptare cu u sgur server. Î tmpul zle la u ATM (automat bacar care permte retragerea de umerar s alte trazacţ bacare electroce) avem î mede 4 de cleţ pe oră, adcă.4

Διαβάστε περισσότερα

Laboraratorul 3. Aplicatii ale testelor Massey si

Laboraratorul 3. Aplicatii ale testelor Massey si Laboraratorul 3. Aplcat ale testelor Massey s Bblografe: 1. G. Cucu, V. Crau, A. Stefanescu. Statstca matematca s cercetar operatonale, ed. Ddactca s pedagogca, Bucurest, 1974.. I. Văduva. Modele de smulare,

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

8.3. Estimarea parametrilor

8.3. Estimarea parametrilor 8.3. Estmarea parametrlor Modelarea uu feome aleatoru real, precum trafcul ofert de o sursă formaţoală, ue reţele de comucaţ, îseamă detfcarea uu model probablstc, M, varablă aleatore sau proces aleatoru,

Διαβάστε περισσότερα

INTRODUCERE. Obiectivele cursului

INTRODUCERE. Obiectivele cursului STATISTICĂ ECONOMICĂ INTRODUCERE Deschderea ş mobltatea metodelor statstce de vestgare a feomeelor ş roceselor, î coferă acestea u caracter geeral de cercetare a realtăţ. Acest fat stă la baza dfertelor

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

PRELEGEREA IV STATISTICĂ MATEMATICĂ

PRELEGEREA IV STATISTICĂ MATEMATICĂ PRELEGEREA IV STATISTICĂ MATEMATICĂ I. Indcator de măsură a împrăşter Dstrbuţa une varable nu poate f descrsă complet numa prn cunoaşterea mede, c este necesar să avem nformaţ ş despre gradul der împrăştere

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

Numere complexe. a numerelor complexe z b b arg z.

Numere complexe. a numerelor complexe z b b arg z. Numere complexe Numere complexe Forma algebrcă a numărulu complex este a b unde a ş b sunt numere reale Numărul a se numeşte partea reală a numărulu complex ş se scre a Re ar numărul b se numeşte partea

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

DistributiiContinue de Probabilitate Distributia Normala

DistributiiContinue de Probabilitate Distributia Normala 8.03.011 STATISTICA -distributia normala -distributii de esantionare lectia 7 30 martie 011 al.isaic-maniu www.amaniu.ase.ro http://www.ase.ro/ase/studenti/index.asp?item=fisiere&id=88 DistributiiContinue

Διαβάστε περισσότερα

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală

Διαβάστε περισσότερα

Formula lui Taylor Extremele funcţiilor de mai multe variabile Serii de numere cu termeni oarecare Serii cu termeni pozitivi. Criterii de convergenţă

Formula lui Taylor Extremele funcţiilor de mai multe variabile Serii de numere cu termeni oarecare Serii cu termeni pozitivi. Criterii de convergenţă Uverstatea Spru Haret Facultatea de Stte Jurdce, Ecoome s Admstratve, Craova Programul de lceta: Cotabltate ş Iformatcă de Gestue Dscpla Matematc Ecoomce Ttular dscplă Cof uv dr Laura Ugureau SUBIECTE

Διαβάστε περισσότερα

METODE DE OPTIMIZARE. Lucrarea 8 1. SCOPUL LUCRĂRII 2. PREZENTAREA TEORETICĂ 2.1. METODA CELOR MAI MICI PĂTRATE 2.2. COEFICIENTUL DE CORELAŢIE

METODE DE OPTIMIZARE. Lucrarea 8 1. SCOPUL LUCRĂRII 2. PREZENTAREA TEORETICĂ 2.1. METODA CELOR MAI MICI PĂTRATE 2.2. COEFICIENTUL DE CORELAŢIE Lucrarea 8 METODE DE OPTIMIZARE. SCOPUL LUCRĂRII Prezetarea uor algort de optzare, pleetarea acestora îtr-u lbaj de vel îalt î partcular, C ş folosrea lor î rezolvarea uor problee de electrocă.. PREZENTAREA

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

TEMA 10 TESTE DE CONCORDANŢĂ

TEMA 10 TESTE DE CONCORDANŢĂ TEMA 0 TESTE DE CONCORDANŢĂ Obiective Cuoaşterea coceptelor reritoare la testele de cocordaţă Aaliza pricipalelor teste de cocordaţă Aplicaţii rezolvate Aplicaţii propuse Cupris 0. Cocepte reritoare la

Διαβάστε περισσότερα

Tema 2. PRELUCRAREA REZULTATELOR EXPERIMENTALE

Tema 2. PRELUCRAREA REZULTATELOR EXPERIMENTALE Tea. PRELUCRAREA REZULTATELOR EXPERIMENTALE. Eror de ăsură A ăsura o ăre X îseaă a copara acea ăre cu alta de aceeaş atură, [X], aleasă pr coveţe ca utate de ăsură. I ura aceste coparaţ se poate scre X=x[X]

Διαβάστε περισσότερα

CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ

CAPITOLUL IV CALCULUL DIFERENŢIAL PENTRU FUNCŢII REALE DE O VARIABILA REALĂ CAPITOLUL IV CALCULUL DIFEENŢIAL PENTU FUNCŢII EALE DE O VAIABILA EALĂ Fucţii derivabile Fucţii difereţiabile Derivata şi difereţiala sut duă ccepte fudametale ale matematicii, care reprezită siteză pe

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

CURS 6 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ (continuare)

CURS 6 TERMODINAMICĂ ŞI FIZICĂ STATISTICĂ (continuare) CURS 6 ERODIAICĂ ŞI FIZICĂ SAISICĂ (cotuare) 6.1 Prcpul II al termodamc Să e reamtm că prmul prcpu al termodamc a arătat posbltatea trasformăr lucrulu mecac, L, î căldură, Q, ş vers, fără a specfca î ce

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

ŞIRURI DE VARIABILE ALEATOARE. PROBLEME ASIMPTOTICE

ŞIRURI DE VARIABILE ALEATOARE. PROBLEME ASIMPTOTICE 8. ŞIRURI DE VARIABILE ALEATOARE. PROBLEME ASIMPTOTICE 8.. Şiruri de variabile aleatoare Î teoria probabilităţilor şi î aplicaţiile ei o problemă importată o costituie studiul şirurilor de variabile aleatoare,

Διαβάστε περισσότερα

PRELUCRAREA DATELOR EXPERIMENTALE

PRELUCRAREA DATELOR EXPERIMENTALE PRELUCRAREA DATELOR EXPERIMETALE I. OŢIUI DE CALCULUL ERORILOR Orce măsurare epermentală este afectată de eror. După cauza care le produce, acestea se pot împărţ în tre categor: eror sstematce, eror întâmplătoare

Διαβάστε περισσότερα

Statistică şi aplicaţii în ştiinţele sociale TESTE NEPARAMETRICE Teste parametrice versus teste neparametrice

Statistică şi aplicaţii în ştiinţele sociale TESTE NEPARAMETRICE Teste parametrice versus teste neparametrice Captolul 17 TESTE NEPARAMETRICE 17.1 Teste parametrce versus teste neparametrce T estele statstce abordate anteror sunt cunoscute ca teste parametrce. Acestea mplcă poteze ş/sau presupuner refertoare la

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

CAPITOLUL I. PRELIMINARII Elemente de teoria mulţimilor

CAPITOLUL I. PRELIMINARII Elemente de teoria mulţimilor CAPITOLUL I. PRELIMINARII.. Elemete de teora mulţmlor. Mulţm Pr mulţme vom îţelege o colecţe (set, asamblu) de obecte (elemetele mulţm), be determate ş cosderate ca o ettate. Se subâţelege fatul că elemetele

Διαβάστε περισσότερα

Clasificarea. Selectarea atributelor

Clasificarea. Selectarea atributelor Clascarea Algortm de clascare sut utlzaț la împărțrea ue populaț î p clase de dvz. Fecare dvd este caracterzat prtr-u asamblu de m varable cattatve ş/sau caltatve ş o varablă caltatvă detcâd clasa d care

Διαβάστε περισσότερα

METODA REFRACTOMETRICĂ DE ANALIZĂ

METODA REFRACTOMETRICĂ DE ANALIZĂ METODA REFRACTOMETRICĂ DE ANALIZĂ Refractometra este o metodă de testare fzcă a propretățlor ue substațe pr măsurarea dcelu de refracțe. Idcele de refracțe este măsurat cu ajutorul refractometrelor. Idcele

Διαβάστε περισσότερα

Laborator 4 Interpolare numerica. Polinoame ortogonale

Laborator 4 Interpolare numerica. Polinoame ortogonale Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

Din această definiţie a probabilităţilor rezultă următoarele proprietăţi ale acestora:

Din această definiţie a probabilităţilor rezultă următoarele proprietăţi ale acestora: FIABILIAE Î proectarea ş costrucţa dfertelor ecpamete este ecesară asgurarea sguraţe î fucţoare a acestora; această codţe a codus la utlzarea î proectare a aumtor coefceţ de sguraţă. Noţule de fabltate

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

2. Algoritmi genetici şi strategii evolutive

2. Algoritmi genetici şi strategii evolutive 2. Algortm genetc ş strateg evolutve 2. Algortm genetc Structura unu algortm genetc standard:. Se nţalzează aleator populaţa de cromozom. 2. Se evaluează fecare cromozom dn populaţe. 3. Se creează o nouă

Διαβάστε περισσότερα

Introducere în Econometrie

Introducere în Econometrie SINTEZA CURS Econometre ş prevzune economcă (I) Structura cursulu Cursul de Econometre pe care îl vor parcurge studenţ anulu II Management va cuprnde următoarele captole mar: - Econometra defnţ ş obectve;

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

Formula lui Taylor. 25 februarie 2017

Formula lui Taylor. 25 februarie 2017 Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Lucrarea nr. 6 Asocierea datelor - Excel, SPSS

Lucrarea nr. 6 Asocierea datelor - Excel, SPSS Statstcă multvarată Lucrarea nr. 6 Asocerea datelor - Excel, SPSS A. Noţun teoretce Generaltăţ Spunem că două (sau ma multe) varable sunt asocate dacă, în dstrbuţa comună a varablelor, anumte grupur de

Διαβάστε περισσότερα

Sub formă matriceală sistemul de restricţii poate fi scris ca:

Sub formă matriceală sistemul de restricţii poate fi scris ca: Metoda gradetulu proectat (metoda Rose) Î cazul problemelor de optmzare covee ale căror restrcţ sut lare se poate folos metoda gradetulu proectat. Î prcpu, această metodă poate f folostă ş petru cazul

Διαβάστε περισσότερα

Referenţi ştiinţifici Conf.univ.dr.ing. Radu CENUŞĂ Prof.univ.dr.ing. Norocel Valeriu NICOLESCU

Referenţi ştiinţifici Conf.univ.dr.ing. Radu CENUŞĂ Prof.univ.dr.ing. Norocel Valeriu NICOLESCU Referenţ ştnţfc Conf.unv.dr.ng. Radu CEUŞĂ Prof.unv.dr.ng. orocel Valeru ICOLESCU Descrerea CIP a Bblotec aţonale a Române HORODIC, SERGIU ADREI Elemente de bostatstcă foresteră / Sergu Horodnc. - Suceava:

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα