Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1

2

3

4

5

6

7

8

9

10 B G

11

12

13 [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20 f q p; p = q = 1; 2; 3; 4; sx)

14 t = 1; N j" N j ku N k; Nt = 1; t: Nt = 1; p Nt = 1; p Nt = 1; p ku N k; Nt = 1; t: Nt = 1; p

15 a; b 2 R; a < b; f : [a; b] R! R y 0 2 R: y : [a; b]! R; y 0 t) = f t; yt) ; a t b; ya) = y 0 :

16 f t; y) 2 [a; b] R: f 2 C [a; b] R): y 2 C 1 [a; b]; ya) = y 0 ; f y ỹ ỹ 0 y 0 ; jy 0 ỹ 0 j ky ỹk [a; b]; f y; y 0 t) = pt)yt) + qt); a t b; ya) = y 0 : p; q 2 C [a; b]; Z yt) = R t t a hy ps) ds 0 + qs) R i s a p) d ds ; a t b; a Z yt) = R t t a ps) ds y 0 + qs) R t s p) d ds; a t b: a

17 p = 0; y 0 s) ps)ys) = qs) R s 0 a p) d ys) = R s a p) d qs): a t; f y 0 = y 2 ; 0 t 2; y0) = 1: yt) y 0 t) 2 = 1 d 1 yt) dt yt) = 1: 0 t; 1 yt) + 1 y0) = t yt) = 1 1 t : 0 t < 1 yt) = 1 1 t ; yt)! 1 t! 1 : [0; 2]: y 0 = p jyj; 0 t 1; y0) = 0;

18 y y 1 y = 1 [0; 1): 1t 1 t yt) := 0; 0 t 1; yt) := y 0 ; 0 t 1 2 ; t 1 2 )2 ; < t 1: t? y 1 t

19 Ύπαρξη και μοναδικότητα λύσεων για Σ.Δ.Ε. f : [a; b] R! R y; t; 9L 0 8t 2 [a; b] 8y 1 ; y 2 2 R ˇˇf t; y1 )f t; y 2 )ˇˇ Ljy1 y 2 j: y 0 2 R; T : C [a; b]! C [a; b]; T xt) := T x)t) := y 0 + Z t a f s; xs) ds; a t b: y [a; t] y y = Ty: y 2 C [a; b] ya) = y 0 : f [a; b] R; y [a; b]: y 0 t) = f t; yt) ; t 2 [a; b]; y y 2 C [a; b]; T C [a; b] k k; kxk := jxt)j 2Lt : atb kk C [a; b]: C [a; b]; kk 1 ) C [a; b]; kk) T C [a; b]; kk); T

20 x; z 2 C [a; b] t 2 [a; b]; jt xt) T zt)j = ˇˇ Z t f s; xs) f s; zs) dsˇˇ Z t a a ˇ ˇf s; xs) f s; zs) ˇˇ ds L Z t a jxs) zs)j ds; jt xt) T zt)j L Z t a Lkx zk jxs) zs)j 2Ls 2Ls ds Z t a 2Ls ds 1 2 kx zk2lt ; kt x T zk 1 kx zk 8x; z 2 C [a; b] 2 Lb a) 1/2 k k Lb a) k k: T ı T ı ı T n n f t; y) := y 2 p; q 2 C [a; b] f t; y) := pt)y + qt) f t; y) := pt) y f 9M 2 R 8t 2 [a; b] 8y 2 R ˇˇfy t; y)ˇˇ M; f L := M

21 f f y) := p jyj; y 1 ; y 2 : [a; b]: [a; b] [a; b 0 ]; b 0 : Τοπική ύπαρξη και μοναδικότητα λύσεων για Σ.Δ.Ε. c > 0 f 2 C [a; b] [y 0 c; y 0 + c] : f [a; b] [y 0 c; y 0 + c] y; t; 9L 0 8t 2 [a; b] 8y 1 ; y 2 2 [y 0 c; y 0 + c] ˇ ˇf t; y1 ) f t; y 2 )ˇˇ Ljy1 y 2 j; [a; b 0 ]; A := atb y 0 cyy 0 +c ˇ ˇf t; y)ˇˇ b 0 := b; a + c A : f 2 C [a; b] [y 0 c; y 0 + c] ; [y 0 c; y 0 + c]; f; f 2 C [a; b] R ; [a; c]; c > a: f y) := p jyj y

22 f f y 0 ; z 0 2 R; y 0 = f t; y); a t b; ya) = y 0 ; z 0 = f t; z); a t b; za) = z 0 : = f y; z 2 C 1 [a; b]; "t) := yt) zt); t 2 [a; b]; " 0 t) = f t; y) f t; z): ˇ ˇ"t)ˇˇ 2; "t) "t) "t)" 0 t) = f t; y) f t; z) "t); t 2 [a; b] "t)" 0 t) = 1 d 2 dt "2 t) ˇˇf t; y) f t; z)ˇˇ ˇˇ"t)ˇˇ L" 2 t): " 2 t) =: 't) ' 0 2L' 0; t 2 [a; b]: 2Lt ; 2Lt ' 0 t) 2L 2Lt 't) = d dt 2Lt 't) 0; t 2 [a; b]:

23 2Lt 't) [a; b]: 2Lt 't) 2La 'a); a t b; ˇ ˇ"t)ˇˇ Lta)ˇˇ"a)ˇˇ; a t b; atb ˇ ˇyt) zt)ˇˇ Lba) jy 0 z 0 j: y k k 1 ; ˇ kyk 1 := ˇyt)ˇˇ; y 0 2 R: atb L: = f 8t 2 [a; b] 8y 1 ; y 2 2 R f t; y 1 ) f t; y 2 ) y 1 y 2 ) 0: f " 0 t) = f t; y) f t; z) "t) "t)" 0 t) = f t; y) f t; z) "t);

24 t 2 [a; b] "t)" 0 t) = 1 d 2 dt "2 t) 0: " 2 t: j"j; ˇ ˇyt) zt)ˇˇ jy0 z 0 j: atb f f [a; b]r: [a; b 0 ); f [a; b]; y; [a; b]: y 0 t) = f t; yt) f t; 0) + f t; 0); y 0 t)yt) = f t; yt) f t; 0) yt) + f t; 0)yt): yt) 2; 2xz x 2 + z 2 yt) 2 0 f t; 0) 2 + yt) 2; t yt) 2 0 t f t; 0) 2 : [a; t]; t yt) 2 a ya) Z t 2 s f s; 0) 2 ds; a

25 yt) 2 bh y 0 ) 2 a + Z b a s f s; 0) 2 ds i; a t b: y [a; b]: [a; b]; f [a; s) [a; s] s 1 1; t!s yt) = 1 t!s yt) = 1: y [a; b]; y f y; f t; y) = t)y + t); t) y 0 = t)y; a t b; ya) = y 0 : ˇ ˇyt)ˇˇ jy0 j; atb t)

26 y y 0 = 1; y 0 y: t) t: y 0 = y; t 0; y0) = 1; yt) = t ; ; y m 2 N; f : [a; b] R m! R m ; y 0 2 R m : y : [a; b]! R m y 0 t) = f t; yt) ; a t b; ya) = y 0 : kk R m : Ύπαρξη και μοναδικότητα λύσεων για συστήματα Σ.Δ.Ε. f : [a; b]r m! R m y; t; k k R m ; 9L0 8t 2[a; b] 8y 1 ; y 2 2R m f t; y1 )f t; y 2 ) Lky1 y 2 k:

27 y 0 2 R m ; k k = k k 1 ; f t; y) 2 [a; b] R m ; M := 1im t;y)2[a;b]r m mx ˇ j =1 j t; y)ˇˇ < 1; f L = M: y 0 t) = At)yt) + gt); a t b; ya) = y 0 ; t 2 [a; b]; gt) 2 R m At) 2 R m;m : g A t; t 2 [a; b]: y m) t) = f t; yt); y 0 t); : : : ; y m1) t) ; a t b; y i) a) = y i ; i = 0; : : : ; m 1: zt) := yt); y 0 t); : : : ; y m1) t) T ; z0 := y 0 ; y 1 ; : : : ; y m1 ) T ; 0 1 z 2 t) z 3 t) z 0 t) = : ; a t b; B z m t) f t; z 1 t); : : : ; z m t) A za) = z 0 :

28 f R m : f f : [a; b] R m! R m 8t 2 [a; b] 8x; x 2 R m f t; x) f t; x); x x 0; ; ) R m : f f t; y) = At)y+gt) At); t 2 [a; b]; 8t 2 [a; b] 8x 2 R m At)x; x 0; t) y 0 = y = + ˇ; ; ˇ 2 R; 0 y1 ˇ y1 = y 2 ˇ y 2

29 y 1 y 2 y; A; ˇ A := ; ˇ Ax; x) = kxk 2 8x 2 R 2 : p : [a; b]! R y 0 t) = pt)yt); t 2 [a; b]; R t yt) = C a ps) ds C: y u; ut) = R t a ps) ds yt); t 2 [a; b]; u 0 = 0; u Η μέθοδος της μεταβολής των σταθερών p; q : [a; b]! R y 0 t) = pt)yt) + qt); t 2 [a; b]; yt) = R t a ps) dsh C 0 + Z t a qs) R i s a p) d ds ; a t b;

30 C 0 ; yt) = C t)r t a ps) ds ; C C C y 0 = p jyj; 0 t 2; y0) = 1: c L: y [0; b 0 ]: f y [1 c; 1 + c]; b 0 c: y0 = p j1 y 2 j; t 0; y0) = 1: yt) = 1 yt) = t [0; b]; b > 0: [b; 0] yt) = t

31 t? 2 0; 1): c y : [0; 1]! R; 0; 0 t t? ; yt) := ct t? ) 2 ; t? < t 1; t? = 1/2? R m? f : [a; b] R m! R m k k R m : y z y 0 = f t; y); t 2 [a; b]; ya) = y 0 ; z 0 = f t; z); t 2 [a; b]; za) = z 0 ; t 2 [a; b]; kyt) zt)k Lta) ky 0 z 0 k: ; ) R m : x : [a; b]! R m d dt kxt)k2 = d x1 t) xm t) 2 = 2 x1 t)x1 0 dt t) + + x mt)xm 0 t) = 2 x 0 t); xt) :? f : [a; b] R! R 8t 2 [a; b] 8y 1 ; y 2 2 R f t; y 1 ) f t; y 2 ) y 1 y 2 ) y 1 y 2 ) 2 ; : = 0 t 2 [a; b]; jyt) zt)j ta) jy 0 z 0 j:

32 ? f : [a; b] R m! R m 8t 2 [a; b] 8y 1 ; y 2 2 R m f t; y 1 ) f t; y 2 ); y 1 y 2 0: y z y 0 = f t; y); t 2 [a; b]; ya) = y 0 ; z 0 = f t; z); t 2 [a; b]; za) = z 0 ; t 2 [a; b]; kyt) zt)k ky 0 z 0 k: ; ) kk R m :? y 0 = f t; y); t 2 [a; b]; ya) = y 0 ; f ut) := ta) yt) u 0 = F t; u); t 2 [a; b]; ua) = y 0 ; F t; v) := ta) f t; ta) v v F 8t 2 [a; b] 8y 1 ; y 2 2 R F t; y 1 ) F t; y 2 ) y 1 y 2 ) 0:

33 ? Η ανισότητα του Gronwall σε ολοκληρωτική μορφή. ' [0; T ]; ; ˇ 2 R ˇ 0: Z t 't) + ˇ 's) ds 8t 2 [0; T ]; 0 't) ˇ t 8t 2 [0; T ]: " ; t) := + ")ˇ t ; t 2 [0; T ]; Z t t) = + " + ˇ 0 s) ds 8t 2 [0; T ]: '0) < 0): t 0 [0; T ] 't 0 ) = t 0 ): 't 0 ) < t 0 ):? Γενίκευση της Άσκησης 1.12 Z t 't) + hs)'s) ds 8t 2 [0; T ]; 0 h [0; T ]; 't) R t 0 hs) ds 8t 2 [0; T ]: " ; t) := + ") R t 0 hs) ds ; t 2 [0; T ]; Z t t) = + " + hs) s) ds 8t 2 [0; T ]: 0? Η ανισότητα του Gronwall σε διαφορική μορφή ' [0; T ] ' 0 t) ˇ't) 8t 2 [0; T ]: 't) '0)ˇ t 8t 2 [0; T ]:

34 't) '0) + ˇ Z t 0 's) ds 8t 2 [0; T ] ˇs 's) t:? Γενίκευση της Άσκησης 1.14 ' [0; T ] ' 0 t) ht)'t) 8t 2 [0; T ]; h [0; T ]; 't) '0)R t 0 hs) ds 8t 2 [0; T ]:? a 2 R f : [0; 1)! R y y 0 t) = ayt) + f t); t 0; y0) = y 0 yt) = at y 0 + Z t 0 ats) f s) ds; t 0; x 0 t) = axt); t 0; x0) = y 0 ats) f s) t x 0 t) = axt); t s; xs) = f s):

35 ? M 2 R m;m x x; M M := 1X `=0 k k 1 `! M `: 8" > 0 9n 2 N 8k 2 N n+k X 1 `! M ` "; M n+k X `=n 1 `! M ` n+k X `=n `=n 1 km k` `! P 1 `=0 1`! x` x 2 R: y 0 t) = Myt); t 0; y0) = y 0 : y tm 0 = 1 X `=0 yt) = tm y 0 ; t 0: 1 `! t `M `0 X 1 1 = ` 1)! t `1 M ` = M tm : `=1 Et) Et) = tm ; yt) = Et)y 0 : x+y = x y x y; A; B 2 R m;m A+B = A B ; A B AB = BA: Et) E + ) = E)E) 8; 0:

36 x 0 t) = M xt); 0 t ; x0) = y 0 x 0 t) = M xt); t + ; x) = E)y 0 [0; + ] y + ) = x + ): + [0; + ]; [0; ] [; + ]; E)y 0 :? = 1 ; : : : ; m ) M 2 R m;m M = UU 1 = 1 ; : : : ; m ): = 1 ; : : : ; m M = U U 1 ; tm = U t U 1 ; t 2 R:? f : [0; 1)! R m y 0 t) = Myt) + f t); t 0; y0) = y 0 : tm yt) 0 = tm f t) yt) = tm y 0 + Z t 0 ts)m f s) ds; t 0: yt) = tm y 0 ; yt) = tm vt);

37 v; Z t yt) = Et)y 0 + Et s)f s) ds; 0 Et) = tm ; t x 0 t) = M xt); t 0; x0) = y 0 ; Et s)f s) t x 0 t) = M xt); t s; xs) = f s):? M 2 C m;m 1 ; : : : ; m i 0; i = 1; : : : ; m: y 0 t) = Myt); t 0; y0) = y 0 y 0 0: k k C m : m = 1; kyt)k ky 0 k ; jyt)j jy 0 j; t 0: m = 2; M = ) ; 1 = 2 = 0; yt) y0 ) yt) = 1 + y 0 ) 2 t ; t 0; y 0 ) 2

38 y 0 ) 1 y 0 ) 2 0 y 0 ; kyt)k! 1; t! 1; ky 0 k m = 1? 2 R: M = ; 1 = 1 2 = 0: yt) y0 ) yt) = 1 t + y 0 ) 2 1 t ) ; t 0: y 0 ) 2 y 0 ) 1 = 0 k k p p 1) R 2 ; kyt)k p ky 0 k p 1 + jj p 1/p ; t 0: m = 1? 2 C < 0: M M = : :: : :: ; : :: C 1A 0 1 = = m = : yt) = y1 t); : : : ; y m t) T ym t) = y m 0) t ; Z t y i t) = y i 0) t + y i+1 s) ts) ds; i = m 1; : : : ; 1; 0 '; 't) := R t 0 jts) j ds; kyt)k 1 C ky 0 k 1 ; t 0;

39 C:? i 0; i = 1; : : : ; m; i < 0; i kyt)k C ky 0 k; t 0; C k k: m = 1 m > 1; T 2 C m;m T 1 M T = J M: xt) := T 1 yt) x 0 t) = J xt): m = 1: kxt)k 1 zc kx0)k 1 ; t 0; C m? M 2 R m;m i 0; 1 i m: ' : 1; 0]! R 'M ) 2 R m;m ; ) R m ; v i) ; i = 1; : : : ; m; M; M v i) = i v i) ; 1 i m: v 2 R m 'M ) M 'M )v = mx ' i )v; v i) )v i) : i=1 k'm )k 2 = 1im j' i)j; k k 2 R m :

40 yt) = tm y0); t 0; y kyt)k 2 t i i ) ky0)k 2 ; t 0: tm? Τετραγωνική ρίζα πίνακα 'M ) M 2 R m;m M x; x) 0; x 2 R m : i 0; 1 i m: ; ) R m ; v i) ; i = 1; : : : ; m; M; M v i) = i v i) ; 1 i m; 'M ) M 1/2 2 R m;m M M 1/2 v = mx p i v; v i) )v i) 8v 2 R m : i=1 M 1/2 M 1/2 v = mx i v; v i) )v i) 8v 2 R m ; i=1 M 1/2 M 1/2 = M; M 1/2 M:? M 2 R m;m M x; x) 0 x 2 R m : y 0 t) = Myt); t 0; y0) = y 0 : ky)k

41 ? x 0 t) = 2xt) + yt); t 0; y 0 t) = 2xt) 2yt); t 0; x0) = x 0 ; y0) = y 0 : [x)] 2 + [y)] )? M 2 R m;m M T = M; M ij = M j i ; i; j = 1; : : : ; m: y 0 t) = Myt); t 0; y0) = y 0 : ky)k kyt)k = ky0)k; t 0: M T = M; x; y 2 R m M x; y) = x; My): M x; x) = 0 x 2 R m : yt) M x; x) = 0 x 2 R m m m M x+y); x+y) = M x; x)+my; y)+m x; y)+x; My) x; y 2 R m :? M 2 R m;m y 0 t) = Myt); t 0; y0) = y 0 y : [0; 1)! C m ; ky)k kyt)k = ky0)k; t 0: yt) d dt kyt)k2 = d yt); yt) = y 0 t); yt) + yt); y 0 t) = 2 y 0 t); yt) ; dt d y 0 t); yt) = 1 2 dt kyt)k2 : M z; z) 2 R; z 2 C m :

42 ? X; k k T : X! X n T n := T ı T ı ı T n T T n x? : T n T x? ) = T T n x? ) = T x? ; T x? = x? : x T; T n x = T n1 x = = T x = x; x T n : Η προεπισκόπηση των επόμενων σελίδων δεν είναι διαθέσιμη

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία 0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ.

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ. ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ Οι κύκλοι κατεργασίας χρησιµοποιούνται για ξεχόνδρισµα - φινίρισµα ενός προφίλ χωρίς να απαιτείται να προγραµµατίζουµε εµείς τα διαδοχικά πάσα της κατεργασίας. Έτσι, στο πρόγραµµα περικλείουµε

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Ανταλλακτικά για Laptop Lenovo

Ανταλλακτικά για Laptop Lenovo Ανταλλακτικά για Laptop Lenovo Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000884 Inverter Lenovo 3000 C200 F000000885 Inverter Lenovo 3000 N100 (0689-

Διαβάστε περισσότερα

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Κεφ. I Εισαγωγή.. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά κατά τρόπο που περιέχει, σε µικρό ή µεγάλο βαθµό, τυχαιότητα,

Διαβάστε περισσότερα

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΠΡΟΒΛΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Θεόδωρος Η. Αλεξόπουλος, Εµµανουήλ Α. ρης, Σταύρος Ε. Μαλτέζος, Γεώργιος. Τσιπολίτης Εργαστήριο Πειραµατικής Φυσικής Υψηλών Ενεργειών Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών

Διαβάστε περισσότερα

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός

Διαβάστε περισσότερα

Το αντικείμενο αυτό είναι χειροποίητο από 100% οικολογικό βαμβάκι, με φυτικές βαφές και φυτική κόλλα.

Το αντικείμενο αυτό είναι χειροποίητο από 100% οικολογικό βαμβάκι, με φυτικές βαφές και φυτική κόλλα. Cotton leather paper Με υπερηφάνια σας παρουσιάζουμε μια νέα σειρά χειροποίητων προϊόντων το...cotton leather paper. Το αντικείμενο αυτό είναι χειροποίητο από 100% οικολογικό βαμβάκι, με φυτικές βαφές

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1

ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2001. + mu 1 2m. + u2. = u 1 + u 2. = mu 1. u 2, u 2. = u2 u 1 + V2 = V1 ΛΥΣΕΙΣ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 00 ΘΕΜΑ : (α) Ταχύτητα ΚΜ: u KM = mu + mu m = u + u Εποµένως u = u u + u = u u, u = u u + u = u u (β) Διατήρηση ορµής στο ΚΜ: mu + mu = mv + mv u + u = V + V = 0 V = V

Διαβάστε περισσότερα

για τις οποίες ισχύει ( )

για τις οποίες ισχύει ( ) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΜΗΤΑΛΑΣ ΓΙΑΝΝΗΣ, ΔΡΟΥΓΑΣ ΑΘΑΝΑΣΙΟΣ ΕΠΙΜΕΛΕΙΑ . Έστω οι συναρτήσεις f, g: για κάθε. α) Να αποδείξετε ότι η g είναι -. β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΠΑΤΜΑΝΙΔΗΣ PATMANIDIS Δημητρας 15 Ακαδημια Πλάτωνος Αθήνα 10442 Τηλ 2105141807, 2105157906, 2105141132 Φαξ 2105153030.

ΠΑΤΜΑΝΙΔΗΣ PATMANIDIS Δημητρας 15 Ακαδημια Πλάτωνος Αθήνα 10442 Τηλ 2105141807, 2105157906, 2105141132 Φαξ 2105153030. ΡΟΥΜΠΙΝΕΤΟ AD50 44300-11B00 ΡΟΥΜΠΙΝΕΤΟ AD50 44300-11B00 Κωδικός: 49001001 209000912 ΡΟΥΜΠΙΝΕΤΟ C50 16950-086-000 Κωδικός: 49001002 209000992 ΡΟΥΜΠΙΝΕΤΟ C50 16950-086-000 Κωδικός: 49001003 209000900 ΡΟΥΜΠΙΝΕΤΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

Ανακατασκευή εικόνας από προβολές

Ανακατασκευή εικόνας από προβολές Ανακατασκευή εικόνας από προβολές Μέθοδος ανακατασκευής με χρήση χαρακτηριστικών δειγμάτων προβολής Αναστάσιος Κεσίδης Δρ. Ηλεκτρολόγος Μηχανικός Θέματα που θα αναπτυχθούν Εισαγωγή στις τομογραφικές μεθόδους

Διαβάστε περισσότερα

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση

Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Αλγόριθµοι Brute-Force και Διεξοδική Αναζήτηση Περίληψη Αλγόριθµοι τύπου Brute-Force Παραδείγµατα Αναζήτησης Ταξινόµησης Πλησιέστερα σηµεία Convex hull Βελτιστοποίηση Knapsack problem Προβλήµατα Ανάθεσης

Διαβάστε περισσότερα

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br

M m l B r mglsin mlcos x ml 2 1) Να εισαχθεί το µοντέλο στο simulink ορίζοντας από πριν στο MATLAB τις µεταβλητές Μ,m,br ΑΣΚΗΣΗ 1 Έστω ένα σύστηµα εκκρεµούς όπως φαίνεται στο ακόλουθο σχήµα: Πάνω στη µάζα Μ επιδρά µια οριζόντια δύναµη F l την οποία και θεωρούµε σαν είσοδο στο σύστηµα. Έξοδος του συστήµατος θεωρείται η απόσταση

Διαβάστε περισσότερα

2010 Offroad Standard & Flame fixed discs

2010 Offroad Standard & Flame fixed discs New Flame discs March 23/9/2010 2010 2010 Offroad Standard & Flame fixed discs APRILIA APRILIA RXV, MXV 450 450 2005-2010 - - - 110315 97 APRILIA SXV 450 450 2005-2010 - 112067 252-110315 97 APRILIA RXV

Διαβάστε περισσότερα

γ. Για την απώλεια της ενέργειας αφαιρούμε την ενέργεια που είχε το σώμα τη χρονική στιγμή t 1, αυτή της

γ. Για την απώλεια της ενέργειας αφαιρούμε την ενέργεια που είχε το σώμα τη χρονική στιγμή t 1, αυτή της Βασικές ασκήσεις στις φθίνουσες ταλαντώσεις.. Μικρό σώμα εκτελεί φθίνουσα ταλάντωση με πλάτος που μειώνεται με το χρόνο σύμφωνα με τη σχέση =,8e,t (S.I.). Να υπολογίσετε: α. το πλάτος της ταλάντωσης τη

Διαβάστε περισσότερα

Γραφική με Υπολογιστή Computer Graphics

Γραφική με Υπολογιστή Computer Graphics Γραφική με Υπολογιστή Computer Graphics 1. Βασικοίγραφικοίαλγόριθμοι 2. Αρχέςγραφικώνπλεγματικώνοθονώνraster 3. Μετασχηματισμοί2 και3 διαστάσεωνκαι συστήματασυντεταγμένων 4. Προβολέςκαιμετασχηματισμοίπαρατήρησης

Διαβάστε περισσότερα

ΑΞΙΟΠΟΙΗΗ ΣΗ ΑΝΑΛΤΗ ΑΠΟΔΟΜΗΗ ΣΗΝ ΠΟΛΤΚΡΙΣΗΡΙΑΚΗ ΙΕΡΑΡΧΗΗ ΧΩΡΩΝ ΣΗ ΕΕ ΜΕ ΒΑΗ ΣΙ ΟΙΚΟΝΟΜΙΚΕ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΣΙΚΕ ΣΟΤ ΕΠΙΔΟΕΙ

ΑΞΙΟΠΟΙΗΗ ΣΗ ΑΝΑΛΤΗ ΑΠΟΔΟΜΗΗ ΣΗΝ ΠΟΛΤΚΡΙΣΗΡΙΑΚΗ ΙΕΡΑΡΧΗΗ ΧΩΡΩΝ ΣΗ ΕΕ ΜΕ ΒΑΗ ΣΙ ΟΙΚΟΝΟΜΙΚΕ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΣΙΚΕ ΣΟΤ ΕΠΙΔΟΕΙ 23 o Εθνικό υνϋδριο τησ Ελληνικόσ Εταιρεύασ Επιχειρηςιακών Ερευνών ΑΞΙΟΠΟΙΗΗ ΣΗ ΑΝΑΛΤΗ ΑΠΟΔΟΜΗΗ ΣΗΝ ΠΟΛΤΚΡΙΣΗΡΙΑΚΗ ΙΕΡΑΡΧΗΗ ΧΩΡΩΝ ΣΗ ΕΕ ΜΕ ΒΑΗ ΣΙ ΟΙΚΟΝΟΜΙΚΕ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΣΙΚΕ ΣΟΤ ΕΠΙΔΟΕΙ Δ. Κοπύδου, Δ.

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ

ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΜΙΧΑΗΛ Π. ΜΙΧΑΗΛ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΧΑΗΛ Π. ΜΙΧΑΗΛ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θεσσαλονίκη 2011 Copyright

Διαβάστε περισσότερα

ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. της 6ης Νοεμβρίου 2006

ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ. της 6ης Νοεμβρίου 2006 18.11.2006 EL Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 320/53 ΑΠΟΦΑΣΗ ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 6ης Νοεμβρίου 2006 για την κατάρτιση των καταλόγων τρίτων χωρών και εδαφών από τα οποία επιτρέπονται οι εισαγωγές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 16 ΜΑΪΟΥ 2011 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑΛ Β 6 ΜΑΪΟΥ ΑΠΑΝΤΗΣΕΙΣ Α Θεωρία (Θεώρ Frmat) σχολικό βιβλίο σελ 6-6 Α Θεωρία (Ορισµός) σχολικό βιβλίο σελ 8 Α3 ΘΕΜΑ Β α β γ δ ε Σ Σ Λ Λ Σ B Έχουµε από υπόθεση

Διαβάστε περισσότερα

Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015

Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015 Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 215 Άσκηση 1: (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (ax+b)(x 2 +1) αν το a είναι ϑετικός αριθµός. (ϐ) Το µεσηµέρι, ένα σαλιγκάρι που ϐρίσκεται στο κέντρο ενός

Διαβάστε περισσότερα

ΚΑΤΑΛΟΓΟΣ 2014 ΕΙΔΗ ΤΑΞΙΔΙΟΥ - ΔΕΡΜΑΤΙΝΑ ΕΙΔΗ. Business and Leisure

ΚΑΤΑΛΟΓΟΣ 2014 ΕΙΔΗ ΤΑΞΙΔΙΟΥ - ΔΕΡΜΑΤΙΝΑ ΕΙΔΗ. Business and Leisure ΚΑΤΑΛΟΓΟΣ 2014 ΕΙΔΗ ΤΑΞΙΔΙΟΥ - ΔΕΡΜΑΤΙΝΑ ΕΙΔΗ Business and Leisure ΠΕΡΙΕΧΟΜΕΝΑ / INDEX 02-15 ΥΦΑΣΜΑΤΙΝΑ ΕΙΔΗ ΤΑΞΙΔΙΟΥ SOFT RANGE TRAVEL GOODS ZC 6100 ZC 6017 ZC 6039 ZC 600 ZC 801 / ZC 802 ZC 935 ZC 930

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου

Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου Στοιχεία εισαγωγής για τη Φυσική Α Λυκείου 1 ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΚΑΙ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΡΑΞΕΩΝ 1.1 Προτεραιότητα Πράξεων Η προτεραιότητα των πράξεων είναι: (Από τις πράξεις που πρέπει να γίνονται πρώτες,

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές

Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές Διδακτικές Σημειώσεις Τμήματος Πληροφορικής και Επικοινωνιών Τομέας Αρχιτεκτονικής Υπολογιστικών και Βιομηχανικών εφαρμογών Δρ. Βολογιαννίδης Σταύρος email:

Διαβάστε περισσότερα

Φυσική Ι Σταύρος Κομηνέας Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Πανεπιστήμιο Κρήτης 2 Περιεχόμενα 0.1 Πρόλογος.......................................... ii 1 Μηχανική 1 1.1 Εισαγωγή..........................................

Διαβάστε περισσότερα

ẋ = f(x) n 1 f i (i = 1, 2,..., n) x i (i = 1, 2,..., n) x(0) = x o x(t) t > 0 t < 0 x(t) x o U I xo I xo : α xo < t < β xo α xo β xo x(t) t β t α + x f(x) = 0 x x x x V 1 x x o V 1 x(t) t > 0 x o V 1

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ 6. Διατήρηση της Μηχανικής Ενέργειας

ΠΕΙΡΑΜΑ 6. Διατήρηση της Μηχανικής Ενέργειας ΠΕΙΡΑΜΑ 6 Διατήρηση της Μηχανικής Ενέργειας Σκοπός του πειράµατος Σκοπός του πειράµατος είναι η µελέτη του Νόµου διατήρησης της Μηχανικής Ενέργειας ενός συστήµατος µέσα από τη µετατροπή της Δυναµικής Ενέργειας

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα

Ενότητα 3 (μέρος 1 ο )

Ενότητα 3 (μέρος 1 ο ) Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 3 (μέρος 1 ο ) Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

page 1 Φωτογραφία Κωδικός Περιγραφή Τιμή

page 1 Φωτογραφία Κωδικός Περιγραφή Τιμή page 1 Φωτογραφία Κωδικός Περιγραφή Τιμή Στάντ προβολής με ένα γυάλινο ράφι L=1200mm W=400mm H=1635mm S030V Βαμμένο S030X Ανοξείδωτο Στάντ προβολής με δύο γυάλινα ράφια L=1200mm W=400mm H=1955mm S030VD

Διαβάστε περισσότερα

= P = P. = P [ X 0 = x 0, X 1 = x 1,..., X k = x k. Xn = x 0. Xn+1 = x 1 X n = x 0. Xn+k = x k X n+k 1 = x k 1 = π 0 (x 0 )p(x 0, x 1 ) p(x k 1, x k )

= P = P. = P [ X 0 = x 0, X 1 = x 1,..., X k = x k. Xn = x 0. Xn+1 = x 1 X n = x 0. Xn+k = x k X n+k 1 = x k 1 = π 0 (x 0 )p(x 0, x 1 ) p(x k 1, x k ) ΚΕΦΑΛΑΙΟ VI. ΑΝΑΛΛΟΙΩΤΕΣ ΚΑΤΑΝΟΜΕΣ Οι αναλλοίωτες κατανομές είναι κατά κάποιο τρόπο οι φυσικές καταστάσεις μιας μαρκοβιανής αλυσίδας. Αν μια αλυσίδα ξεκινήσει από μια αναλλοίωτη κατανομή της θα παραμείνει

Διαβάστε περισσότερα

Μαθηματική Προτυποποίηση Διατάξεων Josephson ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ

Μαθηματική Προτυποποίηση Διατάξεων Josephson ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΕΣ ΣΠΟΥΔΕΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΜΠΑΛΤΑΔΟΥΡΟΥ ΣΕΡΑΦΕΙΜ Μαθηματική Προτυποποίηση Διατάξεων Josephson ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

δικαιολογήσετε γιατί αναπτύσσεται ΗΕ στα άκρα αγωγού που κινείται σε µαγνητικό πεδίο

δικαιολογήσετε γιατί αναπτύσσεται ΗΕ στα άκρα αγωγού που κινείται σε µαγνητικό πεδίο ΣΗΜΕΙΩΣΕΙΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ Λ. ΠΕΡΙΒΟΛΑΡΟΠΟΥΛΟΣ Σκοπός Σκοπός του κεφαλαίου είναι η µελέτη του νόµου του Faraday σε ολοκληρωτική και διαφορική µορφή, καθώς και φαινοµένων που προκύπτουν από αυτόν,

Διαβάστε περισσότερα

Βελτιστοποίηση Προγραμματισμού Παραγωγής σε Χημική Βιομηχανία Παραγωγής Ρητίνης PET *

Βελτιστοποίηση Προγραμματισμού Παραγωγής σε Χημική Βιομηχανία Παραγωγής Ρητίνης PET * Βελτιστοποίηση Προγραμματισμού Παραγωγής σε Χημική Βιομηχανία Παραγωγής Ρητίνης PE * Ολυμπία Χατζηκωνσταντίνου, Γιώργος Λυμπερόπουλος, Γιώργος Κοζανίδης Τμήμα Μηχανολόγων Μηχανικών Βιομηχανίας, Πανεπιστήμιο

Διαβάστε περισσότερα

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων

Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Μοντελοποίηση, Ανάλυση και Σχεδιασμός Στοχαστικών Συστημάτων Ακαδ. Έτος 2014-2015 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ

ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΛΗ42 - ΕΙ ΙΚΑ ΘΕΜΑΤΑ ΤΕΧΝΟΛΟΓΙΑΣ ΛΟΓΙΣΜΙΚΟΥ 2η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ ΑΚΑ ΗΜΑΪΚΟΥ ΕΤΟΥΣ 2009-2010 2 oς Τόµος ΕΝ ΕΙΚΤΙΚΑ ΣΧΕ ΙΑ ΛΥΣΕΩΝ - ΥΠΟ ΕΙΞΕΙΣ ΕΡΓΑΣΙΑ 2 i. υναµική τεχνική επικύρωσης:

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ ŠKODA Σε ισχύ από 31 Ιανουαρίου 2013

ΣΥΝΟΠΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ ŠKODA Σε ισχύ από 31 Ιανουαρίου 2013 μετά την ŠKODA Citigo NF12A1 CITIGO EASY I 1.0 60 HP M5 8.590 8.590 600 7.990 NF12A1 CITIGO EASY 1.0 60 HP M5 9.090 9.090 610 8.480 NF13A1 CITIGO URBAN 1.0 60 HP M5 9.740 9.740 666 9.074 NF14A1 CITIGO

Διαβάστε περισσότερα

Στατική και Σεισµική Ανάλυση

Στατική και Σεισµική Ανάλυση ΑΠΟΣΤΟΛΟΥ ΚΩΝΣΤΑΝΤΙΝΙ Η ΠΟΛΙΤΙΚΟΥ ΜΗΧΑΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΑ ΚΤΙΡΙΑ από οπλισµένο σκυρόδεµα ΤΟΜΟΣ Β Στατική και Σεισµική Ανάλυση ISBN set 978-960-85506-6-7 ISBN τ. Β 978-960-85506-0-5 Copyright: Απόστολος

Διαβάστε περισσότερα

Γραφικά µε Η/Υ. Τεχνολογίες Γραφικών & Στοιχεία µαθηµατικών

Γραφικά µε Η/Υ. Τεχνολογίες Γραφικών & Στοιχεία µαθηµατικών Γραφικά µε Η/Υ Τεχνολογίες Γραφικών & Στοιχεία µαθηµατικών Τεχνολογίες Γραφικών 2/ 4 Τεχνολογία παραγωγής συνθετικής εικόνας (Πλεγµατική οθόνη) Πλεγµατική οθόνη (Raster): δισδιάστατο πλέγµα απόpixels Ανάλυση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ι Σημειώσεις Σταύρος Τουμπής ΟΠΑ, 24 i Οδηγίες Χρήσης Το παρόν ΔΕΝ είναι διδακτικό βιβλίο. Είναι οι σημειώσεις του μαθήματος «Μαθηματικά Ι», όπως το διδάσκω στο πρώτο εξάμηνο του Τμήματος Πληροφορικής

Διαβάστε περισσότερα

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος

Θεωρια Αριθµων. Εκπαιδευτικο Υλικο Μαθηµατος Θεωρια Αριθµων Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html 25 Μαιου 2013 2

Διαβάστε περισσότερα

ΠΙΝΑΚΙ Α ΑΡΙΘΜΟΥ ΠΛΑΙΣΙΟΥ ΟΧΗΜΑΤΟΣ

ΠΙΝΑΚΙ Α ΑΡΙΘΜΟΥ ΠΛΑΙΣΙΟΥ ΟΧΗΜΑΤΟΣ ΠΙΝΑΚΙ Α ΑΡΙΘΜΟΥ ΠΛΑΙΣΙΟΥ ΟΧΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ - PROBE Ο ΠΑΡΩΝ ΚΑΤΑΛΟΓΟΣ ΑΝΤΑΛΛΑΚΤΙΚΩΝ ΠΕΡΙΕΧΕΙ ΠΛΗΡΟΦΟΡΙΕΣ ΣΧΕΤΙΚΑ ΜΕ ΤΟ PROBE ΠΟΥ ΕΧΕΙ ΚΑΤΑΣΚΕΥΑΣΤΕΙ ΑΠΟ ΤΟΝ 1092. Πινακίδα Αριθµού Πλαισίου Οχήµατος Η Πινακίδα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΣΕΤ ΦΙΛΤΡΩΝ ΤΡΑΚΤΕΡ ΦΙΛΤΡΟ ΑΕΡΟΣ ΕΣΩΤΕΡΙΚΟ ΦΙΛΤΡΟ ΚΑΥΣΙΜΟΥ TM 043 TM 044 15009 4115 TM 122 TM 005 15321/3 4115 ΦΙΛΤΡΟ ΑΕΡΟΣ ΕΣΩΤΕΡΙΚΟ ΦΙΛΤΡΟ ΚΑΥΣΙΜΟΥ

ΣΕΤ ΦΙΛΤΡΩΝ ΤΡΑΚΤΕΡ ΦΙΛΤΡΟ ΑΕΡΟΣ ΕΣΩΤΕΡΙΚΟ ΦΙΛΤΡΟ ΚΑΥΣΙΜΟΥ TM 043 TM 044 15009 4115 TM 122 TM 005 15321/3 4115 ΦΙΛΤΡΟ ΑΕΡΟΣ ΕΣΩΤΕΡΙΚΟ ΦΙΛΤΡΟ ΚΑΥΣΙΜΟΥ AGRIFULL 80.50, 80.60, 80.70 AGRIFULL 140, 140 DT TM 043 TM 044 15009 4115 TM 122 TM 005 15321/3 4115 CASE IH 433, 633, 633A, 733, 733A, 833, 833A DEUTZ Agrocompact 3.90FA/VA, 3.90 S Agroxtra DX3.57 TM

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ

ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ ΑΝΤΛΙΕΣ ΘΕΡΜΟΤΗΤΑΣ ΠΙΣΙΝΑΣ ZODIAC Ζ200 ZODIAC Z 200 M2 6.1 KW + ΔΩΡΟ 1.433,00 ZODIAC Z 200 M3 9 KW + ΔΩΡΟ 1.895,00 ZODIAC Z 200 M4 12 KW + ΔΩΡΟ 2.416,00 ZODIAC Z 200 M5 14.1

Διαβάστε περισσότερα

1 3 5 7 9 11 12 13 15 17 [Nm] 400 375 350 325 300 275 250 225 200 175 150 155 PS 100 PS 125 PS [kw][ps] 140 190 130 176 120 163 110 149 100 136 125 30 100 20 1000 1500 2000 2500 3000 3500 4000 4500 RPM

Διαβάστε περισσότερα

FORD B-MAX BMAX_V3_2012_Cvr_Main.indd 1-3 30/06/2012 08:42

FORD B-MAX BMAX_V3_2012_Cvr_Main.indd 1-3 30/06/2012 08:42 FORD B-MAX 1 2 3 4 5 6 9 10 11 12 13 14 15 16 17 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 19 21 22 23 4 2 14 1 13 1 6 3 15 8 9

Διαβάστε περισσότερα

Η Υποθεση του Riemann

Η Υποθεση του Riemann Η Υποθεση του Riemann Πτυχιακη Εργασια Νικολεντζος Πολυχρονης Α.Μ.: 311/2003066 Εισηγητης : Κοντογεωργης Αριστειδης Τµηµα Μαθηµατικων Πανεπιστηµιο Αιγαιου Καρλοβασι, 2008 Εξεταστικη Επιτροπη: Ανούσης

Διαβάστε περισσότερα

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009. ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ

ΚΕΦΑΛΑΙΟ 2: ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ ΚΕΦΑΛΑΙΟ : ΑΛΓΟΡΙΘΜΟΙ ΕΥΘΕΙΑΣ ΚΥΚΛΟΥ -ΈΛΛΕΙΨΗΣ Μια εικόνα μπορεί να περιγραφεί με πολλούς τρόπους. Αν υποθέσουμε ότι έχουμε μια προβολή ψηφιδοπλέγματος, μια εικόνα καθορίζεται πλήρως από το σύνολο των

Διαβάστε περισσότερα

Συμβουλές για το πώς να επιλέξετε κατάλληλο ενισχυτή για τα ακουστικά σας

Συμβουλές για το πώς να επιλέξετε κατάλληλο ενισχυτή για τα ακουστικά σας Συμβουλές για το πώς να επιλέξετε κατάλληλο ενισχυτή για τα ακουστικά σας Πολλοί χρήστες έχουν την εξής απορία: Ποιος ενισχυτής FiiO ταιριάζει καλύτερα με κάποιο συγκεκριμένο τύπο ακουστικού. Γενικά, θα

Διαβάστε περισσότερα

24o YNE PIO I O O IA 24th INTERNATIONAL CONFERENCE OF PHILOSOPHY

24o YNE PIO I O O IA 24th INTERNATIONAL CONFERENCE OF PHILOSOPHY IE NH ETAIPEIA E HNIKH I O O IA 5, 17456 - H H YMMETOXH N 1 (N μ 29/02/2012 ) (.,,,,.): KATOIKIA : TH E NO TH E NO KATOIKIA : KINHTO TH E NO: NA META X TO : μ YNE PO AKPOATH KAI YNE PO PO O OY YNO EYEI

Διαβάστε περισσότερα

Βοηθητικές Σημειώσεις Αντισεισμικής Τεχνολογίας Κεφάλαιο 1 ΚΕΦΑΛΑΙΟ 1 ΕΛΑΣΤΙΚΗ ΣΕΙΣΜΙΚΗ ΑΠΟΚΡΙΣΗ ΜΟΝΟΒΑΘΜΙΟΥ ΣΥΣΤΗΜΑΤΟΣ

Βοηθητικές Σημειώσεις Αντισεισμικής Τεχνολογίας Κεφάλαιο 1 ΚΕΦΑΛΑΙΟ 1 ΕΛΑΣΤΙΚΗ ΣΕΙΣΜΙΚΗ ΑΠΟΚΡΙΣΗ ΜΟΝΟΒΑΘΜΙΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 1 ΕΛΑΣΤΙΚΗ ΣΕΙΣΜΙΚΗ ΑΠΟΚΡΙΣΗ ΜΟΝΟΒΑΘΜΙΟΥ ΣΥΣΤΗΜΑΤΟΣ Γιάννης Ν. Ψυχάρης Καθηγητής Ε.Μ.Π. 1.1 ΣΥΣΤΗΜΑ ΑΝΑΛΥΣΗΣ Κατά τη διάρκεια ενός σεισμού, το έδαφος, και επομένως και η βάση μιας κατασκευής που

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΛΟΓΟΙ ΠΟΥ ΟΔΗΓΗΣΑΝ ΣΤΗΝ ΕΠΙΛΟΓΗ ΤΟΥ ΘΕΜΑΤΟΣ

ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΛΟΓΟΙ ΠΟΥ ΟΔΗΓΗΣΑΝ ΣΤΗΝ ΕΠΙΛΟΓΗ ΤΟΥ ΘΕΜΑΤΟΣ ΣΔΕ ΑΓΡΙΝΙΟΥ ΣΧΟΛ. ΕΤΟΣ 2003-2004 ΑΓΓΛΙΚΟΣ ΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΙΤΛΟΣ ΕΝΟΤΗΤΑΣ: «Το αγγλικό αλφάβητο» ΛΟΓΟΙ ΠΟΥ ΟΔΗΓΗΣΑΝ ΣΤΗΝ ΕΠΙΛΟΓΗ ΤΟΥ ΘΕΜΑΤΟΣ Σε ένα μαθητικό δυναμικό όπως αυτό του ΣΔΕ Αγρινίου

Διαβάστε περισσότερα

5.1 Runge Kutta για την Κινηση στο Επίπεδο

5.1 Runge Kutta για την Κινηση στο Επίπεδο ΚΕΦΑΛΑΙΟ 5 Κίνηση στο Επίπεδο Στο κεφάλαιο αυτό θα επεκτείνουμε τη μελέτη του προηγούμενου κεφάλαιου στη μελέτη κίνησης σωματιδίου υπό την επίδραση δύναμης στο επίπεδο. Ιδιαίτερο ενδιαφέρον παρουσιάζει

Διαβάστε περισσότερα

ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26)

ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26) ΚΥΚΛΩΜΑΤΑ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ (DC) (ΚΕΦ 26) ΒΑΣΗ για την ΑΝΑΛΥΣΗ: R = V/I, V = R I, I = V/R (Νόμος Ohm) ΙΔΑΝΙΚΟ ΚΥΚΛΩΜΑ: Αντίσταση συρμάτων και Aμπερομέτρου (A) =, ενώ του Βολτομέτρου (V) =. Εάν η εσωτερική

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων

Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Σχεδίαση γραμμών (Bresenham), Σχεδίασης Κύκλων, Γέμισμα Πολυγώνων Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιγραφή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε

Διαβάστε περισσότερα

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος

Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

η ε λ Π ά η ξ α ζ ή κ ε ξ α ζ η η ο ε ί θ ν ζ η κ ί α ( 2 1 ) η ν π κ ή λ α Ι ν π λ ί ν π

η ε λ Π ά η ξ α ζ ή κ ε ξ α ζ η η ο ε ί θ ν ζ η κ ί α ( 2 1 ) η ν π κ ή λ α Ι ν π λ ί ν π Α Ρ Η Θ Μ Ο : 6.405 Π Ρ Α Ξ Ζ Κ Α Σ Α Θ Δ Ζ Ο Ρ Ω Ν Γ Η Α Γ Ω Ν Η Μ Ο Τ η ε λ Π ά η ξ α ζ ή κ ε ξ α ζ η η ο ε ί θ ν ζ η κ ί α ( 2 1 ) η ν π κ ή λ α Ι ν π λ ί ν π ε κ έ ξ α Π α ξ α ζ θ ε π ή, η ν π έ η

Διαβάστε περισσότερα

Κλιματισμός. Τεχνικά δεδομένα. Κουτί επιλογέα διακλαδώσεων EEDEL15-200_1 BPMKS967A

Κλιματισμός. Τεχνικά δεδομένα. Κουτί επιλογέα διακλαδώσεων EEDEL15-200_1 BPMKS967A Κλιματισμός Τεχνικά δεδομένα Κουτί επιλογέα διακλαδώσεων EEDEL15-200_1 BPMKS967A ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ BPMKS967A 1 Χαρακτηριστικά.................................................... 2 2 Τεχνικά χαρακτηριστικά...........................................

Διαβάστε περισσότερα

ΦΙΑΛΕΣ ΑΖΩΤΟΥ ( ACCUMULATORS) ΕΜΒΟΛΟΦΟΡΕΣ ΑΝΤΛΙΕΣ

ΦΙΑΛΕΣ ΑΖΩΤΟΥ ( ACCUMULATORS) ΕΜΒΟΛΟΦΟΡΕΣ ΑΝΤΛΙΕΣ ΦΙΑΛΕΣ ΑΖΩΤΟΥ ( ACCUMULATORS) ΚΙΛΑ 0,35L 0,45L 0,70L 1,0L ΕΜΒΟΛΟΦΟΡΕΣ ΑΝΤΛΙΕΣ MAX 350 BAR ΚΩΔΙΚΟΣ ΛΙΤΡΑ 40 60 80 110 MAX 320 BAR ΚΩΔΙΚΟΣ ΛΙΤΡΑ 25 32 40 50 60 80 110 MAX 450 BAR ΚΩΔΙΚΟΣ ΛΙΤΡΑ 60 80 31 ΠΕΡΙΣΤΡΕΦΟΜΕΝΑ

Διαβάστε περισσότερα

17 Μαρτίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος Συνήθεις ιαφορικές Εξισώσεις 1ης Τάξης Σ Ε 1ης τάξης, Πεδία κατευθύνσεων, Υπαρξη και μοναδικότητα, ιαχωρίσιμες εξισώσεις, Ολοκληρωτικοί παράγοντες, Αντικαταστάσεις, Αυτόνομες εξισώσεις Μανόλης Βάβαλης

Διαβάστε περισσότερα

Οι νέες τιμές των αυτοκινήτων με το μειωμένο τέλος ταξινόμησης

Οι νέες τιμές των αυτοκινήτων με το μειωμένο τέλος ταξινόμησης Στους πίνακες των επόμενων σελίδων μπορείτε να δείτε τις νέες μειωμένες τιμές των περισσοτέρων από τα καινούργια μοντέλα της ελληνικής αγοράς, όπως αυτές διαμορφώθηκαν ύστερα από τη μείωση κατά 50% του

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ

ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΓΕΝΙΚΗ ΧΗΜΕΙΑ ΘΕΜΑΤΑ 1. Γράψτε την τετράδα των κβαντικών αριθμών που χαρακτηρίζει τα ακόλουθα ηλεκτρόνια: (α) Το εξώτατο ηλεκτρόνιο του ατόμου Rb. (β) Το ηλεκτρόνιο που κερδίζει το ιόν S

Διαβάστε περισσότερα

Μετασχηµατισµός Ζ (z-tranform)

Μετασχηµατισµός Ζ (z-tranform) Μετασχηµατισµός Ζ (-traform) Εργαλείο ανάλυσης σηµάτων και συστηµάτων διακριτού χρόνου ιεργασία ανάλογη του Μετ/σµού Laplace Απόκριση συχνότητας Εφαρµογές επίλυση γραµµικών εξισώσεων διαφορών µε σταθερούς

Διαβάστε περισσότερα

Ελατήριο σταθεράς k = 200 N/m διατηρείται σε κατακόρυφη θέση στερεωμένο στο κάτω άκρο

Ελατήριο σταθεράς k = 200 N/m διατηρείται σε κατακόρυφη θέση στερεωμένο στο κάτω άκρο ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΤΟ ΣΩΜΑ ΑΡΧΙΚΑ ΝΑ ΒΡΙΣΚΕΤΑΙ ΕΚΤΟΣ ΕΛΑΤΗΡΙΟΥ.. Σώμα που αφήνεται από κάποιο ύψος. Ελατήριο σταθεράς k = N/ διατηρείται σε κατακόρυφη θέση στερεωμένο στο κάτω άκρο του. Σώμα μάζας = kg αφήνεται

Διαβάστε περισσότερα

PDF Compressor Pro ΑΦΟΙ ΣΤΕΦΑΝΗ Ο.Ε. Κατάλογος Προϊόντων ΑΝΟΞΕΙΔΩΤΕΣ ΚΑΤΑΣΚΕΥΕΣ ΕΠΕΞΕΡΓΑΣΙΑ & ΚΟΠΗ ΜΕΤΑΛΛΩΝ

PDF Compressor Pro ΑΦΟΙ ΣΤΕΦΑΝΗ Ο.Ε. Κατάλογος Προϊόντων ΑΝΟΞΕΙΔΩΤΕΣ ΚΑΤΑΣΚΕΥΕΣ ΕΠΕΞΕΡΓΑΣΙΑ & ΚΟΠΗ ΜΕΤΑΛΛΩΝ ΑΦΟΙ ΣΤΕΦΑΝΗ Ο.Ε. ΑΝΟΞΕΙΔΩΤΕΣ ΚΑΤΑΣΚΕΥΕΣ ΕΠΕΞΕΡΓΑΣΙΑ & ΚΟΠΗ ΜΕΤΑΛΛΩΝ εταιρικό προφίλ Η εταιρεία μας Αφοί Στεφανή O.E. ξεκίνησε τη δραστηριότητα της το 1991, με αντικείμενο τις ανοξείδωτες κατασκευές για

Διαβάστε περισσότερα

EEDEL09-720A. Daikin Altherma

EEDEL09-720A. Daikin Altherma EEDEL09-720A Daikin Altherma Daikin Altherma Daikin Altherma I E 1 ERRQ-AAV1... 2 ERRQ-AAY1...17 ERSQ-AAV1...29 4 ERSQ-AAY1...4 1 2 4 II E 5 EKHBRD-AAV1...55 6 EKHBRD-AAY1...7 5 6 III 7 EKHTS-A...91 7

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. μεταξύ των ταλαντώσεων δύο σημείων A40cm ( ) και B( - 40 cm)

ΦΥΣΙΚΗ. μεταξύ των ταλαντώσεων δύο σημείων A40cm ( ) και B( - 40 cm) Γ' ΛΥΚΕΙΟΥ-ΤΕΧΝΟΛΟΓΙΚΗ/ΘΕΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 ο A. Κατά μήκος γραμμικού ομογενούς ελαστικού μέσου, το οποίο έχει τη διεύθυνση του άξονα x x, διαδίδεται εγκάρσιο αρμονικό κύμα, μήκους κύματος

Διαβάστε περισσότερα

Σύνταξη: Γκέσος Παύλος (ΣΣΕ 2002) Καθηγητής: Σαπουντζάκης Ευάγγελος Βοηθός: Λαγαρός Νικόλαος

Σύνταξη: Γκέσος Παύλος (ΣΣΕ 2002) Καθηγητής: Σαπουντζάκης Ευάγγελος Βοηθός: Λαγαρός Νικόλαος ΘΕΡΙΕΣ ΚΑΜΨΗΣ, ΔΙΑΜΗΣΗΣ ΚΑΙ ΣΡΕΨΗΣ ΔΟΚΟΥ Κάμψη Διάτμηση Timoshenko, Κάμψη Euler Bernoulli, Ελαστική Θεωρία Διάτμησης, Ανομοιόμορφη Στρέψη, Ανομοιόμορφη Στρέψη με γενείς Παραμορφώσεις ΜΕΑΔΟΣΗ ΗΣ ΣΡΕΒΛΣΗΣ

Διαβάστε περισσότερα

20.2.5 Å/ ÅÃ... YD/ kod... 130

20.2.5 Å/ ÅÃ... YD/ kod... 130 Περιεχόμενα 13 Ψάχνοντας υποαπασχόληση 1 13.1 Διάλογοι.................................................. 1 13.1.1 Ÿ º Â È Ç½µ¹ Å»µ¹..................................... 1 13.1.2 Ä µãä¹±äìá¹...........................................

Διαβάστε περισσότερα

ΑΠΑΝΤΉΣΕΙΣ ΣΤΟ ΠΡΩΤΟ ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ

ΑΠΑΝΤΉΣΕΙΣ ΣΤΟ ΠΡΩΤΟ ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ ΑΠΑΝΤΉΣΕΙΣ ΣΤΟ ΠΡΩΤΟ ΣΥΝΟΛΟ ΑΣΚΗΣΕΩΝ ΕΠΙΣΗΜΑΝΣΗ: Οι απαντήσεις παρουσιάζουν (ενδεχομένως σε μερικά σημεία διορθωμένες) τις καλύτερες απαντήσεις φοιτητών. Για το συγκεκριμένο σύνολο επιλέχτηκαν οι απαντήσεις

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Μετασχηµατισµός Laplace ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 4 Μαρτίου 29 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας του µετασχηµατισµού Laplace

Διαβάστε περισσότερα

ΜΟΡΙΑΚΟΙ ΜΑΓΝΗΤΕΣ. Γιάννης Σανάκης, ρ ΙΝΣΤΙΤΟΥΤΟ ΕΠΙΣΤΗΜΗΣ ΥΛΙΚΩΝ ΕΚΕΦΕ «ΗΜΟΚΡΙΤΟΣ»

ΜΟΡΙΑΚΟΙ ΜΑΓΝΗΤΕΣ. Γιάννης Σανάκης, ρ ΙΝΣΤΙΤΟΥΤΟ ΕΠΙΣΤΗΜΗΣ ΥΛΙΚΩΝ ΕΚΕΦΕ «ΗΜΟΚΡΙΤΟΣ» ΜΟΡΙΑΚΟΙ ΜΑΓΝΗΤΕΣ Γιάννης Σανάκης, ρ ΙΝΣΤΙΤΟΥΤΟ ΕΠΙΣΤΗΜΗΣ ΥΛΙΚΩΝ ΕΚΕΦΕ «ΗΜΟΚΡΙΤΟΣ» Εισαγωγή Υλικό σε εξωτερικό µαγνητικό πεδίο, Η: Β = Η + 4πΜ Μ: Μαγνήτιση ανά µονάδα όγκου Μαγνητική επιδεκτικότητα: χ

Διαβάστε περισσότερα

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ 3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ Παράδειγµα: Το τρένο του Άινστάιν Ένα τρένο κινείται ως προς έναν αδρανειακό παρατηρητή Ο µε σταθερή ταχύτητα V. Στο µέσο ακριβώς του τρένου

Διαβάστε περισσότερα

(Έκδοση: 06 12 2014)

(Έκδοση: 06 12 2014) (Έκδοση: 06 04) Οι απαντήσεις και οι λύσεις είναι αποτέλεσμα της συλλογικής δουλειάς των συνεργατών του δικτυακού τόπου http://lisari.blogspot.gr η έκδοση: 06 04 (συνεχής ανανέωση) Το βιβλίο διατίθεται

Διαβάστε περισσότερα

Καραμπαρμπούνης ιευθυντής Εργαστηρίου Φυσικής Συντονιστής Εργαστηρίου Φ1. Εργαστηρίου Φυσικής 2014-20

Καραμπαρμπούνης ιευθυντής Εργαστηρίου Φυσικής Συντονιστής Εργαστηρίου Φ1. Εργαστηρίου Φυσικής 2014-20 Εισαγωγικές ιαλέξεις Εργαστηρίου Φυσικής 014-0 015 αν.καθηγητής Ανδρέας Καραμπαρμπούνης ιευθυντής Εργαστηρίου Φυσικής Συντονιστής Εργαστηρίου Φ1 ιαλέξεις: Κ.Ν. Παπανικόλας, Α. Καραμπαρμπούνης Ε. Στυλιάρης

Διαβάστε περισσότερα

Στατική και Σεισµική Ανάλυση

Στατική και Σεισµική Ανάλυση ΑΠΟΣΤΟΛΟΥ ΚΩΝΣΤΑΝΤΙΝΙ Η ΠΟΛΙΤΙΚΟΥ ΜΗΧΑΝΙΚΟΥ ΑΝΤΙΣΕΙΣΜΙΚΑ ΚΤΙΡΙΑ από οπλισµένο σκυρόδεµα ΤΟΜΟΣ Β Στατική και Σεισµική Ανάλυση ISBN set 978-960-85506-6-7 ISBN τ. Β 978-960-85506-0-5 Copyright: Απόστολος

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ

ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΑΝΑΛΟΓΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ Πάτρα 0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Ενότητες του μαθήματος Η πιο συνηθισμένη επεξεργασία αναλογικών σημάτων είναι η ενίσχυση τους, που επιτυγχάνεται με

Διαβάστε περισσότερα

CompacTop. CompacTop 1 1

CompacTop. CompacTop 1 1 CompacTop CompacTop 1 : CompacTop 1-2- 3-4- CompacTop 1 1 1.- RAE ( ),,. 6 CompacTop (FormicaTop) ( ) ( / ) ( ) ( Corian) (T Silestone) CompacTop 2.- : 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

Διαβάστε περισσότερα

ΠΡΟΒΛΕΨΗ ΑΦΕΡΕΓΓΥΟΤΗΤΑΣ Η ΝΟΡΜΑ ΤΟΥ ΑΣΦΑΛΙΣΤΙΚΟΥ ΚΛΑΔΟΥ ΓΙΑ ΥΓΙΕΙΣ ΕΤΑΙΡΙΕΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΦΕΡΕΓΓΥΟΤΗΤΑΣ ΙΙ

ΠΡΟΒΛΕΨΗ ΑΦΕΡΕΓΓΥΟΤΗΤΑΣ Η ΝΟΡΜΑ ΤΟΥ ΑΣΦΑΛΙΣΤΙΚΟΥ ΚΛΑΔΟΥ ΓΙΑ ΥΓΙΕΙΣ ΕΤΑΙΡΙΕΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΦΕΡΕΓΓΥΟΤΗΤΑΣ ΙΙ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 20 ου Πανελληνίου Συνεδρίου Στατιστικής (2007), σελ 355-362 ΠΡΟΒΛΕΨΗ ΑΦΕΡΕΓΓΥΟΤΗΤΑΣ Η ΝΟΡΜΑ ΤΟΥ ΑΣΦΑΛΙΣΤΙΚΟΥ ΚΛΑΔΟΥ ΓΙΑ ΥΓΙΕΙΣ ΕΤΑΙΡΙΕΣ ΣΤΟ ΠΛΑΙΣΙΟ ΤΗΣ ΦΕΡΕΓΓΥΟΤΗΤΑΣ

Διαβάστε περισσότερα

«ΠΑΡΑΡΤΗΜΑ Α» ΚΑΤΑΛΟΓΟΣ ΕΙΔΩΝ και ΕΚΤΙΜΩΜΕΝΕΣ ΠΟΣΟΤΗΤΕΣ

«ΠΑΡΑΡΤΗΜΑ Α» ΚΑΤΑΛΟΓΟΣ ΕΙΔΩΝ και ΕΚΤΙΜΩΜΕΝΕΣ ΠΟΣΟΤΗΤΕΣ «ΠΑΡΑΡΤΗΜΑ Α» ΚΑΤΑΛΟΓΟΣ ΕΙΔΩΝ και ΕΚΤΙΜΩΜΕΝΕΣ ΠΟΣΟΤΗΤΕΣ Α/Α ΜΟΝΤΕΛΟ ΕΙΔΟΣ ΕΚΤΥΠΩΤΗ ποσότητα BLACK ποσότητα YELLOW ποσότητα MAGENTA ποσότητα CYAN ποσότητ α color BROTHER 1 Brother dcb -7010L Fax 1 2 Brother

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα