ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 05 ΜΑΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ

Σχετικά έγγραφα
Απαντήσεις στα Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία:

2ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

ΛΥΣΕΙΣ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει

Μαθηματικά Προσανατολισμού Γ Λυκείου Ημερομηνία: 03 Μαρτίου 2019 Απαντήσεις

5o Επαναληπτικό Διαγώνισμα 2016

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΛΥΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 5 05/05/2016 ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Απαντήσεις στα Μαθηματικά Κατεύθυνσης 2016

Β 1 α τρόπος Έστω z=x+yi. Τότε για την δοσμένη σχέση έχουμε:

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2019

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 9 ΙΟΥΝΙΟΥ 2017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

και δεν είναι παραγωγίσιμη σε αυτό, σχολικό βιβλίο σελ. 99 Α3. Ορισμός σελ. 73 Α4. α) Λ β) Σ γ) Λ δ) Σ ε) Σ , δηλαδή αρκεί x 1 x

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2016

ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. 0, αν x

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ/ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 23 OKTΩΒΡΙΟΥ 2016 ΑΠΑΝΤΗΣΕΙΣ. e γν.αύξουσα 1 e e 0 e 1 e 1 0 e 1 e 1

2011 ΘΕΜΑΤΑ ΘΕΜΑ Γ 1. Δίνεται η συνάρτηση f: δύο φορές παραγωγίσιμη στο, με f (0) = f(0) = 0, η οποία ικανοποιεί τη σχέση:

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΘΕΜΑ 1 ο. Α1. Θεωρία, στη σελίδα 260 του σχολικού βιβλίου (Θ. Fermat). Α2. Θεωρία, στη σελίδα 169 του σχολικού βιβλίου.

2x 4 0, αδύνατη. x Πανελλαδικές Εξετάσεις Μαθηματικά Κατεύθυνσης 11 Ιουνίου Θέμα Α Α1. Σχολικό βιβλίο σελ.99

f(x) 0 (x f(x) g(x), lim f(x) lim g(x).

για κάθε x 0. , τότε f x στο Απάντηση είναι εσωτερικό σημείο του Δ και η f παρουσιάζει σ αυτό τοπικό μέγιστο, υπάρχει 0 τέτοιο, ώστε (x , ισχύει

Α4. δ. Α5. (i) Λάθος (ii) Λάθος (iii) Λάθος (iv) Σωστό (v) Λάθος. Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα 1. g x. και. f x g x έχουμε: Για την συνάρτηση

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

ΜΑΘΗΜΑΤΙΚΑ - ΠΛΗΡΟΦΟΡΙΚΗ

Μαθηματικά προσανατολισμού

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

( x) β ], παρουσιάζει ελάχιστη τιµή α, δηλαδή υπάρχει. ξ µε g( ξ ) = 0. Το ξ είναι ρίζα της δοσµένης εξίσωσης.

1o. Θ Ε Μ Α Β Ε. Γ Κ Ο Ρ Α. βρίσκεται ολόκληρη μέσα στο τετράγωνο ΑΒΓΔ.

ΠΑΡΟΡΑΜΑΤΑ ΣΤΟ ΒΙΒΛΙΟ ΤΟΥ Η. ΡΟΥΣΑΛΗ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. ΤΟ 3ο ΚΑΙ ΤΟ 4ο ΘΕΜΑ (ΕΚΔΟΣΕΙΣ ΠΑΤΑΚΗ)

Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ. f (f )(x) x f (f )(x) x f (f )(x) (f ) (x)

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

ΕΝΔΕΙΚΤΙΚΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Α4. α) Λάθος. Το θεώρημα ισχύει για διάστημα και όχι για ένωση διαστημάτων που είναι το σύνολο Α. Π.χ.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Μαθηματικά Προσανατολισμού Γ' Λυκείου

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 10 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Α2. Να διατυπώσετε το θεώρημα του Fermat. (Απάντηση : Θεώρημα σελ. 260 σχολικού βιβλίου) Μονάδες 4

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ 2015 ΣΤΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΘΕΡΙΝΩΝ ΤΜΗΜΑΤΩΝ

ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.

ρ3ρ ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ

f ( x) f ( x ) για κάθε x A

( ) ( ) lim f x lim g x. z-3i 2-18= z-3 2 w-i =Im(w)+1. x x x x

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2006 ΘΕΜΑ 1 ΛΥΣΗ. Η τελευταία σχέση εκφράζει μια εξίσωση κύκλου που επαληθεύεται για w=0.

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ & ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΠΑΛ (ΟΜΑΔΑ Β )

Μαθηματικά Κατεύθυνσης Γ Λυκείου Εξεταζόμενη Ύλη: Μιγαδικοί Αριθμοί Συναρτήσεις Όρια 19/10/2014 Απαντήσεις. Θέμα A. Θέμα Β

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2008

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Πανελλαδικές εξετάσεις Μαθηµατικά Προσανατολισµού Γ Λυκείου. Ενδεικτικές Απαντήσεις ϑεµάτων. Θέµα Β. (α) ϑεωρία. (ϐ) i, ii) ϑεωρία.

Λύσεις του διαγωνίσματος στις παραγώγους

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ. x x. = 3, x (2,5) 0 είναι η h. Α4. α) Σ β) Σ γ) Σ δ) Λ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

και γνησίως αύξουσα στο 0,

ΘΕΜΑ Α A1. Έστω μια συνάρτηση παραγωγίσιμη σε ένα διάστημα (α,β), με εξαίρεση ίσως ένα σημείο του x 0, στο οποίο όμως η f είναι συνεχής.

) της γραφικής παράστασης της f που άγονται από το Α, τις οποίες και να βρείτε. Μονάδες 8 Γ2. Αν ( 1) : y x, και ( 2

1, x > 0 η οποία είναι συνεχής και παραγωγίσιμη σε κάθε ένα από τα διαστήματα (, 0) και (0, + ) του πεδίου ορισμού της D f = R.

, για κάθε x. Άρα, υπάρχει σταθερά c τέτοια, ώστε G(x) F(x) c, για κάθε x. ΘΕΜΑ Β. x,y

Ασκήσεις Επανάληψης Γ Λυκείου

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ-ΛΑΘΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ & ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

( ) ( ) ( ) ( ) ( ) ( ) = α συνεπώς: α 2βα +β + α 2α + 1= 0 α β + α 1 = 0 α 1= α β = 0 1 β = 0 β = 1 + = + = συνεπώς: ( ) + 1 για κάθε x R.

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ (Κεφάλαιο 1, 2, 3)

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 10 Ιουνίου 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. (Ενδεικτικές Απαντήσεις)

z 3i w = z +3i + z 3i. z 3i άρα z 3i = z 3i = z 3i=w. Άρα w IR. z 3i =z-3i+ z 3i (z 3i)(z 3i) z 3i z 3i Β4. z w x yi 2x x yi ( x) y x y z

ΜΑΘΗΜΑ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ

7 η ΕΚΑ Α ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 61. Έστω συνάρτηση f παραγωγίσιµη στο R, τέτοια ώστε. (e + 1)dt = x 1

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ΑΠΑΝΤΗΣΕΙΣ. lim = 0. Βλέπε σελίδα 171 σχολικού. σχολικού βιβλίου.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Δευτέρα 11 Ιουνίου 2018 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

γ) Ισχύει lim = 0. ΑΠΑΝΤΗΣΕΙΣ συνx x δ) Αν η f είναι αντιστρέψιμη συνάρτηση, τότε οι γραφικές παραστάσεις C και C των συναρτήσεων f και

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 2 Μαΐου 2019 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

x x f x για κάθε f x x ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α1. α) Σχολικό σελίδα 15

ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 29 ΜΑΡΤΙΟΥ 2015 ΑΠΑΝΤΗΣΕΙΣ

ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΛ 2019

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

Transcript:

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΗΜΕΡΟΜΗΝΙΑ: 5 ΜΑΙΟΥ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Θεωρία Σχολικού Βιβλίου σελ 5 Α ) Θεωρία Σχολικού Βιβλίου σελ 46-47 ) Θεωρία Σχολικού Βιβλίου σελ 8 Α3 ) Λ ) Σ 3) Λ 4) Σ 5) Σ ΘΕΜΑ Β B Έχουμε ότι: f f για κάθε, Για = η () γίνεται: () f f f f f f Για = η () γίνεται: f f () Θεωρούμε τη συνάρτηση g, R και g για κάθε R Οπότε η g είναι γν αύξουσα στο R (άρα και - ) και επειδή μοναδική ρίζα της εξίσωσης g()= g "" Από () g f g f g f B ) Παραγωγίζοντας τα δύο μέλη της () έχουμε ότι: g η = είναι η () f f f f f f f > για κάθε,, οπότε η f είναι γν αύξουσα στο [,], άρα είναι -, οπότε αντιστρέφεται f Επίσης A f A f,f, f f f συνεχής στο [,] ) Θέτοντας στην () όπου την f προκύπτει ότι f f f f f Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα

f για κάθε, 3) Θέτουμε f u f u και Για =: Για =: u f d f u du u f Oπότε: f d u f u du uf u f u du f u du f d Β3 Για κάθε,, με < αύξουσα στο [,] Συνεπώς για κάθε, : f f f f f f f δηλαδή η f είναι γν f f f f f f που ισχύει Β4 Επειδή f() για κάθε, το ζητούμενο εμβαδόν είναι: Ε(Ω)= 8 f d f d d f d 8 8 8 8 8 8 8 8 8 54 8 9 ΘΕΜΑ Γ Γ Aφού η γραφική παράσταση της f διέρχεται από την αρχή των αξόνων ισχύει ότι f()= Έχουμε ότι: g g g c g c g c c, c,c R Όμως η ευθεία y= είναι ασύμπτωτη της C g στο οπότε g c c c lim lim lim c c c c και lim g lim c lim c c c Συνεπώς g Eπίσης g f f g f f f f Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα

f f c f c, R f Για =: f()=+c c οπότε f, R Γ Έχουμε ότι και g, R g Eπίσης g και g - + g() OE Για = η g παρουσιάζει ολικό ελάχιστο που είναι το g()=, άρα g Έχουμε ότι Επίσης f f και f f - + f() Έστω Α =, και Α = Τότε f(a ) εφόσον f f συνεχής στο Α f συνεχής, lim f, lim f = lim f f, lim f lim lim lim f lim επειδή Άρα f A f A f A, f g και για κάθε R f f A, και f(a ) f (), lim f, f συνεχής στο Α επειδή lim DLH lim lim lim Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα 3

Γ3 Έχουμε ότι: g (, ) g g g 5 5 ln ln ln ln ln ln ln 5 () 5 Έστω h()=ln, > H h είναι παραγωγίσιμη στο, με h άρα και στα 5,,, Επίσης h στο (, ) οπότε h γν φθίνουσα Από Θεώρημα Μέσης Τιμής Υπάρχει ένας τουλάχιστον ξ 5, τέτοιος ώστε Υπάρχει ένας τουλάχιστον ξ, τέτοιος ώστε h ξ ln ln 5 h ξ ln ln h Όμως ξ ξ h ξ h h ξ ln ln ln ln 5 δηλαδή η () ισχύει Γ4 Επειδή 3 3 3 3 g για κάθε R (η ισότητα ισχύει μόνο για =) πρέπει g 3 3 ή και g ή Άρα = α α α () α α α Γ5 f f α Επειδή α> f α, Οπότε Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα 4 g 3 g f α f A και f γν φθίνουσα στο Α η εξίσωση () έχει μία ακριβώς ρίζα στο Α =, f α f A και f γν αύξουσα στο Α η εξίσωση () έχει μία ακριβώς ρίζα στο Α =,, διαφορετική του Άρα η εξίσωση () έχει δύο ακριβώς ρίζες στο R, μία στο δηλαδή ετερόσημες ΘΕΜΑ Δ Δ Έχουμε ότι: f f f f f f f f f, και μία στο,,

Έστω h, R f Η h είναι παραγωγίσιμη στο R, άρα και στο [,] ως πράξεις παραγωγίσιμων συναρτήσεων με f h f h και f h 4 f f f f f 3f f 3 3 οπότε Όμως f f f f h 3 4 h f f Aπό Θεώρημα Roll προκύπτει ότι υπάρχει ένας τουλάχιστον, f h f τέτοιος ώστε f f g g t f t dt ln Δ Ισχύει ότι: Για () f f g g t f t dt ln η () γίνεται: Δ f f g g t f tdt ln g g t f tdt ln () Η g είναι παραγωγίσιμη στο R, άρα και στο [, ] με f g Aπό Θεώρημα Μέσης Τιμής προκύπτει ότι υπάρχει ένας τουλάχιστον ξ, go g f ξ gξ gξ g g g g B Tρόπος: Επειδή g o o f g > για κάθε R έχουμε ότι g γν αύξουσα στο R Οπότε g g g g Συνεπώς από () t f t dt ln t f t dt ln τέτοιος ώστε Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα 5

Δ3 Επειδή t f t dt ln η () γίνεται: f f f f οπότε υπάρχει σταθερός αριθμός c τέτοιος ώστε f f c, για κάθε R f Συνεπώς f, R c Επίσης Ισχύει ότι: c c για κάθε R, δηλαδή c> t f tdt ln t dt ln ln t c ln t c c c ln c ln c ln ln ln c c c Δ4 ) Ισχύει ότι: F f, R Άρα F f για κάθε R, άρα η F είναι γνησίως αύξουσα στο R Οπότε και F F F F F F F F() - + Το χωρίο περικλείεται από την C F, τον και τον y y (δηλ την ευθεία =) οπότε στο [,] F()< και το ζητούμενο εμβαδόν είναι Ε Fd Fd F Fd F d ln F ln F ln ln Επίσης F FF δεν είναι F F F F F F d παντού στο[,] ln Fd Fd E F F F ln F ln ) Για κάθε > ισχύει ότι: F ln F ln Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα 6

Eπίσης έχουμε ότι: F F lim lim lim DLH u ln u ln ln u ln u u ln u lnu lim lim lim lim lim lim lim DLH DLH u u u u u lim u lim u οπότε F ln lim F ln lim u u u u u u u u και Τις απαντήσεις επιμελήθηκαν οι καθηγητές: Γασπαράτος Ανδρέας Ίμπος Χρήστος Καψαλιάρης Στέλιος Μεταξάς Κώστας Παπαθανασίου Νίκος Σιταρίδης Σπύρος Φροντιστήρια ΣΥΣΤΗΜΑ Σελίδα 7