Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike DERIVACIJA Pojam derivacije Glavne ideje koje su vodile do današnjeg shvaćanja derivacije razvile su se u 7 stoljeću kada i započinje razvoj ininitezimalnog računa (dierencijalnog i integralnog računa Najvažnija imena na tom području bila su: - Isaac Newton (64-77 engleski izičar i matematičar; - Gotried Wilhelm Leibnitz (646-76 njemački matematičar Svaki je od njih došao do pojma derivacije ali različitim putem rješavajući različiti problem Newton je rješavao izikalni problem (problem brzine: Kako deinirati brzinu gibanja nekog tijela u zadanom trenutku t? Neka je: s s(t prijeđeni put kao unkcija vremena i s( t + t s( t v prosječna brzina na intervalu [ t t + t] t Što je t manji prosječna brzina v je vjernija tj bliža brzini u trenutku Zbog toga ima smisla deinirati s( t + t s( t v( t lim t t Leibnitz je rješavao geometrijski problem (problem tangente: Kako konstruirati odrediti tangentu na danu krivulju u nekoj točki? Neka je ( unkcija čiji je gra promatrana krivulja Koeicijent smjera sekante točkama ( c ( c ( c ( c + + : t s Hc+ L G ( c + ( c tgβ HcL β Hc+ LHcL α c c+ 8
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike Što je manji sekanta je bliža tangenti Odavde slijedi da koeicijent smjera tangente u točki ( c ( c ima smisla deinirati sa ( c + ( c tgα lim Deinicija Neka je I R otvoren interval i : I R realna unkcija Ako je c I i R tako da vrijedi c + I onda broj ( c + ( c zovemo prirast (promjena unkcije Često pišemo ( c ( c + + Deinicija Neka je I R otvoren interval : I R zadana realna unkcija i c I Kažemo da je unkcija derivabilna (sinonim:dierencijabilna u točki c I ako postoji limes lim lim ( c + ( c U protivnom kažemo da nije derivabilna (nije dierencijabilna u točki c Realni broj ( c + ( c zovemo derivacija unkcije u točki c i označavamo ( c D ( c ( c lim d ( c ili d Kažemo da je derivabilna na I gdje je I otvoren interval ako je ona derivabilna u svakoj točki c I Tada možemo deinirati novu unkciju : I R a koju zovemo prva derivacija unkcije Ako ima derivaciju u nekoj točki c I onda vrijednost ( c ( ( c zovemo druga derivacija unkcije u točki c Analogno deiniramo (c Induktivno možemo deinirati n-tu derivaciju unkcije u točki c: ( n ( n ( c ( ( c n N Primjer: Odrediti po deiniciji derivacije danih unkcija c ; 4 ; ; 5 ; ; 6 ln 9
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike Ad ( + ( + lim ( + ( + lim L Ad 4 ( + lim + ( + lim + L Teorem Neka je I R otvoren interval i unkcija : I R derivabilna u točki c I Tada je neprekidna u točki c Obrat ne vrijedi! Dokaz se može naći u: Javor Matematička analiza str8 Primjeri: : R R - neprekidna unkcija Izračunajmo derivaciju u točki < (? lim ( + lim?»» lim lim+ nema derivaciju u ali je neprekidna u
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike R R sin : - neprekidna unkcija Promatramo derivacije u nultočkama unkcije: kπ k Z Na primjer izračunajmo derivaciju u točki? lim ( + lim sin sin lim sin?»sin» π π π π - lim lim+ sin sin lim sin ne postoji Dierencijal unkcije Neka je I R otvoren interval : I R unkcija i I tj postoji ( ( c + ( c c lim lim To znači da se za malo kvocijent ( c + ( c + ε ε ovisi o Dakle ako postoji ( c c Pretpostavimo da postoji ( c malo razlikuje od ( c pa možemo pisati ε ï & lim ε ( promjena unkcije se može zapisati kao ( c + ε G d t c c+
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike Obratno ako se promjena unkcije u točki c može zapisati u obliku A + ε & lim ε A R onda postoji derivacija unkcije u točki c i ( c A Slijedi: Za malo je i ε ( malo (unkcija i tangenta se malo razlikuju pa možemo c tj aproksimirati sa ( c + ε ( c zanem aru j emo Deinicija Dierencijal unkcije u točki c je unkcija d deinirana sa ( c d Upotrijebimo li d d ï d ( c d tj ( c d ï d Primjer: Izračunati približno 8 pomoću dierencijala Upotrijebit ćemo d ( ( c+ c c d c+ c d+ c U našem slučaju c 6 ( c 6 6 ( c ( c+ ( 6+ ( 8? 8 + 6 7 6 Zadaci: o Izračunati približno sin5 pomoću dierencijala Izračunati dierencijal unkcije + 4
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike Pravila deriviranja Teorem (Derivacija zbroja razlike produkta i kvocijenta Ako unkcije i g imaju derivacije u točki onda vrijedi: ± g ± g ; ( + ; ( ( g g g λ λ λ R; ( g g g ( g g (4 Dokaz Ad ( g( + ( g ( + g( + g g lim lim ( + ( + + ( + ( + g g g g lim ( ( + g + g lim g ( + + g + g Slično se provjeravaju ostali slučajevi Teorem (Derivacija kompozicije unkcija Neka su unkcije i g takve da postoji unkcija h o g Ako unkcija g ima derivaciju u točki a unkcija u točki ( g ( g g g onda unkcija o g ima derivaciju u točki i vrijedi o - lančano pravilo Dokaz h( + h g( + g h lim lim ( + ( g( + g g( + g g( + g g( + g g g g + g lim ( + g g ( lim g + g Specijalni slučaj kompozicije: Ako je g onda je id o o tj
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike Prema lančanom pravilu slijedi ( o ( ( ( ( Ovime je dokazan teorem koji slijedi: ï Teorem (Derivacija inverzne unkcije Ako je strogo monotona i neprekidna unkcija na otvorenom intervalu I R i ako ima u točki I derivaciju onda njena inverzna unkcija ima derivaciju u točki Primjeri: i vrijedi ( ( e ( ln e ln e ( ( ( Derivacije elementarnih unkcija ( Polinomi c n? n n ( + n N lim ( ( ( ( n n n n + + + + + + + L + lim ( ( ( n n n n n lim + + + + + + L + n a + a + + a+ a na + n a + L+ a tj ( L n n n n n n n n derivacija polinoma je polinom 4
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike ( Racionalne unkcije p gdje su p i g polinomi q q p q q p ( Eksponencijalna unkcija a < a + a a a a a lim lim lim tj derivacija racionalne unkcije je racionalna unkcija ( a ( + ln a a ln a lim a ln a lim ψ ln( ψ + ln( + ln a a ln a lim a ln a a ln a a ln a ψ ln( + lim ln( + ln lim ( + ψ ψ 4444 ( a a lna Derivacija eksponencijalne unkcije eksponencijalna je unkcija (4 Logaritamska unkcija log < a a Logaritamska unkcija je inverzna eksponencijalnoj: a loga Prema pravilu za derivaciju inverzne unkcije slijedi ( loga loga tj a lna a lna lna a ( log a lna (5 Opća potencija c c R e cln Prema pravilu za derivaciju kompozicije unkcija slijedi cln c c e c c c tj c c c a e 5
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike (6 Trigonometrijske unkcije sin a ( sin + sin lim lim sin lim cos + cos cos tj sin cos b cos ( cos sin + + + cos sin sin tg cos cos cossin ( sin tj cos cos ( tg cos c cos ctg sin ( ctg sin d Zadatak: Izvesti derivacije unkcija cos i ctg (7 Ciklometrijske unkcije Deriviraju se prema pravilu za derivaciju inverznih unkcija π π a ( arc sin arc sin sin ( tj cos sin sin ( arc sin b ( arccos arccos cos ( π ( arccos 6
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike π π arctg tg ( tj ( tg sin + cos + tg + cos cos ( arctg + c ( arctg d ( arcctg arcctg ctg ( π + ( arcctg Zadatak: Izvesti derivacije unkcija arccos i arcctg (8 Hiperbolne unkcije a sh e e b ch e + e sh c th ch e + e e e s ch sh ch ch ch ( sh h ( ch ch sh ch ( th ch sh sh ch sh sh sh d cth ( cth (9 Area unkcije Deriviraju se direktno ili prema pravilu za derivaciju inverznih unkcija a ( Arsh ln( + + Arsh sh + + ( + ili + + + + + + + ( ch sh + sh + + ( Arsh b ( Arch ln( + ( Arch 7
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike + Arth ln ( Arth c + Arcth ln ( Arcth d Logaritamska derivacija Neka je zadana je unkcija g h( i neka je > Uz pretpostavku da je g > h ( g ln h ln g / h ln g + h ln g Tražimo logaritmiramo zadanu unkciju: g g g h ln g + h - logaritamska derivacija g Primjer: Derivacija unkcije Zadaci: /ln ln ln / ln + ( ln + cos ( sin Derivirati unkciju Derivirati unkciju > 8
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike Derivacija implicitno zadane unkcije Ponovimo: Skup svih uređenih parova realnih brojeva koji zadovoljavaju jednadžbu oblika F ( određuje neki podskup od R (npr kružnica elipsa ali općenito ne mora biti gra neke unkcije Ako postoji unkcija takva da je F ( kažemo da je unkcija zadana implicitno sa F( Derivaciju takve unkcije možemo odrediti bez da eksplicitno određujemo unkciju tj ( F F - F derivirano po F - F derivirano po F F Primjer: F F ( + + Derivacija parametarski zadanih unkcija Ponovimo: Neka su zadane realne unkcije Za svaku vrijednost varijable (parametra t I dobivamo uređen par brojeva ( ϕ( t ψ ( t koji predstavlja točku u ravnini Ako postoji t ϕ i ψ ( t ψ ϕ Sada nije teško odrediti derivaciju: ψ ϕ / ϕ ( t ϕ onda je d ψ ϕ ϕ ψ ( t d 44 44 ϕ t ( t 9
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike Dakle ( t ( t d ψ d ϕ d d t & dt dt & t Oznake: ϕ ( t & ( t ψ ( t & ( t ( Teorem dϕ Neka su ϕ( t i ψ ( t derivabilne unkcije na intervalu I R i neka je na I dt Tada vrijedi: ( unkcije ϕ( t i ψ ( t za t I deiniraju unkciju ψ ϕ ( t ( unkcija ψ ( ϕ je derivabilna i vrijedi ( & t I & ( t i Primjeri: Odrediti eksplicitni oblik unkcije koja je zadana parametarskim jednadžbama 5t i 4 + t + 5t t 5 4 + 5 5 5 5 4 + t t R Odrediti derivaciju unkcije iz prethodnog primjera + 5t 4 + t 5 Odrediti derivaciju unkcije koja je zadana parametarski sa cost cos t ctgt sint sint Druga derivacija parametarski zadane unkcije d d d d dt ( & & &&& &&& &&& &&& ( t tj d d d & dt & d ( & d ( & dt &&& &&& & 5
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike Primjeri: + 5t Odrediti drugu derivaciju unkcije zadane parametarski sa t R 4 + t + 5t & ( t 5 && ( t 5 4+ t & ( t && ( t 5 acost Odrediti drugu derivaciju unkcije zadane parametarski sa t [ π ] bsint a cos t & ( t a sint && ( t a cos t b sint & ( t bcos t && ( t b sint b sint a sint + a cos t bcos t ab b asint a sin t a sin t Primjena prve derivacije Od raznih primjena prve derivacije na ovom ćemo mjestu navesti sljedeće: a Jednadžba tangente i normale u točki krivulje ( T - točka graa unkcije G n T H L t Tangenta u točki T : t ( ( Normala u točki T : n Primjer: Odrediti jednadžbu tangente i normale krivulje u točki T Točka je na krivulji l T l l ( Tangenta u točki T : ( ( t
Geodetski akultet dr sc J Beban-Brkić Predavanja iz Matematike Normala u točki T : ( n + b Jednadžba tangente iz neke točke izvan krivulje ( a b A - točka izvan graa krivulje G AHabL t Odredimo jednadžbu tangente nekom nepoznatom točkom ( sadrži točku A Jednadžba tangente: t ( ( T krivulje tako da Tražimo diralište tangente i krivulje: a b t b a tj prva koordinata dirališta A ( Primjer: Odrediti jednadžbu tangente iz točke ( l l Tangenta točkom T : Točka ( leži na tangenti l A na krivulju ( ( ( ( A ( ( ( ( ( Iz posljednje jednakosti odredimo dirališta tangente i krivulje: & Tangenta točkom T : Tangenta točkom T : ( ( l ( 7 7 7( l 7 54