RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

Σχετικά έγγραφα
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

IZVODI ZADACI (I deo)

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Ispitivanje toka i skiciranje grafika funkcija

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

3.1 Granična vrednost funkcije u tački

Elementi spektralne teorije matrica

41. Jednačine koje se svode na kvadratne

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

Analitička geometrija

7 Algebarske jednadžbe

Operacije s matricama

1.4 Tangenta i normala

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

II. ANALITIČKA GEOMETRIJA PROSTORA

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Računarska grafika. Rasterizacija linije

Na grafiku bi to značilo :

SISTEMI NELINEARNIH JEDNAČINA

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Izvod po pravcu i vektor gradijenta. Seminarski rad A M271

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

1.1 Određivanje položaja i trajektorije materijalne tačke 1 KINEMATIKA

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Osnovne teoreme diferencijalnog računa

1.1 Tangentna ravan i normala površi

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Linearna algebra 2 prvi kolokvij,

ELEMENTI TEORIJE SKALARNIH I VEKTORSKIH POLJA

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

TRIGONOMETRIJA TROKUTA

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

Dvanaesti praktikum iz Analize 1

APROKSIMACIJA FUNKCIJA

5. Karakteristične funkcije

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Trigonometrijske nejednačine

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

IZVODI ZADACI (I deo)

Računarska grafika. Rasterizacija linije

Riješeni zadaci: Nizovi realnih brojeva

8 Funkcije više promenljivih

ELEKTROTEHNIČKI ODJEL

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

4 Numeričko diferenciranje

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Prediktor-korektor metodi

numeričkih deskriptivnih mera.

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

Geometrija (I smer) deo 1: Vektori

Zavrxni ispit iz Matematiqke analize 1

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Otpornost R u kolu naizmjenične struje

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

I Pismeni ispit iz matematike 1 I

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

OTPORNOST MATERIJALA

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Teorijske osnove informatike 1

KRIVOLINIJSKO KRETANJE TAČKE U RAVNI OPISANO U PRAVOUGLOM DEKARTOVOM KOORDINATNOM SISTEMU. JEDNAČINE KRETANJA. LINIJA PUTANJE. PUTANJA.

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora

5 Ispitivanje funkcija

Matematička analiza 1 dodatni zadaci

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

radni nerecenzirani materijal za predavanja

TRIGONOMETRIJSKE FUNKCIJE I I.1.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

Zbirka rešenih zadataka iz Matematike I

METODA SEČICE I REGULA FALSI

Funkcije dviju varjabli (zadaci za vježbu)

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

Sistem sučeljnih sila

Riješeni zadaci: Limes funkcije. Neprekidnost

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

Transcript:

RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B, C) M( x, y, z) M ( x, y, z ) O uv uuuuuv u Neka su i vektoi položaja tačaka M i M. Odavde je: MM = a kako je vekto nabc (,, ) nomalan na avan π, to njihov skalani poizvod moa biti jednak. u n ( ) = Ovo je jednačina avni π u vektoskom obliku. uuuuuv u A kako je MM = = ( x x, y y, z z) i n= ( A, B, C) dobijamo : u n ( ) = ( A, B, C) ( x x, y y, z z ) = Ax ( x) + By ( y) + Cz ( z) = A ovo je jednačina avni u skalanom obliku.( odnosno koz jednu datu tačku)

Pime. Napisati jednačinu avni koja sadži tačku M(2,,3) i nomalna je na vekto n = (,,2) : Ax ( x) + By ( y) + Cz ( z) = ( x 2) ( y ) + 2( z 3) = x 2 y+ + 2z 6= x y+ 2z 7= Odavde dobijamo i opštu jednačinu avni : Ax + By + Cz + D = A + B + C >, gde je Ako su nam date ti tačke M( x, y, z), M2( x2, y2, z2), M3( x3, y3, z 3), onda jednačinu avni tažimo: n M3( x3, y3, z3) π M( x, y, z) u u 3 u 2 M2( x2, y2, z2) O u u u ( ) [( ) ( )] = 2 3 u vektoskom obliku i x x y y z z x x y y z z = 2 2 2 x x y y z z 3 3 3 u skalanom obliku. 2

Pime 2. Date su tačke A(-,2,-), B(,-4,3) i C(,-,-2). Napisati jednačinu avni koju one odedjuju. x x y y z z x+ y 2 z+ x+ y 2 z+ x x y y z z = + 4 2 3+ = 6 4 = 2 2 2 x x y y z z + 2 2+ 2 3 3 3 3 Razvijamo je po pvoj vsti... ( x+ )(6 + 2) ( y 2)( 8) + ( z+ )( 3+ 2) = 8( x+ ) + 9( y 2) + 9( z+ ) = 8x+ 8 + 9y 8+ 9z + 9= 8x+ 9y+ 9z+ 9 =.../:9 2x + y + z + = U situacijama kad tebamo nactati avan, najbolje je koistiti segmentni oblik: z x y z + + = a b c C(,, c) B(, b,) y x Aa (,,) Naavno, a,b i c su odsečci na x, y i z osi. Pime 3. Ravan 2x+3y +6z - 2 = pebaciti u segmentni oblik i skiciati je. : 3

2x + 3y+ 6z 2 = Kako na desnoj stani moa biti, adimo sledeće: 2x+ 3y+ 6z = 2.../ :2 2x 3y 6z + + = x y z + + = 6 4 2 z C(,,2) B(, 4,) y A(6,,) x Pime 4. a) Odediti jednačinu avni koja sadži koodinatni početak b) Odediti jednačinu avni koja je paalelna sa Oz osom c) Odediti jednačinu avni koja je paalelna sa Oxy avni a) Kako koodinatni početak sadži tačku O(,,), njene koodinate možemo zameniti u opštu jednačinu avni: Ax+By+Cz+D= A + B + C + D= D= Dakle, tažena jednačina te avni je Ax+By+Cz = b) Ako je avan paalelna sa Oz osom, onda je u vektou nomalnosti te avni n= ( A, B, C) je n= ( A, B,) pa je avan Ax+By+D= siguno C=, to jest, on c) Ako je avan paalelna sa Oxy avni onda je A= i B=, pa je avan Ax+By+Cz+D= Cz+D= Cz = - D D z = Naavno, avan z = je ustvai baš Oxy avan. C 4

Rastojanje tačke M ( x, y, z ) od avni Ax+By+Cz+d = se ačuna po fomuli: d = Ax + By + Cz + D A + B + C Naavno, apsolutna vednost nam obezbedjuje da to astojanje ne bude negativno. Pime 5. Odediti astojanje tačke A(,-,3) od avni 2x-3y+2z 4 = d = Ax + By + Cz + D A + B + C d = 2 3( ) + 23 4 2 + ( 3) + 2+ 3+ 6 4 d = 4+ 9+ 7 7 7 4 7 4 4 d = = = = = 4 4 4 4 4 2 Kakav može biti uzajamni položaj dve avni? Posmatajmo dve avni Ax + By + Cz + D = i Ax 2 + B2y+ C2z+ D2 = uv uuv Naavno, njihovi vektoi nomalnosti su n( A, B, C) i n2( A2, B2, C2). i) Ravni su paalelne samo ako su njihovi vektoi nomalnosti kolineani.(često se u zadacima uzima da one imaju isti vekto onda) n 2 α 2 n α u uu Uslov paalelnosti bi bio n n2 = ili n u = λ n uu 2 (kolineani, lineano zavisni) ili A B C = = A B C 5

ii) Ako avni nisu paalelne, onda se one seku pod nekim uglom. α 2 ϕ n 2 α ϕ n Ugao izmedju dveju avni je ugao izmedju njihovih nomalnih vektoa. Koisteći skalani poizvod ( pogledaj taj fajl), ugao odedjujemo po fomuli: u uu n n2 AA 2 + BB 2 + CC 2 cosϕ = u uu = n n A + B + C A + B + C 2 Specijalni slučaj je kada se avni seku pod pavim uglom: α 2 n 2 n α u uu Onda važi da je n n2 = 6

Pime 6. Odediti jednačinu avni koja polazi koz tačke A(2,3,) i B(-,2,-2) i nomalna je na avan α : 2x-3y+z-5= Najpe da postavimo zadatak. β nβ A nα B Označimo taženu avan sa β. uuu Tačke A i B pipadaju toj avni i fomiaju vekto AB = ( 2,2 3, 2 ) = ( 3,, 3) uuu uu Ovaj vekto AB je nomalan na vekto nomalnosti nβ avni β. A kako u zadatku kaže da su ove dve avni uu uu nomalne, onda je i n β nomalno na nα. Dakle: uu uuu uu uu n AB i n n, a ovo nam govoi ( pogledaj fajl vektoi u β β α uu postou) da taženi vekto n β možemo naći pomoću vektoskog poizvoda! uu uu uuu n = n AB β n β α i j k uu = 2 3 = i (9 + ) j ( 6 + 3) + k ( 2 9) = i+ 3 j k = (,3, ) 3 3 Dalje koistimo jednačinu avni koz jednu tačku ( sve jedno je dal ćemo uzeti tačku A ili tačku B) Uzmimo ecimo tačku A(2,3,) Ax ( x) + By ( y) + Cz ( z) = ( x 2) + 3( y 3) ( z ) = x 2 + 3y 9 z+ = x+ 3y z 8 = I dobili smo taženu avan. 7

Skup svih avni koje sadže datu pavu p je pamen avni. Jednačina pamena je data peko dve pave koje pipadaju pamenu i paameta: Ax+ By+ Cz+ D + λ( Ax+ B y+ C z+ D ) = 2 Pime 7. U pamenu avni odedjenom avnima 3x+y+z-5= i x-y-z+2= naći avan koja je nomalna na pvu od datih avni. Ofomimo najpe pamen : 3x+ y+ z 5 + λ( x y z+ 2) = Sedimo ovo da nadjemo vekto nomalnosti tog pamena...( sve uz x, pa uz y, pa uz z...) 3x+ y+ z 5+ λx λy λz+ λ2= (3 + λ) x+ ( λ) y+ ( λ) z+ 2λ 5 = uuu Odavde je npr = (3 + λ, λ, λ) uu Za pvu avan 3x+ y+ z 5 = vekto nomalnosti je ni = (3,,) uu uuu Iskoistimo uslov nomalnosti: n n = (3,,) (3 + λ, λ, λ) = 3(3 + λ) + ( λ) + ( λ) = 9+ 3λ+ λ+ λ = λ = Vatimo se sada u pamen i zamenimo dobijenu vednost: 3x+ y+ z 5 + λ( x y z+ 2) = 3x+ y+ z 5 ( x y z+ 2) = 3x+ y+ z 5 x+ y+ z 22 = 8x+ 2y+ 2z 27 = je ešenje! I PR 8

9