r r r 1 r p = , a to je rešenje integrala s leve strane (2.50). Desnu stranu (2.50) ne možemo rešiti iz razloga što ne mođemo r r

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "r r r 1 r p = , a to je rešenje integrala s leve strane (2.50). Desnu stranu (2.50) ne možemo rešiti iz razloga što ne mođemo r r"

Transcript

1 38 DINMIK.3 Imuls sile Imuls sile e vektoska fizička veličia koa kaakteiše destvo katkotaih vemeski omelivih sila velikih iteziteta. Zbog avedeih osobia ismo u stau da sazamo vemesku zavisost sile i iz tog azloga meimo osledicu destva sile-omeu vektoa količie ketaa. Pomea vektoa količie ketaa od destvom sile, u vemeskom itevalu t [ t,t ], izosi : t d =. (.5) Oo što možemo izmeiti e omea vektoa količie ketaa Δ =, a to e ešee itegala s leve stae (.5). Desu stau (.5) e možemo ešiti iz azloga što e mođemo odediti vemesku zavisost sile = ( t). t Δ =. (.5) Itegal s dese stae (.5) aziva se imuls sile. ko e sila kostatog destva, = cost, u datom vemeskom itevalu oda iz (.5) dobiamo: Δ = ( t t) = Δt. (.5) Sedu silu, s, možemo defiisati kao silu kostatog destva koa u datom vemeskom itevalu ima isti imuls sile kao i vemeski omeliva sila. Iz (.5) imuls sede sile e: Δ = t. (.53) Iz defiicie sede sile, odoso iz (.5) i (.53) dobiamo izaz za sedu silu u obliku: t t s = =. (.54) t t t Δt t ko su avac i sme vemeski omelive sile kostati u datom vemeskom itevalu (vidi sl..) oda možemo defiisati sedu vedost iteziteta sile: s t t s Δ t = Δt t () t, (.55) što etavla ovšiu isod kive a sl.. o ediici vemeskog itevala. s ( t) t Slika. Uz defiiciu sede sile t t

2 .4 Zako odžaa vektoa količie ketaa.4 Zako odžaa vektoa količie ketaa 39 Jeda od fudametalih zakoa u iodi. Pimeliv e i a slučaeve gde e važe Nutovi zakoi, odoso zakoi klasiče fizike. Ne etavla osledicu II Nutovog zakoa. I Posmatamo ketae ede čestice mase m koa se keće bziom v. ko e čestica izolovaa (a česticu e destvue i eda sila) ili e ezultuuća solaša sila koa delue a česticu edaka uli iz II Nutovog zakoa oizilazi da se vekto količie ketaa odžava kostatim u vemeu: d( m ) d ex v ez = = = = cost =. (.56) cost II Posmatamo sistem od čestica Rezultuuću silu koa delue a edu česticu ( -tu česticu, [, ] ) ( ) ) možemo etaviti zbiom ezultuuće uutaše sile ( ( i ), koa e osledica destva čestice sistema a datu česticu, i ezultuuće solaše sile ( ex ): ( i) ( ex) ( ex) = + = k + k = k. (.57) Naišimo sada II Nutov zako za svaku česticu sistema oaosob: d () i ( ex) = +, (.58a) d () i ( ex) = +, (.58b) d d M () i ( ex) = +, (.58c) M () i ( ex) = +. (.58d) Nako sabiaa (.58a)-(.58d) dobiamo: d i = + = = = = + ( ) ( ex) ( ex) = k = k k =. (.59) Kako e zbi izvoda edak izvodu zbia čla s leve stae (.59) možemo aisati u obliku: d d d S = =, (.6) = = gde e S vekto ezultuuće količia ketaa sistema. U dvostuko sumi s dese stae (.59) imamo sumu zbia aova k + k =. Zbi ovih aova edak e uli o III Nutovom zakou, tako da e i vedost dvostuke sume edaka uli i (.59) išemo u obliku:

3 4 DINMIK d N S ( ex) ( ex) = = S, (.6) = ( ) gde e ex S ezultuuća solaša sila koa delue a sistem od N čestica. Kao što vidimo iz (.6) uutaše sile e defiišu ketae mehaičkog sistema. Takođe a osovu (.6) zaklučuemo da se vekto ezultuuće količie ketaa sistema e ( ) mea u vemeu ako e sistem izolova ili ako e =..5 Mehaički ad Skalaa fizička veličia koom se mei azmea eegie (skalaa fizička veličia koa će ešto kasie biti defiisaa) između sistema koi mehaički iteeaguu. ex S.5. Mehaički ad u difeecialom obliku (elemetaa ad) Mateiala tačka u teutku t alazi se u oložau defiisaom vektoom oložaa. Pod destvom sile mateiala tačka se za veme omei u oloža defiisa vektoom oložaa ( t + ). lemetaa vekto omeaa mateiale tačke e d = ( t + ) (t ) (vidi sl.. ). Smatamo da e sila kostata a elemetaom omeau. lemetaa ad koi izvši sila ad mateialom tačkom i omeau za izosi: d = = cos( (, ). (.6) = cosθ d θ.5.. Osobie elemetaog ada ) Kako su iteziteti sile i elemetaog omeaa veći od ule ( >, > ) zak elemetaog ada zavisi od ugla θ i to a sledeći ači: [, π ), >, θ d =, θ = π /, <, θ ( π, π ]. ) osobia sueozicie ko e ezultuuća sila oda e možemo etaviti eko sume svih sila koe deluu a mateialu tačku ilikom omeaa: =. (.63) i Možeem leve i dese stae (.63) sa elemetaim omeaem dobiamo da e: d = d i, (.64) elemeai ad ezultuuće sile edak sumi elemetaih adova sila koe deluu a mateialu tačku. Sl.. Uz defiiciu elemetaog ada

4 .5 Mehaički ad Dugi avoavi izazi za elemetaa ad d d ) d = = d = d = d v. (.65) lemetaa ad može se ikazati i eko skalaog oizvoda elemetae omee vektoa količie ketaa, kou izaziva sila koa vši ad, i vektoa bzie osmatae čestice. Ova izaz se aočito imeue u elativističko fizici. ) U avi kou čie sila i vekto omeaa azložimo silu a dve komoete: komoetu u avcu vektoa omeaa s i komoetu u avcu koi e omala a ega. = + s. (.66) s Možeem leve i dese stae (.66) sa dobiamo d = + s. (.67) Kako su i uzaamo omali vektoi ihov skalai oizvod edak e uli, tako da dobiamo d = s = s cos ( ( s, ) = ± s, (.68), = iz azloga što e ugao ( ) π s. 3) Razlažemo vekto omeaa, u avi kou čie vektoi sile i omeaa, a komoetu duž avca vektoa sile : i komoetu koa e duž avca koi e omala a avac sile = +. (.69) Možeem -e (.69) silom dobiamo: d = +. (.7) Kako su vektoi i uzaamo omali vektoi d = = cos, = ±. (.7) ( ( ) 4) ko su sila i omea zadati eko oekcia u Dekatovom koodiatom sistemu: d = x i + y + z k dx i + dy + dz k = x dx + y dy + z. (.7) ( ) ( ) dz.5. Mehaički ad u itegalom obliku (ukua ad) Ozačimo sa ukua ad koi omeliva sila izvši i omeau mateiale tačke (sa sl..3) iz oložaa u oloža. Izdelimo eđei ut a delova koače dužie. Na i -tom delu uta vedost sile izosi. Rad sile a tom delu uta izosi: i Δ i = i Δs i Ukua izvše ad sile ibližo e edak: = i Δ s i cos θ i. (.73) Δ i = i Δ si cosθ i. (.74)

5 4 DINMIK Data elacia u (.74) ibliža e izaz za ukua ad, e vekto sile a omeau koače dužie ema kostatu vedost. Tača izaz za ukua ad dobiamo kada ut izdelimo a beskoačo mogo elemetaih delova: Δs Δs Δ s i θ i i Δs = lim Δsi ko sa () s cosθ () s s Δ i = lim Δsi i s Δ si cosθ i = cosθ s Sika.3 Uz izvođee izaza za ukua ad () s. (.75) = obeležimo algebasku vedost iteziteta oekcie sile a avac ketaa i sa = > oda izaz za koači ad išemo u obliku: s = s () s, (.75) što etavla ovšiu isod kive ( s) s u diagamu ikazaom a sl..4. Jediica za ad u SI e J (Džul). Rad od J e ad sile kostatog iteziteta od N koa u avcu i smeu svoga delovaa omei telo za m. s s = s s d s Slika.4 Uz obašee ukuog ada s.6 Saga Saga e skalaa fizička veličia koa odeđue ači všea ada u vemeu. ko sila u vemeskom itevalu Δ t izvši ad Δ oda sedu sagu defiišemo kao: U gaičom slučau kada Δt Ps Δ =. (.76) Δt dobiamo izaz za teutu sagu: Δ d P = lim Ps = lim =. (.77) Δt Δt Δt Iz defiicie teute sage u (.77) vidimo da teuta saga etavla bziu všea ada. Uzimaući u obzi (.77) izaz za teutu sagu možemo isati u obliku: d P = v = v = v cos( ( v, ). (.78) ko e ad sile kostata u vemeu ( t) a osovu -e (.77) ekli bi smo da e saga edaka uli, a to bi bilo ogešo. Izaz u -i (.77) teba koistiti u slučau kada e = ( t), a ukoliko e = cost saga e.7 Kozevativa sila P = t. Da bi sila bila kozevativa moau biti isuea ti uslova. Sila moa biti: ) stacioaa () t ; ) cetala - delue ka ili od fikse tačke;

6 .8 egia 43 3) adiala - delue o avcu vektoa oložaa mateiale tačke, sa itezitetom koi zavisi od. Bita kaakteistika kozevative sile e da e e ad o zatvoeo utai edak uli:. ko =. (.79) Sa slike.5 ad kozevative sile o zatvoeo utai l možemo izaziti eko: l ko = ko + a b ko Iz (.79) i (.8) dobiamo : = = l. (.8) ko a b ko b ko. (.8) Kako smo kotuu l oizvolo izabali iz (.8) sledi da ad kozevative sile o bilo koo utai između dve tačke ima istu vedost..8 egia egia e skalaa fizička veličia i etavla fomu ostoaa i delovaa mateie. Kaakteišu e euištivost, tasfomabilost i azovsost oblika oavlivaa. egetsko stae sistema defiiše makoskosku maifestaciu sistema (led, voda, aa). Podela eegie Podelu možemo izvšiti ema: ) oeklu: gavitacioa, elektomagetska i ukleaa; ) oome ko osedue eegiu: eegia fizičkog ola i eegia kou telo osedue u fizičkom olu. izička ola su eali geometiski ostoi u koima se odviau fizički ocesi. izička ola mogu biti: ) homogea-ehomogea, ) izotoa-aizotoa, 3) stacioaa-estacioaa i 4) kozevativa-ekozevativa..8. Poteciala eegia Poteciala eegia e osledica iteakcie tela i fizičkog ola.zavisi od oložaa tela u olu. Stacioaa oteciala eegia ima zavisost oblika = ( x, y, z), a estacioaa = ( x, y, z, t). Poteciala eegia e odeđea do ede eodeđee kostate, što zači da ie edozačo odeđea. ditiva kostata u izazu za otecialu eegiu zavisi od izboa ultog (efeetog) ivoa oteciale eegie. Načešće efeeti ivo ostavlamo tamo gde e iteakcia tela i ola u kome se telo alazi zaemaliva. Poteciala eegia može biti solaša i uutaša. Solašu otecialu eegiu osedue mateiala tačka. Kuto telo mođe imati solašu, može imati uutašu, a može imati i solašu i uutašu otecialu eegiu..8.. Gavitacioa oteciala eegia Gavitacioa sila sada u guu kozevativih sila. Rad kozevative sila i omeau tela iz oložaa u oloža edak e egativo omei oteciale eegie u ta dva oložaa ( ) a = Δ =. (.8) ko ko Slika.5 Rad kozevative sile o zatvoeo utai b l

7 44 DINMIK ko izabeemo tačku za ulti ivo oteciale eegie dobiamo =, (.83) ko odoso da e vedost oteciale eegie tela u oložau edaka adu kou izvši kozevativa sila i omeau tela iz oložaa u oloža gde e oteciala eegia edaka uli (oloža ). Na slici.6 oloža odgovaa oložau = d g tela, mase m, koi e defiisa M z m koodiatom, a oloža e u Rz beskoačosti. Slika.6 Uz defiiciu gavitacioe oteciale eegie M z m g, = g = γ d, (.84) d >, e se telo omea u smeu asta. g d γ M z m γ M z m, = γ M z m = / =. (.85) Iz (.83) i (.85) dobiamo izaz za otecialu eegiu a astoau od ceta Zemle ( Rz ): () Ukoliko bi uzeli efeetu tačku a ovšii Zemle imali bi: γ M z m =. (.86) M m R z R z () = = z g, γ d = γ M z m R z d. (.87) Ovde moamo voditi ačua da e = d, gde e d < e se telo omea ka maim vedostima koodiate. () γ M z m R m m R z z = / = γ M z = γ M z. (.88) Rz Rz Uvodeći ovu fizičku veličiu kou azivamo admoska visia h = Rz dobiamo zavisost oteciale eegie tela od egove admoske visie: ( h) M z m = γ h. (.89) ( Rz + h) Rz Ukoliko e Rz >> h dobiamo da e: ( ) M z m h γ h = m g h, (.9) Rz gde e vedost ubzaa Zemlie teže a ovšii Zemle. g

8 .8. Veza između kozevative sile i oteciale eegie.8 egia 45 Posmatamo omeae mateiale tačke iz oložaa u, o oizvolo utai. Pi tom omeau a mateialu tačku delue kozevativa sila ko. ko su tačke i dovolo bliske možemo isati da e Δ = Δ s = ko kos Δs, (.9) Δ s kos gde e ko seda vedost sile a omeau Δ s, a kos algebaska vedost iteziteta oekcie sede vedosti ko kozevative sile a avac Δ s. Kako e: Δ = Δ, (.9) iz (.9) i (.9) dobiamo: Δ kos =. (.93) Δs Taču vedost za oekciu kozevative sile dobiamo u gaičom slučau kad Δs : Δ kos = lim kos = lim =. (.94) Δs Δs Δs s Na osovu (.94) dobiamo oekcie kozevative sile u Dekatovom koodiatom sistemu: kox =, koy =, koz =. (.95) x y z Kako e: iz (.95) i (.96) dobiamo: ko = x ko i + y = kox i + koy + koz k, (.96) + z Oeato gad aziva se gadiet, a abla. Pime k = gad = Izaz za otecialu gavitaciou eegiu tela a slici e oblika: ( y) m g y ( y) ( m g y) y =.. (.97) gx = = =. (.P) x x y ( y) ( m g y) gy = = = m g. (.P) g y y ( y) ( m g ) y gz = = =. (.P3) z z Na osovu (.P )-(.P3 ) dobiamo izaz za gavitaciou silu = m g. (.P4).8.3 Kietička eegia g Svako telo koe se keće osedue kietičku eegiu-eegiu ketaa. Razlikuemo kietičku eegiu taslatoog i kietičku eegiu otacioog ketaa. Zbi kietičke i oteciale eegie ekog tela čii mahaičku eegiu tog tela.

9 46 DINMIK Pomožimo -u ketaa tela mase m, sa slici.7, vektoom omeaa stae: d( m ) ex v ez = d. (.98) d d ex ez = mdv = mdv v. (.99) m a a = a a cos ( ( a, a) ) = a. (.P5) Nalazimo totali difeecial leve i dese stae goe -e: d( a a ) = d( a ). (.P6) da a + a da = d( a ). (.P7) a da = d( a ). (.P8) d s leve i dese Pema goe izvedeo elacii, za tela kostate mase, (.99) možemo aisati u obliku: d ex ez m = d v m m ( ) = ( ) v d = d v. (.) lemetai ad ezultuuće ekstee sile edak e elemetao omei fizičke veličie m v okaakteisae sa. Tu fizičku veličiu azivamo kietičkom eegiom. ko e bzia tela edaka uli i egova kietička eegia ima ultu vedost. Kako e v > k >. ex d = ez = d k. (.) Zaklučuemo da e mehaički ad isto što i kietička eegia. Pi ketau tela ad ezultuuće solaše sile koa delue a ega edak e omei kietičke eegie tela. Ova kostatacia važi kako za mateialu tačku tako i za kuta telo. U izolovaim sistemima ili sistemima gde e ex ez = kietička eegia sistema se e meavaži zako o odžau kietičke eegie. Itegaciom (.) dobiamo da i omeau tela iz oložaa u oloža : ( ) ( ex) ez k d k = k k = Δ k. (.) = k ex ez kod sistema čestica etavla ukua ad solaših sila, a kod ede čestice ad svih sila koe deluu a tu česticu (za datu česticu sve sile koe deluu a u su solaše)..8.4 Ošti zako odažaa eegie Posmatamo mateialu tačku (česticu) koa se keće u kozevativom olu i a kou deluu i ekozevative sile. Dugi Nutov zako imee a ketae čestice stale mase e oblika: d v m = koze + ekoze, (.3) gde su koze i ekoze ezultuuća kozevativa i ekozevativa sila, esektivo. Pomožimo levu i desu stau (.3) sa elemetaim vektoom omeaa, d = v, tako što desu stau možimi sa, a levu sa d = v : v ex ez Slika.7 Uz izvođee izaza za kietičku eegiu

10 .8 egia 47 m v d v = +. (.4) koze ekoze Na osovu ezultata koi smo dobili u (.P8) i defiicie elemetaog ada: d ( m / ) = dkoze + d v. (.5) ekoze Čla s leve stae etavla elemetau omeu kietičke eegie čestice. Pvi čla s dese stae (.5) e elemetai ad koi e astao elemetaim omeaem čestice od destvom ezultuuće solaše kozevative sile. Ta elemetai ad edak e egativo elemetao omei oteciale eegie čestice: d koze Uzimaući goe avedeo u obzi (.6) možemo isati u obliku: odoso d d = d. (.6) = d d, (.7) k + ( ) d k = ekoze +. (.8) ekoze Zbi s leve stae (.8) etavla elemetau omeu mehaičke (ukue) eegie čestice: Itegaciom (.9) dobiamo zako u itegalom obliku: d meh = d ekoze. (.9) Δ, (.) meh = ekoze gde su i dva uočea oložaa čestice. Dakle, omea mehaičke eegie čestice i omeau čestice iz oložaa u oloža edak e adu ezultuuće ekozevative sile i omeau čestice iz oložaa u oloža. Pimetimo da ukoliko a česticu deluu samo kozevative sile mehaička eegia sistema se e mea-ostae kozeviaa. U tom slučau kažemo da se adi o kozevativom sistemu: Δ meh = meh = cost. (.5) takođe imetimo da će mehaička eegia ostati eomeea ako a sistem deluu kozevative sile ali tako da e ihov ukua ad edak uli. Ukoliko imamo sistem od čestica ošti zako odžaa eegie e oblika: gde e meh e ukua eegia sistema, ( i) ( ex Δ ) = +, (5a) meh ekoze ekoze ( i) ( ex) iteakcie između delova sistema kozevativim silama, meh = k + +. (.5b) () uutaša oteciala eegia sistema koa e osledica ( ) ex solaša oteciala eegia i sistema koa e osledica iteakcie između sistema i solaših kozevativih sila, ( ) ekoze i ad uutaših (koe deluu uuta sistema) ekozevativih sila, a ( ) ekoze ex ad solaših ekozevativih sila.

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

MOMENT INERCIJE (*) Dakle, kinetička energija rotacije krutog tela može se napisati kao:

MOMENT INERCIJE (*) Dakle, kinetička energija rotacije krutog tela može se napisati kao: 35 MOMENT INECIJE Disk koji otia ili cikulaa motoa testea koja ubzao otia svakako imaju kietičku eegiju. Izaz Ek = mv, siguo ije pimeljiv, je svaki delić ovog tela koje otia opisuje kuže putaje azličitog

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Zadatak 1. Rešenje: Imamo sistem sa ekvivalentnim paralelnim serverima: λp 5. X=λ(1-p 5 ) X μ

Zadatak 1. Rešenje: Imamo sistem sa ekvivalentnim paralelnim serverima: λp 5. X=λ(1-p 5 ) X μ Zadatak U račuarskom etru ostoi soba sa 3 račuara. Soba e mala i u o, ored oih koi treuto rade, može da čeka oš dva korisika. Korisii dolaze ezaviso i slučao, u roseku 4 korisika a sat. Svaki korisik radi

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

METODA SEČICE I REGULA FALSI

METODA SEČICE I REGULA FALSI METODA SEČICE I REGULA FALSI Zadatak: Naći ulu fukcije f a itervalu (a,b), odoso aći za koje je f()=0. Rešeje: Prvo, tražimo iterval (a,b) a kome je fukcija eprekida, mootoa i važi: f(a)f(b)

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

SLOŽENO KRETANJE TAČKE

SLOŽENO KRETANJE TAČKE SLOŽENO KRETANJE TAČKE DEFINISANJE SLOŽENOG KRETANJA TAČKE BRZINA TAČKE PRI SLOŽENOM KRETANJU a) Relativna bzina b) Penosna bzina c) Apsolutna bzina d) Odeđivanje zavisnosti apsolutne od elativne i penosne

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Granične vrednosti realnih nizova

Granične vrednosti realnih nizova Graiče vredosti realih izova Fukcija f : N R, gde je N skup prirodih brojeva a R skup realih brojeva, zove se iz realih brojeva ili reala iz. Opšti čla iza f je f(), N, i običo se obeležava sa f, dok se

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku.

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku. VEKTOR OENT SILE Z TČKU Vekto momenta sile, koja dejstvuje na neku tačku tela, za poizvoljno izabanu tačku pedstavlja meu obtnog dejstva sile u odnosu na tu poizvoljno izabanu tačku. Ovde je tačka momentna

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

RAD, SNAGA, ENERGIJA

RAD, SNAGA, ENERGIJA RAD, SNAGA, NRGIJA Mehanički ad Fiički smisao ada se u mnogome alikuje od našeg svakodnevnog oimanja ada. Zato odmah ecimo da je ad skalani oivod sile od čijim dejstvom telo učini neki omeaj i tog omeaja:

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku

Elektrotehnički fakultet univerziteta u Beogradu 26. jun Katedra za Računarsku tehniku i informatiku Elektrotehički fakultet uiverziteta u Beogradu 6. ju 008. Katedra za Račuarku tehiku i iformatiku Performae račuarkih itema Rešeja zadataka..videti predavaja.. Kretaje Verovatoća Opi 4 4 Kretaje u itom

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Mašinski fakultet, Beograd - Mehanika 1 Predavanje 4 1. Spreg sila A C = AC OC = OC CB OC D B = OD = CBF AC CB = =

Mašinski fakultet, Beograd - Mehanika 1 Predavanje 4 1. Spreg sila A C = AC OC = OC CB OC D B = OD = CBF AC CB = = ašiski fakultet, Begad - ehaika Pedavaje 4 Speg sila Slagaje dveju paalelih sila Psmata se sistem d dve paalele sile istg smea i, kje deluju u tačkama A i B tela. že se pkazati da se vaj sistem sila mže

Διαβάστε περισσότερα

1.1 Određivanje položaja i trajektorije materijalne tačke 1 KINEMATIKA

1.1 Određivanje položaja i trajektorije materijalne tačke 1 KINEMATIKA 11 deđivanje položaja i tajektoije mateijalne tačke 1 1 KINEATIKA 11 deđivanje položaja i tajektoije mateijalne tačke snovni zadatak fizike (ϕνσιξ pioda) je izučavanje osnovnih svojstava piode, a jedno

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Sistem sučeljnih sila

Sistem sučeljnih sila Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

. (2.116) v r. Prvi član s desne strane (2.119) je jednak nuli iz razloga što su vektori v = i p kolinearni: r r r. r d L0 =. (2.

. (2.116) v r. Prvi član s desne strane (2.119) je jednak nuli iz razloga što su vektori v = i p kolinearni: r r r. r d L0 =. (2. 48 DINAMIKA.9 Dinamika otacije.9. Momentna jednačina za mateijalnu tačku Posmatamo kivolinijsko ketanje mateijalne tačke, mase m, koja u datoj tački putanje ima bzinu v, vekto položaja u odnosu na efeentnu

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

- Rad je dejstvo sile duž puta tj. kvantitativno povezuje silu i pomeraj koji je ona izazvala

- Rad je dejstvo sile duž puta tj. kvantitativno povezuje silu i pomeraj koji je ona izazvala Rad - Rad je dejstvo sile duž puta tj. kvantitativno povezuje silu i pomeaj koji je ona izazvala Posmatajmo slučaj kada je sila konstantna po intenzitetu i pavcu. Rad je: A= A = Δ cosγ γ = (, Δ) Δ Skalani

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam

Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema

Διαβάστε περισσότερα

σ (otvorena cijev). (34)

σ (otvorena cijev). (34) DBLOSTJN POSUD CIJVI - UNUTARNJI ILI VANJSKI TLAK 8 "Dobo je htjeti, ali teba i znati." Z. VNUČC, 9. NAPRZANJA I POMACI DBLOSTJN POSUD ILI CIJVI NASTAVAK. Debelostjena osa oteećena ntanjim tlaom Debelostjena

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

MEHANIKA-V. Inercijalni i neinercijalni sistemi reference

MEHANIKA-V. Inercijalni i neinercijalni sistemi reference 4 MEHANIKA-V Inecijalni i neinecijalni sistemi efeence Fomulišući I Njutnov zakon ( Zakon inecije) koistili smo pojmove kao što su miovanje ili avnomeno ketanje Postavlja se pitanje koliko je opavdano

Διαβάστε περισσότερα

Ekonometrija 5. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković

Ekonometrija 5. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković Ekoometja 5 Ekoometja, Osove studje Pedavač: Aleksada Nojkovć Stuktua pedavaja Klasč dvostuk (všestuk) lea egeso model - metod ONK. Petpostavke všestukog KLM. Koelacja u všestukom KLM. Oča kogova. Dvostuk

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( )

( x) ( ) dy df dg. =, ( x) e = e, ( ) ' x. Zadatak 001 (Marinela, gimnazija) Nađite derivaciju funkcije f(x) = a + b x. ( ) ( ) Zadatak (Mariela, gimazija) Nađite derivaciju fukcije f() a + b c + d Rješeje Neka su f(), g(), h() fukcije ezavise varijable, a f (), g (), h () derivacije tih fukcija po Osova pravila deriviraja Derivacija

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Kinetička energija: E

Kinetička energija: E Pime 54 Za iem pikazan na lici odedii ubzanje eea mae m koji e keće naniže kao i ilu u užeu? Na homogeni doboš a dva nivoa koji e obće oko zgloba O dejvuje, zbog neidealnoi ležaja konanni momen opoa M

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

REALNA FUNKCIJA realnom funkcijom n realnih nezavisno-promjenljivih

REALNA FUNKCIJA realnom funkcijom n realnih nezavisno-promjenljivih REALNA FUNKCIJA Fukciju f čiji je skup vrijedosti V podskup skupa R realih brojeva zovemo realom fukcijom. Ako je, pritom, oblast defiisaosti D eki podskup skupa R uređeih -torki realih brojeva, kažemo

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Opšti kurs fizičke hemije II. Zadaci I. Fizičke osobine molekula, osobine tečnog stanja, napon pare, tačka ključanja, površinski napon, viskoznost

Opšti kurs fizičke hemije II. Zadaci I. Fizičke osobine molekula, osobine tečnog stanja, napon pare, tačka ključanja, površinski napon, viskoznost Ošti kus fizičke heije II Zadaci I Fizičke osobie olekula, osobie tečog staja, ao ae, tačka ključaja, ovšiski ao, viskozost Zadatak. Molae efakcije etaa i etaa izose 6,8 i,4 c ol esektivo. Izačuati atoske

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Centralni granični teorem i zakoni velikih brojeva

Centralni granični teorem i zakoni velikih brojeva Poglavlje 8 Cetrali graiči teorem i zakoi velikih brojeva 8.1 Cetrali graiči teorem Lema 8.1 Za 1/ x 1 vrijedi Dokaz: Stavimo log1 + x x x. fx := log1 + x x, x [ 1/, 1]. Očito f0 = 0. Nadalje, po teoremu

Διαβάστε περισσότερα

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

Izrada Domaće zadaće 4

Izrada Domaće zadaće 4 Uiverzitet u Sarajevu Elektrotehički fakultet Predmet: Ižejerska matematika I Daa: 76006 Izrada Domaće zadaće Zadatak : Izračuajte : si( ) (cos( )) L 0 a) primjeom L'Hospitalovog pravila; b) izravom upotrebom

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti

MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (

Διαβάστε περισσότερα

Aritmetički i geometrijski niz

Aritmetički i geometrijski niz Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα