Područno (općinsko) natjecanje iz fizike Zagreb, razred (skupina)
|
|
- Γερβάσιος Βιλαέτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Područno (općinko) natjecanje iz fizike Zagreb,... razred (kupina). Iz zadanog v-t dijagraa odredi -t i a-t dijagra, te naći rednju brzinu za prvih ekundi gibanja?. Prvo tijeo e izbaci na viinu H u horizontano jeru, početno brzino v H /. U ito trenutku e površine Zeje vertikano u vi, po pravcu koji je udajen od jeta izbacivanja prvog tijea za d, izbaci drugo tijeo početno brzino v V 4/. Odredi viinu H uz uvjet da e tijea udare u zraku te njihove brzine u trenutku udara. 3. Uteg ae kg obješen je u točki C (ika). Odredi ie koje djeuju na štapove AB 5 d i BC 3 d! 4. Na koini nagiba α3 eži uže ukupne dujine, čiji jedan dio dujine vii preko koine (ika). Koiki dio od ože biti pa da uže ne kizne koine ako je faktor trenja izeđu užeta i koine µ,3. Trenje na vertikanoj trani koine zaneario kao i efekte na pregibu! 5. Tijeo ae a kg i brzine v a /, giba e u horizontanoj ravnini prea tijeu ae b 4 kg i brzine v b /, koje u ide u uret. Treće tijeo ae c 3 kg i v c 4 / giba e po pravcu okoito na pravac po koje e gibaju prva dva tijea. Odrediti veičinu brzine i njezin jer u odnou na početni jer gibanja prvog tijea, nakon što e va tri tijea itovreeno udare apoutno neeatično! Opaka : g /
2 Prvi razred (kupina) - RJEŠENJA. Iz zadanog v-t dijagraa odredi -t i a-t dijagra, te naći rednju brzinu za prvih ekundi gibanja? Rješenje 3 U 6 36 ( 6) 48 (4 ) ( boda) ( boda)
3 a a a ( boda) v ( boda) ( bod) t UKUPNO 9 BODOVA
4 . Prvo tijeo e izbaci na viini H u horizontano jeru, početno brzino v H /. U ito trenutku e površine Zeje vertikano u vi po pravcu koji je udajen od jeta izbacivanja prvog tijea za d izbaci drugo tijeo početno brzino v V 4/. Odredi viinu H uz uvjet da e tijea udare u zraku, te njihove brzine u trenutku udara. Rješenje v H d v V 4 H? v H,v V? (Sika boda) d d v H t t (3 boda) v H g H t S + v V t H 4 8 S g t S v V t S ( boda) v v v V g t S 4 ( boda) v v H + (g t ) ( boda) H UKUPNO BODOVA
5 3. Uteg ae kg obješen je u točki C (ika). Odredi ie koje djeuju na štapove AB 5 d i BC 3 d! Rješenje kg AC 5 d BC 3 d F AC? F BC? ABC C F F BC g BC ( boda) AB BC BC 3 FBC Fg g 75 N AB AB 4 ( bod) AB AC BC (Sika boda) 4 d F AC AC ( boda) F AB g AC AC 5 FAC Fg g 5 AB AB 4 ( bod) N UKUPNO 8 BODOVA
6 4. Na koini nagiba α3, eži uže ukupne dujine, čiji jedan dio, dujine, vii preko koine (ika). Koiki dio od ože biti pa da uže ne kizne koine ako je faktor trenja izeđu užeta i koine µ,3. Trenje na vertikanoj trani koine zaneario kao i efekte na pregibu! Rješenje α 3 µ,3? Dva učaja: ( ika boda) a) Kizanje niz koinu, uže iruje F F F F gx gy P t F F g gy g 3 Fg -F F P gy ( boda) F µ F µ F µ ( bod) F F g g gy 3 g λ ( )g ( boda) g λ g λ - inearna gutoća b) Kizanje uz koinu, uže iruje -FgX Ft + FN ( bod) F g -FgX + Ft + FN ( bod) - + (3 λ( 3 )g + µ + 3µ 3µ) ( 3µ 3µ 3 3µ,48,48 λ( )g + λ 3µ) +,9 ( bod) g
7 3µ) ( 3µ) (3 3µ 3µ - g λ )g λ( 3 µ )g ( λ,43 3,5,5 3µ 3 3µ + + ( bod),43,9 3µ 3 3µ 3µ 3 3µ + + ( bod) UKUPNO BODOVA
8 5. Tijeo ae A kg i brzine v A, giba e u horizontanoj ravnini prea tijeu ae B 4kg i brzine v B, koje u ide u uret. Treće tijeo ae C 3kg i brzine v C 4 giba e po pravcu okoito na pravac po koje e gibaju prva dva tijea. Odrediti veičinu brzine i njen jer, u odnou na početni jer gibanja prvog tijea, nakon što e va tri tijea itovreeno udare apoutno neeatično! Rješenja: Y v A 4kg v B 3kg v C A B C kg 4 A v r A v r C p r C α p r AB r p v r B B X (Sika boda) v? α? C pc + pb + pc p ( bod) p kg Av A Bv B ( bod) AB kg pc Cv C ( bod) kg p pab + pc pc ( bod) p ( + + v ( bod) A B C ) p Cv C 4 v A + B + C A + B + C 3 ( bod)
9 p r p r C α ( boda) p r AB p α 45 AB p C UKUPNO BODOVA
10 Područno (općinko) natjecanje iz fizike Zagreb,... razred (kupina). U takenoj cijevi koja je jedne trane zatajena, a čija je dužina 7 c, naazi e tupac zraka zatvoren odozgo tupce žive dužine c tako da je živa do kraja cijevi (.). Cijev poako okreneo, pri čeu e dio žive izije (.). a) Koika je viina živinog tupca otaa u cijevi ako atoferki tak odgovara tupcu od 75 c Hg? b) Pri kojoj će e dužini cijevi tupac žive ite viine avi iziti pri okretanju u poziciju na.?... Neka koičina dvoatonog pina vouena 5 itara najprije je pod tako od 35 Pa, a zati pod tako od 3 35 Pa i vouena itre. a) Nađi projenu unutrašnje energije, koičinu topine i izvršeni rad ako e prijeaz iz prvog u drugo tanje odvija najprije po izohori, a zati po izobari? b) Izračunaj ito u učaju da e prijeaz iz prvog u drugo tanje odvija najprije po izobari pa po izohori. p/ 35 Pa 3 C(;3) D(;) 5 B (5;3) A(5;) V/ U topije preniku ideanog Carnotovog kružnog procea u voda i para na C, a u hadnije preniku u ed i voda na C. a) Koja e koičina vodene pare ora kondenzirati u topije preniku da bi e u hadnije rataio kg eda? b) Ako cikuu proijenio jer, pa radi kao ideani hadnjak, koika će e koičina vode ipariti u topije preniku da bi e u hadnije preniku zaedio kg eda? c) Izračunaj koeficijente ikorištenja oba troja. 4. Oko etane kuge radijua c naazi e koncentrična etana fera radijua 4 c. Na etanoj kugi e naazi naboj od -8 C, a na feri negativni naboj od -4-8 C. Nađi jakot eektričnog poja po iznou i jeru u točkaa koje u udajene: a) c od redišta etane kuge b) 3 c od redišta etane kuge c) 6 c od redišta etane kuge 5. Po vrhovia kvadrata tranica 4 c u rapoređeni jednaki točkati naboji od 6,6-9 C. a) Nađi rad pri prenošenju naboja od 3,3-9 C iz centra kvadrata do redine jedne njegove tranice. b) Koiki je taj rad, ako u naboji eđuobno jednaki po apoutnoj vrijednoti, ai ujedni naboji iaju uprotne predznake.
11 Drugi razred (kupina) - RJEŠENJA. U takenoj cijevi koja je jedne trane zatajena, a čija je dužina 7 c, naazi e tupac zraka zatvoren odozgo tupce žive dužine c tako da je živa do kraja cijevi (. ). Cijev poako okreneo, pri čeu e dio žive izije (. ). a) Koika je viina živinog tupca otaa u cijevi ako atoferki tak odgovara tupcu od 75 c Hg? b) Pri kojoj će e dužini cijevi tup žive ite viine avi iziti pri okretanju u poziciju na.?.. Rješenje: projena je izoterna pa vrijedi: p V p V p A h p A h p h p h ( bod) p 95 chg p 75 ( x) (55+x)cHg h 5 c h (5 +x) c ( boda) a) p h p h 95 5 (55+x) (5+x) x+x x +5x x6,5 c h c 6,5 c 3,5 c ( boda) ( bod) b) p 95 chg p 75 chg h y c h (y+) c ( boda) p h p h 95 y 75 ( y+) y5 ( boda) y 75 c Odgovor: 95 c i više ( boda) UKUPNO BODOVA
12 . Neka koičina dvoatonog pina vouena 5 itara najprije je pod tako od 35 Pa, a zati pod tako od 3x 35 Pa i vouena itre. a) Nađi projenu unutrašnje energije, koičinu topine i izvršeni rad ako e prijeaz iz prvog u drugo tanje odvija najprije po izohori, a zati po izobari? b) Izračunaj ito u učaju da e prijeaz iz prvog u drugo tanje odvija najprije po izobari pa po izohori. p/ 35 Pa Rješenje 3 C(;3) B (5;3) p A 35 Pa V A 5x -3 3 p B 3x 35 Pa V C x -3 3 D(;) 5 A(5;) V/ -3 3 Error! K Error! K c p 7/ R J o - K - Error! K c V 5/ R J o - K - (4 boda) Error! K a) W AB U AB n c v ( T B -T C ) 533,J Q AB U AB 533,J W BC p V n R( T C -T B ) - 9,9 J U BC n c V ( T C -T B ) -79,8 J Q BC n c p ( T C -T B ) -39,7 J W -9,9 J U 53,3 J QW+ U (4 boda) Q -658,6 J b) W AD n c v (T D -T A ) -34, J W DC J U AD - n c V (T D -T A ) -76 J U DC n c V (T C -T D ) 3,3 J Q AD n c p (T D -T A ) -63,9J Q DC U DC 3,3 J W -34J U 53,3 J QW+ U (4 boda) Q -5,7 J UKUPNO BODOVA
13 3. U topije preniku ideanog Carnotovog kružnog procea u voda i para na C, a u hadnije preniku u ed i voda na C. a) Koja e koičina vodene pare ora kondenzirati u topije preniku da bi e u hadno rataio kg eda? b) Ako cikuu proijenio jer, pa radi kao ideani hadnjak, koika će e koičina vode ipariti u topije preniku da bi e u hadnije preniku zaedio kg eda? c) Izračunaj koeficijente ikorištenja oba troja. T T 373 K T H 73 K Q T,6 5 P J Q H 33,4 4 J 6,68 5 J a) Error! T H Q T Q T H T ,68 373,6 P P,44 kg vodene pare kondenzira ( boda) ( boda) b) Error! Q H T T T H Q T T M T T Q Q H T Q T P,6 6 J Q H 6,68 5 J ( boda) P,44 kg vode ipari c) Error! Error! ( boda) UKUPNO 8 BODOVA
14 4. Oko etane kuge radijua c naazi e koncentrična etana fera radijua 4 c. Na etanoj kugi e naazi naboj od -8 C, a na feri negativni naboj od -4-8 C. Nađi jakot eektričnog poja po iznou i jeru u točkaa koje u udajene: a) c od redišta etane kuge b) 3 c od redišta etane kuge c) 6 c od redišta etane kuge RJEŠENJE: ika ( boda) Q -8 C Q 4-8 C S E A A B E C C E B a) E A ( boda) b) E B 9 8 k Q 9 5 r (3 ) ( boda) N C k Q c) E C E +E r k Q + r ( ),5 5 N C ( boda) UKUPNO 8 BODOVA
15 5. Po vrhovia kvadrata tranica 4 c u rapoređeni jednaki točkati naboji od 6,6-9 C. a) Nađi rad pri prenošenju naboja od 3,3-9 C iz centra kvadrata do redine jedne njegove tranice. b) Koiki je taj rad ako u ujedni naboji eđuobno jednaki po apoutnoj vrijednoti ai iaju uprotne predznake. RJEŠENJE: Q 6,6-9 C Q 3,3-9 C a4 c a) ϕ kq a a A 4 r r r ( bod) r a r3 r4 a + ( bod) ϕ A 4 6, , V ( boda) ,6 9 6,6 ϕ B , 45 4,47 V ( boda) W AB Q (ϕ B ϕ A ) 6,48-7 J b) ( boda)
16 ϕ A V ϕ B V W AB Q J ( boda) UKUPNO BODOVA
17 . Djevojčica težine 4 N čuči na jujački. Centar ae joj je. udajen od ta i 3.7 od vrha jujačke. Ona e zajuja i na dnu uka kojeg jujačka opiuje nago e utane podižući voj centar ae za.6. Izračunajte viinu do koje e popne centar ae djevojčice u tojeće poožaju kod akianog otkona jujačke! Područno (općinko) natjecanje iz fizike Zagreb,.. 3. razred (kupina). Kvadratnu petju dužine, otpora R i ae putio da pada u hoogeno agnetko poju B, kao što je prikazano na ici. Poje je okoito na površinu petje i u horizontano jeru. a) Objanite zašto e u ravnotežno tanju petja giba kontantno brzino. b) Odredite tu brzinu i jer inducirane truje c) Na koji bi e način gibaa petja da agnetko poje u vako trenutku probada cijeu površinu? 3. Odredite rezonantnu frekvencijutrujnog kruga prikazanog na crtežu. I R, I I C 4. Crtež prikazuje putanju eektrona kroz kobinaciju eektričnog i agnetkog poja kao što je prikazano na ici. Koika je brzina eektrona koji udara u etu i koiki je ojer agnetkih poja ako je napon koji ubrzava eektron V, a r r? Nacrtaj ii napiši u koje u jeru agnetka poja. Maa eektrona je kg, a naboj.6-9 C. B B 5. Tijeo e naazi na horizontanoj podozi bez trenja u poožaju ravnoteže povezano a eatično oprugo zanearive ae za čvrtu točku. Nakon što e podoga nagne pod kuto od 45 tijeo e puti da e obodno giba i pri toe ono potiže najveću brzinu od 5 / te započinje haronijko titranje oko ravnotežnog poožaja. Koiki periodo titra tijeo i koika je apituda titranja? α 45
18 . Djevojčica ae 4 N čuči na jujački. Centar ae joj je. udajen od ta i 3.7 od vrha jujačke. Ona e zajuja i na dnu uka kojeg jujačka opiuje nago e utane podižući voj centar ae za.6. Izračunajte viinu do koje e popne centar ae djevojčice u tojeće poožaju kod akianog otkona jujačke! RJEŠENJE: -vrijedi zakon očuvanja kutne koičine gibanja: 3.7 B (3.7 3.) v B -> vb. vb v -iz zakona očuvanja energije ijedi: v B g(..6) -> -> v B 3.43 v.v 4. B B v B v B g( h.) -> h +.. g. Kvadratnu petju dužine, otpora R i ae putio da pada u hoogeno agnetko poju B, kao što je prikazano na ici. Poje je okoito na površinu petje i u horizontano jeru. d) Objanite zašto e u ravnotežno tanju petja giba kontantno brzino. e) Odredite tu brzinu i jer inducirane truje f) Na koji bi e način gibaa petja da agnetko poje u vako trenutku probada cijeu površinu? RJEŠENJE: a) Kada brzina ne bi bia kontantna, značio bi da djeuje neuravnotežena ia na okvir. Neka je g > ib. Gibanje je ubrzano prea doje, što uzrokuje povećanje projene toka. Tie e povećava inducirana truja, a tie i ia koja djeuje uprotno od g. To anjuje ubrzanje ve do nue. b) Φ B U i Bv t t U i Bv i -> jer inducirane truje je u jeru R R kazajke na atu. Sia zbog agnetkog poja jednaka je po iznou. težini okvira B v gr g F A g Bi v R B
19 c) Budući da e tok ne ijenja, ne pojavjuje e ia zbog priutva agnetkog poja. Akceeracija padanja bit će, dake g (jednoiko ubrzano gibanje). 3. Odredite rezonantnu frekvenciju trujnog kruga prikazanog na crtežu. I R,L R L I RJEŠENJE: Probe ćeo riješiti pooću rotirajućih vektora. Naponi u vakoj paraenoj grani u jednaki i u fazi. Međuti, truje u razičite: I C U/R C U C ω I R,L U/[R +ω L ] / tgαlω/r Struja u grani kondenzatoro poaknuta je za π/ ipred I C napona, a u grani a R i L eeentia zaotaje za kut α prea naponu. Rezutantna truja I dobije e vektorki zbrajanje I truja I C i I R,L. Struja I poaknuta je prea naponu za kut ϕ. Ako nea faznog poaka ϕ izeđu truje i napona, ϕ kažeo da je trujni krug u rezonanciji. Crtež rotirajućih U α vektora pokazuje da rezonancija nataje u učaju kad je: I C I R,L inα I R,L Obziro da je: U I in α[lω]/[r +ω L ] / α I C uvrštenje izraza za I C i I R,L dobiva e: U C ω {U/[R +ω L ] / } { Lω/[R +ω L ] / } I C C I R,L Odavde je rezonantna frekvencija: ω R LC L 4. Crtež prikazuje putanju eektrona kroz kobinaciju eektričnog i agnetkog poja kao što je prikazano na ici. Koika je brzina eektrona koji udara u etu i koiki je ojer agnetkih poja ako je napon koji ubrzava eektron V, a r r? Nacrtaj ii napiši u koje u jeru agnetka poja. Maa eektrona je kg, a naboj.6-9 C. B B RJEŠENJE:
20 v eu eu v 6 v 5.9 / v v 6 + eu v v 8.3 / v F L F cp r v eb r v eb r r v B v B B. 7 B Sjer agnetkih poja je uprotan. Poje B ia jer u "papir", a poje B iz "papira" Brzina kojo eektron udara u etu je 6 v 8.3 /. 5. Tijeo e naazi na horizontanoj podozi bez trenja u poožaju ravnoteže povezano a eatično oprugo zanearive ae za čvrtu točku. Nakon što e podoga nagne pod kuto od 45 tijeo e puti da e obodno giba i pri toe ono potiže najveću brzinu od 5 / te započinje haronijko titranje oko ravnotežnog poožaja. Koiki periodo titra tijeo i koika je apituda titranja? α 45 RJEŠENJE: Koponenta ie teže koja djeuje niz koinu izjednačava e u poožaju ravnoteže a eatično io g in α ky boda Pri toe će zbog poožaja ravnoteže i početne ituacije vrijediti da je y najveća eongacija odnono apituda A. k g inα A g A boda Ako to uvrtio u izraz za vatitu frekvenciju
21 k ω ω g A boda Znao da je akiana brzina v v Aω A ω bod ωg v g ω v T 4πv 4.53 g ω boda Apituda je tada v v A 3. 6 g bod ukupno bodova ω
22 Područno (općinko) natjecanje iz fizike Zagreb,.. 4. razred (kupina). Dva konkavna ferna zrcaa poujera zakrivjenoti 38 c i 36 c okrenuta u jedno prea drugoe, tako da i e optičke oi podudaraju. Udajenot izeđu tjeena zrcaa iznoi 8 d. Izeđu zrcaa naazi e predet 3 c udajen od zrcaa anje žarišne dajine. Nađi grafički i računki poožaj ike i njezino povećanje koje nataje refekijo najprije na biže a zati na daje zrcau!. Bikonvekna eća kojoj pohe iaju jednake poujere zakrivjenoti naazi e u zraku. Načinjena je od taka apoutnog indeka oa,5. a) Koika je njezina žarišna dajina u zraku, ako u joj zadane dienzija prea ici? b) Za koiko će e proijeniti žarišna dajina eće, ako je iz zraka prejetio u vodu? Apoutni indek oa vode je, Okoito na optičku rešetku koja ia zareza po iietru upada vjetot dviju vanih dujina od 594 n i 79 n. a) Pod koji će e najanji kuto prekriti akiui otkonjenih zraka? b) Potoje i pektri višeg reda koji će e prekriti? Ako potoje, pod koji će e kuto to dogoditi? 4. Stakena poča prekrivena je tanki oje prozirne tvari apoutnog indeka oa,4. Okoito na poču pada nop onokroatke vjetoti vane dujine 58 n. Koika ora biti debjina naneenog oja uijed čega bi, unatoč što je ovjetjenja, izgeda tana? Navedi ve ogućnoti! 5. Dvije četice gibaju e u ito jeru jednaki brzinaa od,9 c jedna iza druge. Druga udari nepokretnu prepreku 47 n iza prve. Koika je vatita udajenot ovih četica prije udara o prepreku?
23 Četvrti razred (kupina) - RJEŠENJA. Dva konkavna ferna zrcaa poujera zakrivjenoti 38 c i 36 c okrenuta u jedno prea drugoe, tako da i e optičke oi podudaraju. Udajenot izeđu tjeena zrcaa iznoi 8 d. Izeđu zrcaa naazi e predet 3 c udajen od zrcaa anje žarišne dajine. Nađi grafički i računki poožaj ike i njezino povećanje koje nataje refekijo najprije na biže, a zati na daje zrcau. Rješenje: R 38 c R 36 c d 8 c a 3 c f f R 9 c R 8 c ( bod) b? M? ( boda) Sika je reana, uvećana i upravna ( bod) Refektiranje na zrcau Z + a b f b a a f f 3 c 8 c 45 c 3 c 8 c ( boda) To je ika predeta na zrcau Z a d b 8 c 45 c 35 c ( bod) a f 35 c 9 c b 4,56 c a f 35 c 9 c ( bod)
24 b b 45c 4,56c M ( ) ( ) ( ) ( ),78 ( boda) UKUPNO BODOVA a a 3c 35c. Bikonvekna eća kojoj pohe iaju jednake poujere zakrivjenoti naazi e u zraku. Načinjena je od taka apoutnog indeka oa,5. a) Koika je njezina žarišna dajina u zraku ako u joj zadane dienzija prea ici b) Za koiko će e proijeniti žarišna dujina eće ako je iz zraka prejetio u vodu? Apoutni indek oa vode je,33. Rješenje a) ( boda) f R R ( boda),5 (n ) (,5 ) + R R R Iz trokuta ABC (R-b)ba Rba +b ( boda)
25 a + b (4,) + () R b f R 8,98c b) U zraku f n,55 f (n ) R f n3,33 n,5 f n,3 n3,33 (n ) R ( boda) (3 boda) n n,5 3,84,3 f 3,84f UKUPNO BODOVA 3. Okoito na optičku rešetku koja ia zareza po iietru upada vjetot dviju vanih dujina od 594 n i 79 n. c) Pod koji će e najanji kuto prekriti akiu otkonjenih zraka? d) Potoje i pektri višeg reda koji će e prekriti? Ako potoje, pod koji će e kuto to dogoditi? Rješenje d 5 λ 594n λ 79n k? α? k? α? a) 6 in αin α kλ k λ d d k λ k λ 79 4 (3 boda) k 4 zaλ k 3 zaλ 594n 79n ( boda) 4λ inα 6 d 5 inα,475 α 8,37 9 ( boda) b) Drugo prekrivanje
26 k 8 za λ 594 n k 6 za λ 79 n 8λ inα d inα,954 α 7,87 ( boda) Sijedeća prekrivanja za k6 k niu oguća jer je in α > ( bod) UKUPNO BODOVA 4. Stakena poča prekrivena je tanki oje prozirne tvari apoutnog indeka oa,4. Okoito na poču pada nop onokroatke vjetoti vane dujine 58 n. Koika ora biti debjina naneenog oja uijed čega unatoč što je ovjetjenja izgeda tana. Navedi nekoiko ogućnoti. Rješenje Faze e ijenjaju priiko refekije na A i B pa će rezutat interferencije biti iti kao da e ta projena nije ni zbia n,4 λ58 n ( boda) d? Geoetrijka razika puta AB Optička razika puta n d ( boda) λ Sabjenje (k+) n d k λ 58 d 3,57 n 4n 4,4 ( boda) Veće debjine pri kojia doazi do poništavanja k d 3λ 3,7 n 4n ( boda) k d 5λ 57,85 n 4n ( boda)
27 UKUPNO BODOVA 5. Dvije četica gibaju e u ito jeru jednaki brzinaa od,9 c jedna iza druge. Druga udari nepokretnu prepreku 47 n iza prve. Koika je vatita udajenot ovih četica prije udara o prepreku. [c3 8 /] Rješenje v v,9 c t 47 n? Udajenoti u odnou na prepreku v t,9c 47 9,83 (3 boda) U njihovo vatito utavu vrijee e produžava t 7 9 t 47,3 (3 boda) v,9 c 7 v t,9c,3 3,85 (3 boda) UKUPNO 9 BODOVA
10 m Perioda titranja je 1.26 s. Vježba 001 Oprugu mase 900 g, konstante opiranja 10 N/m, povučemo 6 cm prema dolje i pustimo da titra.
Zadatak 00 (ea, inazija) Opruu ae 00, kontante opiranja 0 N/, povučeo c prea doje i putio da titra. Izračunajte periodu titranja. Rješenje 00 Perioda titranja ovii ao o ai oprue i kontanti opiranja. =
v v 1 m y T s s Vježba 041 Kroz neko sredstvo šire se valovi koji imaju frekvenciju 1320 Hz i amplitudu 0.3 mm. Duljina
Zadatak 4 (Mirjana, rednja škoa) Kroz neko redto šire e aoi koji iaju frekenciju 66 Hz i apitudu.3. Dujina aa je 5 c. Odredi: a) brzinu širenja aa i b) akianu brzinu jedne četice. Rješenje 4 66 Hz, y.3
3. OSNOVNI POKAZATELJI TLA
MEHANIKA TLA: Onovni paraetri tla 4. OSNONI POKAZATELJI TLA Tlo e atoji od tri faze: od čvrtih zrna, vode i vazduha i njihovo relativno učešće e opiuje odgovarajući pokazateljia.. Specifična težina (G)
ρ = ρ V V = ρ m 3 Vježba 101 Koliki obujam ima komad pluta mase 2 kg? (gustoća pluta ρ = 250 kg/m 3 ) Rezultat: m 3.
Zadaak 0 (Ana Marija, ginazija) Koliki obuja ia koad plua ae kg? (guoća plua ρ 50 kg/ ) Rješenje 0 kg, ρ 50 kg/,? Guoću ρ neke vari definirao ojero ae i obuja ijela. kg ρ / 0.004. ρ ρ kg 50 jeba 0 Koliki
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
2 2 c s Vježba 021 U sustavu koji miruje, π mezon od trenutka nastanka do trenutka raspada prijeñe put 150 m. Rezultat: 50 ns.
Zadatak (Rex, ginazija) U utau koji iruje, π ezon od trenutka natanka do trenutka rapada prijeñe put 75. Brzina π ezona je.995. Koliko je rijee žiota π ezona u latito utau? Rješenje = 75, =.995, = 3 8
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
2 2 t. Masa tijela je 50 kg. Vježba 001 Sila 300 N djeluje na neko tijelo 10 sekundi te ga pomakne 500 m. Kolika je masa tog tijela?
Zadata 00 (Veronia, edicina šola) Sila 00 N djeluje na neo tijelo 0 eundi te ga poane 800. Kolia je aa tog tijela? Rješenje 00 Iz forula za jednolio ubrzano gibanje i II. Newtonovog pouča dobijeo traženo
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.
VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako
= = = vrijeme za koje tijelo doñe u točku B. g Vrijeme za koje tijelo prijeñe put od točke A do točke B jednako je razlici vremena t B i t A : m m
Zadatak 6 (Ginazijalci, ginazija) Tijelo lobodno pada i u točki ia brzinu /, a u točki 4 /. Za koje će rijee prijeći udaljenot od do? Koliko u udaljene točke i? (g = 9.8 / ) Rješenje 6 h, = /, = 4 /, g
α = 12, v 1 = 340 m/s, v 2 = m/s, β =? m sin12 = v sin v sin sin 72
Zadatak (Franjo, elektrotehnička škola) Zučni al pada pod kuto na ranu poršinu orke ode. Brzina zuka u zraku je 3 /, a u odi 56 /. Koliki je kut loa? Rješenje Budući da al prelazi iz redta anjo brzino
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE
veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
m m ( ) m m v v m m m
Zadatak (Ria, ginazija) Autoobil raketni pogono započne e iz tanja iroanja ubrzaati zbog potika rakete Potiak traje 5, a ubrzanje iznoi 5 / Nakon gašenja raketnog pogona autoobil e natai gibati kontantno
λ λ ν =. Zadatak 021 (Zoki, elektrotehnička škola) Dva zvučna vala imaju intenzitete 10 i 600 mw/cm 2. Za koliko se decibela razlikuju ta dva zvuka?
Zadatak (Zoki, elektrotehnička škola) Da zučna ala iaju intenzitete i 5 W/c. Za koliko e decibela razlikuju ta da zuka? Rješenje I = W/c = W/, I = 5 W/c = 5 W/, I = - W/, L L =? Tražio razliku intenziteta
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
namotanih samo u jednom sloju. Krajevi zavojnice spojeni su s kondenzatorom kapaciteta 10 µf. Odredite naboj na kondenzatoru.
Zadatak (Mira, ginazija) Dvaa ravni, paralelni vodičia eđusobno udaljeni 5 c teku struje.5 A i.5 A u isto sjeru. Na kojoj udaljenosti od prvog vodiča je agnetska indukcija jednaka nuli? ješenje r 5 c.5,.5
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI
21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Zadatak 003 (Vesna, osnovna škola) Kolika je težina tijela koje savladava silu trenja 30 N, ako je koeficijent trenja 0.5?
Zadata 00 (Jasna, osnovna šola) Kolia je težina tijela ase 400 g? Rješenje 00 Masa tijela izražava se u ilograia pa najprije orao 400 g pretvoriti u ilograe. Budući da g = 000 g, orao 400 g podijeliti
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
5. Rad, snaga, energija, Zakon očuvanja mehaničke energije, Zakon kinetičke energije
5. Rad, naga, energija, Zakon očuvanja mehaničke energije, Zakon kinetičke energije RAD SILE Rad je djelovanje ile na putu. Diferencijal rada jednak je kalarnom produktu ile i diferencijala pomaka vektora
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
t t , 2 v v v 3 m
Zadatak 4 (Maturantia, ginazija) Zeljin atelit giba e brzino = 9 3 /. Oobi u atelitu prođe reenki interal od jedan at. Koliki je taj reenki interal na Zelji? Kolika je razlika u reenu? ( = 3 8 /) Rješenje
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
2 k s k s k m. m m m 0.2 kg s. Odgovor je pod B.
Zadata (Ana, inazija) Opruu ontante 5 N/ tineo za c i putio titrati. Odredite najeću brzinu tijea ae da pri titranju. A. 3 B. 5 C. D. 4 Rješenje = 5 N/, = c =., = da =., =? Eatična oprua produžena za ia
Zadatak 281 (Luka, strukovna škola)
Zadaak 8 (Luka, rukovna škola) Kuglica ae. kg izbacuje e praćko. Priliko izbacivanja kuglice elaična vrpca praćke produži e za.5. Konana elaičnoi vrpce iznoi N/. Koliko brzino kuglica izlei iz praćke?
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)
FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi
1.inačica Iz formula za put i brzinu pri jednolikom usporenom gibanju dobije se brzina vlaka na kraju puta v = v a t v =
Zadatak (Marko, ginazija) Vlak e giba talno brzino 6 k/h. U jedno trenutku lakooña počne jednoliko kočiti te lak za 6 preali put od 6. Koliko e brzino lak giba na kraju tog puta? Rješenje = 6 k/h = [6
Harmonijsko titranje nastaje djelovanjem elastične sile F = k s ili neke druge sile proporcionalne elongaciji. Tada je perioda titranja:
Zadata 4 (Pety, inazija) Objesio i tijeo na opruu ona se produži za 4 c. Ao taj sustav oprua + tijeo zatitrao, oia je perioda i frevencija? (aceeracija sie teže = 9.8 /s ) Rješenje 4 s = 4 c =.4, = 9.8
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
BIPOLARNI TRANZISTOR Auditorne vježbe
BPOLARN TRANZSTOR Auditorne vježbe Struje normalno polariziranog bipolarnog pnp tranzistora: p n p p - p n B0 struja emitera + n B + - + - U B B U B struja kolektora p + B0 struja baze B n + R - B0 gdje
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
F2_ zadaća_ L 2 (-) b 2
F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.
, Zagreb. Prvi kolokvij iz Analognih sklopova i Elektroničkih sklopova
Grupa A 29..206. agreb Prvi kolokvij Analognih sklopova i lektroničkih sklopova Kolokvij se vrednuje s ukupno 42 boda. rijednost pojedinog zadatka navedena je na kraju svakog zadatka.. a pojačalo na slici
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
šupanijsko natjecanje iz zike 2017/2018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova)
šupanijsko natjecanje iz zike 017/018 Srednje ²kole 1. grupa Rje²enja i smjernice za bodovanje 1. zadatak (11 bodova) U prvom vremenskom intervalu t 1 = 7 s automobil se giba jednoliko ubrzano ubrzanjem
Kad tijelo obavlja rad, mijenja mu se energija. Promjena energije tijela jednaka je utrošenom radu.
Zadatak 6 (Daneja, ginazija) Loticu za tolni teni, olujera 5 i ae 5 g, uronio u odu na dubinu 0 c. Kad loticu iutio, ona ikoči iz ode na iinu 0 c iznad ode. Kolika e energija rito retorilo u tolinu zbog
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Dinamika tijela. a g A mg 1 3cos L 1 3cos 1
Zadatak, Štap B duljine i mase m pridržan užetom u točki B, miruje u vertikalnoj ravnini kako je prikazano na skii. reba odrediti reakiju u ležaju u trenutku kad se presječe uže u točki B. B Rješenje:
v =. . Put s koji automobil mora prijeći jednak je zbroju duljine automobila l 1 i duljine autobusa l 2. . Vrijeme t mimoilaženja iznosi: + l s s
adatak 4 (Marija, ginazija) utoobil duljine 4 ozi brzino 90 k/h, a autobu duljine 0 brzino 6 k/h Izračunaj koliko reena treba da e ioiñu Rješenje 4 l = 4, = 90 k/h = [90 : 6] = 5 /, l = 0, = 6 k/h = [6
akceleraciju koja je proporcionalna sili, a obrnuto proporcionalna masi tijela te ima isti smjer kao i sila. F m
Zadaak 4 (Ana, rednja škola) Tijelo vučeo alno ilo po horizonalnoj podlozi. Ako renje zaneario, ijelo e iba: A. alno brzino B. alno akceleracijo C. jednoliko uporeno D. ve većo akceleracijo Rješenje 4
MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2
(kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
5 MAGNETIZAM I ELEKTROMAGNETIZAM
MAGETIZAM I ELEKTROMAGETIZAM.1 Uvod u magnetizam.2 Magnetsko poje stanih magneta.3 Magnetsko poje eektrične struje.4 Magnetska indukcija. Magnetski tok i magnetska indukcija.6 Primjeri magnetske indukcije.7
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
2 k. Kad tijelo obavlja rad, mijenja mu se energija. Promjena energije tijela jednaka je utrošenom radu.
Zadaa (Lidija, ginazija) Tijelo ae g pui e da lobodno pada a počeno brzino /. Nađi ineiču energiju ijela polije 0.. (g = 9.8 / ) Rješenje = g = 0.00 g, v 0 = /, = 0., g = 9.8 /, =? Tijelo ae i brzine v
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Repetitorij-Dinamika. F i Zakon očuvanja impulsa (ZOI): i p i = j p j. Zakon očuvanja energije (ZOE):
Repetitorij-Dinamika Dinamika materijalne točke Sila: F p = m a = lim t 0 t = d p dt m a = i F i Zakon očuvanja impulsa (ZOI): i p i = j p j i p ix = j p jx te i p iy = j p jy u 2D sustavu Zakon očuvanja
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
m m. 2 k x k x k m
Zadata 4 (Daro, rednja šola) Na glatoj horizontalnoj podlozi uz abijenu oprugu ontante 5 N/ leži ugla ae 4.5 g. Kolio će brzino ugla odletjeti ao je iputio? Opruga je prije ipuštanja ugle abijena za.6
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
ZBIRKA POTPUNO RIJEŠENIH ZADATAKA
**** IVANA SRAGA **** ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE α www.i-raga.co FIZIKA za 8 razred Prijeri riješenih zadataka iz područja ELEKTRIČNE STRUJE U ovo dijelu zbirke obrađena
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
Rad, energija i snaga
Rad, energija i snaga Željan Kutleša Sandra Bodrožić Rad Rad je skalarna fizikalna veličina koja opisuje djelovanje sile F na tijelo duž pomaka x. = = cos Oznaka za rad je W, a mjerna jedinica J (džul).
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
2 / U t U t R m c t m c ( t t 2 1) 2. J 1 kg 4186 ( ) kg K
Zadatak 04 (edrana, gimnazija) Koiki mora biti otpor žice eektričnog kuhaa kojim itra vode temperature 0 C može za 8 minuta zavreti? Kuhao je prikjučeno na 0, a topinski kapacitet vode iznosi 486 kj/kgk
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
ELEKTROMAGNETSKE POJAVE
ELEKTROMAGETSKE POJAVE ELEKTROMAGETSKA IDUKCIJA IDUKCIJA SJEČEJEM MAGETSKIH SILICA Pojava da se u vodiču pobuđuje ii inducia eektomotona sia ako ga siječemo magnetskim sinicama, zove se eektomagnetska