Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1

2

3

4

5

6

7

8

9

10 B G

11

12

13 [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20 f q p; p = q = 1; 2; 3; 4; sx)

14 t = 1; N j" N j ku N k; Nt = 1; t: Nt = 1; p Nt = 1; p Nt = 1; p ku N k; Nt = 1; t: Nt = 1; p

15 a; b 2 R; a < b; f : [a; b] R! R y 0 2 R: y : [a; b]! R; y 0 t) = f t; yt) ; a t b; ya) = y 0 :

16 f t; y) 2 [a; b] R: f 2 C [a; b] R): y 2 C 1 [a; b]; ya) = y 0 ; f y ỹ ỹ 0 y 0 ; jy 0 ỹ 0 j ky ỹk [a; b]; f y; y 0 t) = pt)yt) + qt); a t b; ya) = y 0 : p; q 2 C [a; b]; Z yt) = R t t a hy ps) ds 0 + qs) R i s a p) d ds ; a t b; a Z yt) = R t t a ps) ds y 0 + qs) R t s p) d ds; a t b: a

17 p = 0; y 0 s) ps)ys) = qs) R s 0 a p) d ys) = R s a p) d qs): a t; f y 0 = y 2 ; 0 t 2; y0) = 1: yt) y 0 t) 2 = 1 d 1 yt) dt yt) = 1: 0 t; 1 yt) + 1 y0) = t yt) = 1 1 t : 0 t < 1 yt) = 1 1 t ; yt)! 1 t! 1 : [0; 2]: y 0 = p jyj; 0 t 1; y0) = 0;

18 y y 1 y = 1 [0; 1): 1t 1 t yt) := 0; 0 t 1; yt) := y 0 ; 0 t 1 2 ; t 1 2 )2 ; < t 1: t? y 1 t

19 Ύπαρξη και μοναδικότητα λύσεων για Σ.Δ.Ε. f : [a; b] R! R y; t; 9L 0 8t 2 [a; b] 8y 1 ; y 2 2 R ˇˇf t; y1 )f t; y 2 )ˇˇ Ljy1 y 2 j: y 0 2 R; T : C [a; b]! C [a; b]; T xt) := T x)t) := y 0 + Z t a f s; xs) ds; a t b: y [a; t] y y = Ty: y 2 C [a; b] ya) = y 0 : f [a; b] R; y [a; b]: y 0 t) = f t; yt) ; t 2 [a; b]; y y 2 C [a; b]; T C [a; b] k k; kxk := jxt)j 2Lt : atb kk C [a; b]: C [a; b]; kk 1 ) C [a; b]; kk) T C [a; b]; kk); T

20 x; z 2 C [a; b] t 2 [a; b]; jt xt) T zt)j = ˇˇ Z t f s; xs) f s; zs) dsˇˇ Z t a a ˇ ˇf s; xs) f s; zs) ˇˇ ds L Z t a jxs) zs)j ds; jt xt) T zt)j L Z t a Lkx zk jxs) zs)j 2Ls 2Ls ds Z t a 2Ls ds 1 2 kx zk2lt ; kt x T zk 1 kx zk 8x; z 2 C [a; b] 2 Lb a) 1/2 k k Lb a) k k: T ı T ı ı T n n f t; y) := y 2 p; q 2 C [a; b] f t; y) := pt)y + qt) f t; y) := pt) y f 9M 2 R 8t 2 [a; b] 8y 2 R ˇˇfy t; y)ˇˇ M; f L := M

21 f f y) := p jyj; y 1 ; y 2 : [a; b]: [a; b] [a; b 0 ]; b 0 : Τοπική ύπαρξη και μοναδικότητα λύσεων για Σ.Δ.Ε. c > 0 f 2 C [a; b] [y 0 c; y 0 + c] : f [a; b] [y 0 c; y 0 + c] y; t; 9L 0 8t 2 [a; b] 8y 1 ; y 2 2 [y 0 c; y 0 + c] ˇ ˇf t; y1 ) f t; y 2 )ˇˇ Ljy1 y 2 j; [a; b 0 ]; A := atb y 0 cyy 0 +c ˇ ˇf t; y)ˇˇ b 0 := b; a + c A : f 2 C [a; b] [y 0 c; y 0 + c] ; [y 0 c; y 0 + c]; f; f 2 C [a; b] R ; [a; c]; c > a: f y) := p jyj y

22 f f y 0 ; z 0 2 R; y 0 = f t; y); a t b; ya) = y 0 ; z 0 = f t; z); a t b; za) = z 0 : = f y; z 2 C 1 [a; b]; "t) := yt) zt); t 2 [a; b]; " 0 t) = f t; y) f t; z): ˇ ˇ"t)ˇˇ 2; "t) "t) "t)" 0 t) = f t; y) f t; z) "t); t 2 [a; b] "t)" 0 t) = 1 d 2 dt "2 t) ˇˇf t; y) f t; z)ˇˇ ˇˇ"t)ˇˇ L" 2 t): " 2 t) =: 't) ' 0 2L' 0; t 2 [a; b]: 2Lt ; 2Lt ' 0 t) 2L 2Lt 't) = d dt 2Lt 't) 0; t 2 [a; b]:

23 2Lt 't) [a; b]: 2Lt 't) 2La 'a); a t b; ˇ ˇ"t)ˇˇ Lta)ˇˇ"a)ˇˇ; a t b; atb ˇ ˇyt) zt)ˇˇ Lba) jy 0 z 0 j: y k k 1 ; ˇ kyk 1 := ˇyt)ˇˇ; y 0 2 R: atb L: = f 8t 2 [a; b] 8y 1 ; y 2 2 R f t; y 1 ) f t; y 2 ) y 1 y 2 ) 0: f " 0 t) = f t; y) f t; z) "t) "t)" 0 t) = f t; y) f t; z) "t);

24 t 2 [a; b] "t)" 0 t) = 1 d 2 dt "2 t) 0: " 2 t: j"j; ˇ ˇyt) zt)ˇˇ jy0 z 0 j: atb f f [a; b]r: [a; b 0 ); f [a; b]; y; [a; b]: y 0 t) = f t; yt) f t; 0) + f t; 0); y 0 t)yt) = f t; yt) f t; 0) yt) + f t; 0)yt): yt) 2; 2xz x 2 + z 2 yt) 2 0 f t; 0) 2 + yt) 2; t yt) 2 0 t f t; 0) 2 : [a; t]; t yt) 2 a ya) Z t 2 s f s; 0) 2 ds; a

25 yt) 2 bh y 0 ) 2 a + Z b a s f s; 0) 2 ds i; a t b: y [a; b]: [a; b]; f [a; s) [a; s] s 1 1; t!s yt) = 1 t!s yt) = 1: y [a; b]; y f y; f t; y) = t)y + t); t) y 0 = t)y; a t b; ya) = y 0 : ˇ ˇyt)ˇˇ jy0 j; atb t)

26 y y 0 = 1; y 0 y: t) t: y 0 = y; t 0; y0) = 1; yt) = t ; ; y m 2 N; f : [a; b] R m! R m ; y 0 2 R m : y : [a; b]! R m y 0 t) = f t; yt) ; a t b; ya) = y 0 : kk R m : Ύπαρξη και μοναδικότητα λύσεων για συστήματα Σ.Δ.Ε. f : [a; b]r m! R m y; t; k k R m ; 9L0 8t 2[a; b] 8y 1 ; y 2 2R m f t; y1 )f t; y 2 ) Lky1 y 2 k:

27 y 0 2 R m ; k k = k k 1 ; f t; y) 2 [a; b] R m ; M := 1im t;y)2[a;b]r m mx ˇ j =1 j t; y)ˇˇ < 1; f L = M: y 0 t) = At)yt) + gt); a t b; ya) = y 0 ; t 2 [a; b]; gt) 2 R m At) 2 R m;m : g A t; t 2 [a; b]: y m) t) = f t; yt); y 0 t); : : : ; y m1) t) ; a t b; y i) a) = y i ; i = 0; : : : ; m 1: zt) := yt); y 0 t); : : : ; y m1) t) T ; z0 := y 0 ; y 1 ; : : : ; y m1 ) T ; 0 1 z 2 t) z 3 t) z 0 t) = : ; a t b; B z m t) f t; z 1 t); : : : ; z m t) A za) = z 0 :

28 f R m : f f : [a; b] R m! R m 8t 2 [a; b] 8x; x 2 R m f t; x) f t; x); x x 0; ; ) R m : f f t; y) = At)y+gt) At); t 2 [a; b]; 8t 2 [a; b] 8x 2 R m At)x; x 0; t) y 0 = y = + ˇ; ; ˇ 2 R; 0 y1 ˇ y1 = y 2 ˇ y 2

29 y 1 y 2 y; A; ˇ A := ; ˇ Ax; x) = kxk 2 8x 2 R 2 : p : [a; b]! R y 0 t) = pt)yt); t 2 [a; b]; R t yt) = C a ps) ds C: y u; ut) = R t a ps) ds yt); t 2 [a; b]; u 0 = 0; u Η μέθοδος της μεταβολής των σταθερών p; q : [a; b]! R y 0 t) = pt)yt) + qt); t 2 [a; b]; yt) = R t a ps) dsh C 0 + Z t a qs) R i s a p) d ds ; a t b;

30 C 0 ; yt) = C t)r t a ps) ds ; C C C y 0 = p jyj; 0 t 2; y0) = 1: c L: y [0; b 0 ]: f y [1 c; 1 + c]; b 0 c: y0 = p j1 y 2 j; t 0; y0) = 1: yt) = 1 yt) = t [0; b]; b > 0: [b; 0] yt) = t

31 t? 2 0; 1): c y : [0; 1]! R; 0; 0 t t? ; yt) := ct t? ) 2 ; t? < t 1; t? = 1/2? R m? f : [a; b] R m! R m k k R m : y z y 0 = f t; y); t 2 [a; b]; ya) = y 0 ; z 0 = f t; z); t 2 [a; b]; za) = z 0 ; t 2 [a; b]; kyt) zt)k Lta) ky 0 z 0 k: ; ) R m : x : [a; b]! R m d dt kxt)k2 = d x1 t) xm t) 2 = 2 x1 t)x1 0 dt t) + + x mt)xm 0 t) = 2 x 0 t); xt) :? f : [a; b] R! R 8t 2 [a; b] 8y 1 ; y 2 2 R f t; y 1 ) f t; y 2 ) y 1 y 2 ) y 1 y 2 ) 2 ; : = 0 t 2 [a; b]; jyt) zt)j ta) jy 0 z 0 j:

32 ? f : [a; b] R m! R m 8t 2 [a; b] 8y 1 ; y 2 2 R m f t; y 1 ) f t; y 2 ); y 1 y 2 0: y z y 0 = f t; y); t 2 [a; b]; ya) = y 0 ; z 0 = f t; z); t 2 [a; b]; za) = z 0 ; t 2 [a; b]; kyt) zt)k ky 0 z 0 k: ; ) kk R m :? y 0 = f t; y); t 2 [a; b]; ya) = y 0 ; f ut) := ta) yt) u 0 = F t; u); t 2 [a; b]; ua) = y 0 ; F t; v) := ta) f t; ta) v v F 8t 2 [a; b] 8y 1 ; y 2 2 R F t; y 1 ) F t; y 2 ) y 1 y 2 ) 0:

33 ? Η ανισότητα του Gronwall σε ολοκληρωτική μορφή. ' [0; T ]; ; ˇ 2 R ˇ 0: Z t 't) + ˇ 's) ds 8t 2 [0; T ]; 0 't) ˇ t 8t 2 [0; T ]: " ; t) := + ")ˇ t ; t 2 [0; T ]; Z t t) = + " + ˇ 0 s) ds 8t 2 [0; T ]: '0) < 0): t 0 [0; T ] 't 0 ) = t 0 ): 't 0 ) < t 0 ):? Γενίκευση της Άσκησης 1.12 Z t 't) + hs)'s) ds 8t 2 [0; T ]; 0 h [0; T ]; 't) R t 0 hs) ds 8t 2 [0; T ]: " ; t) := + ") R t 0 hs) ds ; t 2 [0; T ]; Z t t) = + " + hs) s) ds 8t 2 [0; T ]: 0? Η ανισότητα του Gronwall σε διαφορική μορφή ' [0; T ] ' 0 t) ˇ't) 8t 2 [0; T ]: 't) '0)ˇ t 8t 2 [0; T ]:

34 't) '0) + ˇ Z t 0 's) ds 8t 2 [0; T ] ˇs 's) t:? Γενίκευση της Άσκησης 1.14 ' [0; T ] ' 0 t) ht)'t) 8t 2 [0; T ]; h [0; T ]; 't) '0)R t 0 hs) ds 8t 2 [0; T ]:? a 2 R f : [0; 1)! R y y 0 t) = ayt) + f t); t 0; y0) = y 0 yt) = at y 0 + Z t 0 ats) f s) ds; t 0; x 0 t) = axt); t 0; x0) = y 0 ats) f s) t x 0 t) = axt); t s; xs) = f s):

35 ? M 2 R m;m x x; M M := 1X `=0 k k 1 `! M `: 8" > 0 9n 2 N 8k 2 N n+k X 1 `! M ` "; M n+k X `=n 1 `! M ` n+k X `=n `=n 1 km k` `! P 1 `=0 1`! x` x 2 R: y 0 t) = Myt); t 0; y0) = y 0 : y tm 0 = 1 X `=0 yt) = tm y 0 ; t 0: 1 `! t `M `0 X 1 1 = ` 1)! t `1 M ` = M tm : `=1 Et) Et) = tm ; yt) = Et)y 0 : x+y = x y x y; A; B 2 R m;m A+B = A B ; A B AB = BA: Et) E + ) = E)E) 8; 0:

36 x 0 t) = M xt); 0 t ; x0) = y 0 x 0 t) = M xt); t + ; x) = E)y 0 [0; + ] y + ) = x + ): + [0; + ]; [0; ] [; + ]; E)y 0 :? = 1 ; : : : ; m ) M 2 R m;m M = UU 1 = 1 ; : : : ; m ): = 1 ; : : : ; m M = U U 1 ; tm = U t U 1 ; t 2 R:? f : [0; 1)! R m y 0 t) = Myt) + f t); t 0; y0) = y 0 : tm yt) 0 = tm f t) yt) = tm y 0 + Z t 0 ts)m f s) ds; t 0: yt) = tm y 0 ; yt) = tm vt);

37 v; Z t yt) = Et)y 0 + Et s)f s) ds; 0 Et) = tm ; t x 0 t) = M xt); t 0; x0) = y 0 ; Et s)f s) t x 0 t) = M xt); t s; xs) = f s):? M 2 C m;m 1 ; : : : ; m i 0; i = 1; : : : ; m: y 0 t) = Myt); t 0; y0) = y 0 y 0 0: k k C m : m = 1; kyt)k ky 0 k ; jyt)j jy 0 j; t 0: m = 2; M = ) ; 1 = 2 = 0; yt) y0 ) yt) = 1 + y 0 ) 2 t ; t 0; y 0 ) 2

38 y 0 ) 1 y 0 ) 2 0 y 0 ; kyt)k! 1; t! 1; ky 0 k m = 1? 2 R: M = ; 1 = 1 2 = 0: yt) y0 ) yt) = 1 t + y 0 ) 2 1 t ) ; t 0: y 0 ) 2 y 0 ) 1 = 0 k k p p 1) R 2 ; kyt)k p ky 0 k p 1 + jj p 1/p ; t 0: m = 1? 2 C < 0: M M = : :: : :: ; : :: C 1A 0 1 = = m = : yt) = y1 t); : : : ; y m t) T ym t) = y m 0) t ; Z t y i t) = y i 0) t + y i+1 s) ts) ds; i = m 1; : : : ; 1; 0 '; 't) := R t 0 jts) j ds; kyt)k 1 C ky 0 k 1 ; t 0;

39 C:? i 0; i = 1; : : : ; m; i < 0; i kyt)k C ky 0 k; t 0; C k k: m = 1 m > 1; T 2 C m;m T 1 M T = J M: xt) := T 1 yt) x 0 t) = J xt): m = 1: kxt)k 1 zc kx0)k 1 ; t 0; C m? M 2 R m;m i 0; 1 i m: ' : 1; 0]! R 'M ) 2 R m;m ; ) R m ; v i) ; i = 1; : : : ; m; M; M v i) = i v i) ; 1 i m: v 2 R m 'M ) M 'M )v = mx ' i )v; v i) )v i) : i=1 k'm )k 2 = 1im j' i)j; k k 2 R m :

40 yt) = tm y0); t 0; y kyt)k 2 t i i ) ky0)k 2 ; t 0: tm? Τετραγωνική ρίζα πίνακα 'M ) M 2 R m;m M x; x) 0; x 2 R m : i 0; 1 i m: ; ) R m ; v i) ; i = 1; : : : ; m; M; M v i) = i v i) ; 1 i m; 'M ) M 1/2 2 R m;m M M 1/2 v = mx p i v; v i) )v i) 8v 2 R m : i=1 M 1/2 M 1/2 v = mx i v; v i) )v i) 8v 2 R m ; i=1 M 1/2 M 1/2 = M; M 1/2 M:? M 2 R m;m M x; x) 0 x 2 R m : y 0 t) = Myt); t 0; y0) = y 0 : ky)k

41 ? x 0 t) = 2xt) + yt); t 0; y 0 t) = 2xt) 2yt); t 0; x0) = x 0 ; y0) = y 0 : [x)] 2 + [y)] )? M 2 R m;m M T = M; M ij = M j i ; i; j = 1; : : : ; m: y 0 t) = Myt); t 0; y0) = y 0 : ky)k kyt)k = ky0)k; t 0: M T = M; x; y 2 R m M x; y) = x; My): M x; x) = 0 x 2 R m : yt) M x; x) = 0 x 2 R m m m M x+y); x+y) = M x; x)+my; y)+m x; y)+x; My) x; y 2 R m :? M 2 R m;m y 0 t) = Myt); t 0; y0) = y 0 y : [0; 1)! C m ; ky)k kyt)k = ky0)k; t 0: yt) d dt kyt)k2 = d yt); yt) = y 0 t); yt) + yt); y 0 t) = 2 y 0 t); yt) ; dt d y 0 t); yt) = 1 2 dt kyt)k2 : M z; z) 2 R; z 2 C m :

42 ? X; k k T : X! X n T n := T ı T ı ı T n T T n x? : T n T x? ) = T T n x? ) = T x? ; T x? = x? : x T; T n x = T n1 x = = T x = x; x T n : Η προεπισκόπηση των επόμενων σελίδων δεν είναι διαθέσιμη

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία

Αφιερώνεται στα παιδιά μας Σπυριδούλα, Αχιλλέα και Αναστασία 0 3 10 71 < < 3 1 7 ; (y k ) 0 LU n n M (2; 4; 1; 2) 2 n 2 = 2 2 n 2 n 2 = 2y 2 n n ' y = x [a; b] [a; b] x n = '(x n 1 ) (x n ) x 0 = 0 S p R 2 ; S p := fx 2 R 2 : kxk p = 1g; p = 1; 2; 1 K i

Διαβάστε περισσότερα

L A TEX 2ε. mathematica 5.2

L A TEX 2ε. mathematica 5.2 Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων 1 Επίλυση Συνήθων ιαφορικών Εξισώσεων Εξίσωση πρώτης τάξης µε συνθήκες αρχικών τιµών ΠΡΟΒΛΗΜΑ : Να ευρεθεί συνάρτηση y = y(x) η οποία για x [a, b] ικανοποιεί την εξίσωση y = f(x, y) υπό την αρχική συνθήκη

Διαβάστε περισσότερα

Δυναμική Ανάλυση των Συστημάτων Πρώτης Τάξης

Δυναμική Ανάλυση των Συστημάτων Πρώτης Τάξης KEΦAΛAIO 5 Δυναμική Ανάλυση των Συστημάτων Πρώτης Τάξης Όπως είδαμε στο Κεφάλαιο 4, η δυναμική μελέτη ενός φυσικού/ χημικού συστήματος οδηγεί συχνά στη διερεύνηση της δυναμικής συμπεριφοράς μιας γραμμικής,

Διαβάστε περισσότερα

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα

Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα Χρονική απόκριση συστημάτων, Τύποι συστημάτων και Σφάλματα 1. Χρονική απόκριση συστημάτων αυτομάτου ελέγχου Στα περισσότερα συστήματα αυτομάτου ελέγχου χρησιμοποιείται ως ανεξάρτητη μεταβλητή ο χρόνος,

Διαβάστε περισσότερα

Κεφάλαιο 6 ιανυσµατικοί χώροι...1

Κεφάλαιο 6 ιανυσµατικοί χώροι...1 6. ιανυσµατικοί χώροι Σελίδα από 5 Κεφάλαιο 6 ιανυσµατικοί χώροι ιανυσµατικοί χώροι... 6. ιανυσµατικοί χώροι... 6. Υποχώροι...7 6. Γραµµικοί συνδυασµοί... 6. Γραµµική ανεξαρτησία...9 6.5 Άθροισµα και ευθύ

Διαβάστε περισσότερα

Συνήθεις ιαφορικές Εξισώσεις. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2

Συνήθεις ιαφορικές Εξισώσεις. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2 Συνήθεις ιαφορικές Εξισώσεις 215 Πρόχειρες σηµειώσεις Αλκης Τερσένοβ Περιεχόµενα 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 2 2. Συστήµατα ιαφορικών Εξισώσεων Πρώτης Τάξης... 22 2.1 ιαφορικές Εξισώσεις Ανώτερης

Διαβάστε περισσότερα

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος ιαφορικές Εξισώσεις Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Ατελείς ιδιοτιμές Εκθετικά πινάκων Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 9 Απριλίου

Διαβάστε περισσότερα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία

Διαβάστε περισσότερα

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ.

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ. ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ Οι κύκλοι κατεργασίας χρησιµοποιούνται για ξεχόνδρισµα - φινίρισµα ενός προφίλ χωρίς να απαιτείται να προγραµµατίζουµε εµείς τα διαδοχικά πάσα της κατεργασίας. Έτσι, στο πρόγραµµα περικλείουµε

Διαβάστε περισσότερα

Ανταλλακτικά για Laptop Lenovo

Ανταλλακτικά για Laptop Lenovo Ανταλλακτικά για Laptop Lenovo Ημερομηνία έκδοσης καταλόγου: 6/11/2011 Κωδικός Προϊόντος Είδος Ανταλλακτικού Μάρκα Μοντέλο F000000884 Inverter Lenovo 3000 C200 F000000885 Inverter Lenovo 3000 N100 (0689-

Διαβάστε περισσότερα

SBT/HVAC +30 210 6771453 +30 210 6773837. E-Mail. George.kottaras@siemens.com 8/02/2006. Tx 216291 shea gr.

SBT/HVAC +30 210 6771453 +30 210 6773837. E-Mail. George.kottaras@siemens.com 8/02/2006. Tx 216291 shea gr. Προς: Όλους τους συνεργάτες Όνοµα Τµήµα Τόπος εργασίας Τηλέφωνο Αρ. τηλ. Fax E-Mail Επιστολή σας Ηµεροµηνία ΚΟΤΤΑΡΑΣ ΓΙΩΡΓΟΣ SBT/HVAC Ν. Ψυχικό +30 210 6771453 +30 210 6773837 George.kottaras@siemens.com

Διαβάστε περισσότερα

Διαφορικής Γεωμετρίας Καμπυλών και επιφανειών

Διαφορικής Γεωμετρίας Καμπυλών και επιφανειών Ν. Καδιανάκη Αν. Καθηγητή Ε.Μ.Π. Σημειώσεις Διαφορικής Γεωμετρίας Καμπυλών και επιφανειών ΑΘΗΝΑ Απαγορεύεται η ανατύπωση, αναδημοσίευση, αντιγραφή όλου ή μέρους του παρόντος βιβλίου, η αποθήκευση σε ηλεκτρονικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/65 Πληροφορίας

ΚΕΦΑΛΑΙΟ 2. Ηλεκτρονικη και 1/65 Πληροφορίας ΚΕΦΑΛΑΙΟ 2 /65 Σήματα- συμβολισμοί 5 5 4 4 3 3 2 2 - -4-3 -2-2 3 4 5-2 3 4 5 6 7 8-2 -2-3 -3 x(), x(-),x(), x(),. x(){,-2,-3,-,,, 2, 3, 4, } x(){x()}{,x(-),x(), x(),.} x(){,-2,-3, -,,, 2, 3, 4, } 2/65

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

Εισαγωγή στις Συνήθεις ιαϕορικές Εξισώσεις. Σηµειώσεις

Εισαγωγή στις Συνήθεις ιαϕορικές Εξισώσεις. Σηµειώσεις Εισαγωγή στις Συνήθεις ιαϕορικές Εξισώσεις Σηµειώσεις Ε. Στεϕανόπουλος Τµήµα Μαθηµατικών Πανεπιστήµιο Αιγαίου Πρόλογος Οι σηµειώσεις αυτές αποτελούν εξέλιξη σηµειώσεων οι οποίες χρησιµοποιήθηκαν σε παραδόσεις

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές

Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές Συστήματα Αυτομάτου Ελέγχου Θεωρία και Εφαρμογές Διδακτικές Σημειώσεις Τμήματος Πληροφορικής και Επικοινωνιών Τομέας Αρχιτεκτονικής Υπολογιστικών και Βιομηχανικών εφαρμογών Δρ. Βολογιαννίδης Σταύρος email:

Διαβάστε περισσότερα

v r T, 2 T, a r = a r (t) = 4π2 r

v r T, 2 T, a r = a r (t) = 4π2 r Πρώτη και Δεύτερη Διαστημική Ταχύτητα Άλκης Τερσένοβ 1. Πρώτη Διαστημική Ταχύτητα και Γεωστατική Τροχιά Πρώτη Διαστημική Ταχύτητα ονομάζεται η ελάχιστη ταχύτητα που θα πρέπει να αναπτύξει ένα σώμα που

Διαβάστε περισσότερα

Φυσική Α' Λυκείου. Κεφάλαιο 1.1 Ευθύγραμμη κίνηση. 9η παρουσίαση. Σχολική χρονιά 2013-2014 Φροντιστήριο Μ.Ε. ΤΖΑΝΕΤΟΥ www.frontistiriotzanetou.

Φυσική Α' Λυκείου. Κεφάλαιο 1.1 Ευθύγραμμη κίνηση. 9η παρουσίαση. Σχολική χρονιά 2013-2014 Φροντιστήριο Μ.Ε. ΤΖΑΝΕΤΟΥ www.frontistiriotzanetou. Φυσική Α' Λυκείου Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 9η παρουσίαση Σχολική χρονιά 213-214 Φροντιστήριο Μ.Ε. ΤΖΑΝΕΤΟΥ www.frontistiriotzanetou.com 1.1.5 Η έννοια της ταχύτητας στην ευθύγραμμη ομαλή κίνηση Έστω

Διαβάστε περισσότερα

Για τον ορισμό της ισχύος θα χρησιμοποιηθεί η παρακάτω διάταξη αποτελούμενη από ένα κύκλωμα Κ και μία πηγή Π:

Για τον ορισμό της ισχύος θα χρησιμοποιηθεί η παρακάτω διάταξη αποτελούμενη από ένα κύκλωμα Κ και μία πηγή Π: 1. Ηλεκτρικό ρεύμα Το ηλεκτρικό ρεύμα ορίζεται ως ο ρυθμός μιας συνισταμένης κίνησης φορτίων. Δηλαδή εάν στα άκρα ενός μεταλλικού αγωγού εφαρμοστεί μια διαφορά δυναμικού, τότε το παραγόμενο ηλεκτρικό πεδίο

Διαβάστε περισσότερα

1.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ

1.0 ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ . ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ Έστω ότι με Κ συμβολίζουμε ένα οποιοδήποτε σώμα, όταν με την έννοια «σώμα» αναφερόμαστε σε ένα σύνολο, όπως για παράδειγμα το των πραγματικών αριθμών, το των μιγαδικών αριθμών, το

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26

Διαβάστε περισσότερα

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30

Διαβάστε περισσότερα

1 ΔΙΑΝΥΣΜΑΤΑ ΣΤΟΝ ΤΡΙΣΔΙΑΣΤΑΤΟ ΧΩΡΟ

1 ΔΙΑΝΥΣΜΑΤΑ ΣΤΟΝ ΤΡΙΣΔΙΑΣΤΑΤΟ ΧΩΡΟ 1 ΔΙΑΝΥΣΜΑΤΑ ΣΤΟΝ ΤΡΙΣΔΙΑΣΤΑΤΟ ΧΩΡΟ Προσανατολισμένο Ευθύγραμμο Τμήμα (π.ε.τ.) είναι το ευθύγραμμο τμήμα PQ στο οποίο ορίζουμε το άκρο Ρ αυτού να είναι η αρχή του π.ε.τ. και το άκρο Q αυτού να είναι το

Διαβάστε περισσότερα

ΙΑΦΑΝΕΙΕΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΦΥΣΙΚΗ Ι ΜΙΧΑΗΛ ΒΕΛΓΑΚΗΣ, ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ

ΙΑΦΑΝΕΙΕΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΦΥΣΙΚΗ Ι ΜΙΧΑΗΛ ΒΕΛΓΑΚΗΣ, ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 007-8 ΙΑΦΑΝΕΙΕΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΦΥΣΙΚΗ Ι ΜΙΧΑΗΛ ΒΕΛΓΑΚΗΣ, ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ ΕΓΧΕΙΡΙ ΙΑ: α) R. A. SERWAY, PHYSICS FOR SCIENTISTS & ENGINEERS,

Διαβάστε περισσότερα

Μαθηματικά μοντέλα συστημάτων

Μαθηματικά μοντέλα συστημάτων Μαθηματικά μοντέλα συστημάτων 1. Γενικά Για να κατανοήσουμε και να ελέγξουμε διάφορα πολύπλοκα συστήματα πρέπει να καταφύγουμε σε κάποιο ποσοτικό μοντέλο των συστημάτων αυτών. Έτσι, είναι απαραίτητο να

Διαβάστε περισσότερα

Έργο Κινητική Ενέργεια. ΦΥΣ 131 - Διαλ.16 1

Έργο Κινητική Ενέργεια. ΦΥΣ 131 - Διαλ.16 1 Έργο Κινητική Ενέργεια ΦΥΣ 131 - Διαλ.16 1 Είδη δυνάµεων q Δύο είδη δυνάμεων: Ø Συντηρητικές ή διατηρητικές δυνάμεις και μή συντηρητικές ü Μια δύναμη είναι συντηρητική όταν το έργο που παράγει ασκούμενη

Διαβάστε περισσότερα

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Κεφ. I Εισαγωγή.. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά κατά τρόπο που περιέχει, σε µικρό ή µεγάλο βαθµό, τυχαιότητα,

Διαβάστε περισσότερα

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A ΚEΦΑΛΑΙΟ Πίνακες Εστω και είναι το σώµα των πραγµατικών και των µιγαδικών αριθµών αντιστοίχως Στο εξής όταν γράφουµε F θα εννοούµε είτε το είτε το Ορισµός Eστω F = ή και m, Κάθε ορθογώνια διάταξη m A F

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τίτλος Μαθήματος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τίτλος Μαθήματος Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Πρώτοι αριθµοί και τα Βασικά Θεωρήµατά τους Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 1 Πρωτοι αριθµοι και τα Βασικα Θεωρηµατα τους Στη µνήµη

Διαβάστε περισσότερα

K K 1 2 1 K M N M(2 N 1) K K K K K f f(x 1, x 2,..., x K ) = K f xk (x k ), x 1, x 2,..., x K K K K f Yk (y k x 1, x 2,..., x k ) k=1 M i, i = 1, 2 Xi n n Yi n Xn 1 Xn 2 ˆM i P (n) e = {( ˆM 1, ˆM2 )

Διαβάστε περισσότερα

1ος Θερμοδυναμικός Νόμος

1ος Θερμοδυναμικός Νόμος ος Θερμοδυναμικός Νόμος Έργο-Έργο ογκομεταβολής Αδιαβατικό Έργο Εσωτερική ενέργεια, U Πρώτος Θερμοδυναμικός Νόμος Θερμότητα Ολική Ενέργεια Ενθαλπία Θερμοχωρητικότητα Διεργασίες Ιδανικών Αερίων ΕΡΓΟ Κεφάλαιο3,

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΩΝ MAΘΗΜΑΤΙΚΩΝ ΘΕΩΡΙΩΝ ΠΟΛΕΜΟΥ ΣΤΗ ΔΙΟΙΚΗΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΩΝ MAΘΗΜΑΤΙΚΩΝ ΘΕΩΡΙΩΝ ΠΟΛΕΜΟΥ ΣΤΗ ΔΙΟΙΚΗΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΦΑΡΜΟΓΕΣ ΤΩΝ MAΘΗΜΑΤΙΚΩΝ ΘΕΩΡΙΩΝ ΠΟΛΕΜΟΥ ΣΤΗ ΔΙΟΙΚΗΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΟΙΤΗΤΗΣ: Σκορδούλης Μιχαήλ Αριθμός Μητρώου: 7756 ΕΠΙΒΛΕΠΩΝ: Χαλικιάς Μιλτιάδης, Επίκουρος Καθηγητής ΕΙΣΑΓΩΓΗ

Διαβάστε περισσότερα

ΟΘΡΥΣ ΑΤΕ ΑΝΑΔΟΧΟΣ: ΕΡΓΟ :

ΟΘΡΥΣ ΑΤΕ ΑΝΑΔΟΧΟΣ: ΕΡΓΟ : ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΓ.ΔΗΜΗΤΡΙΟΣ ΑΘΗΝΑ ΤΗΛ.: FAX: e mail:othris.ate@gmail.com ΟΘΡΥΣ ΑΤΕ ΑΝΑΔΟΧΟΣ: ΕΡΓΟ : ΑΡΙΘΜΟΣ ΣΧΕΔΙΟΥ : ΚΥΡΙΟΣ ΕΡΓΟΥ : ΟΘΡΥΣ ΑΤΕ ΠΡΟΜΗΘΕΙΑ, ΕΓΚΑΤΑΣΤΑΣΗ ΚΑΙ ΘΕΣΗ ΣΕ ΣΥΣΤΗΜΑΤΟΣ ΤΗΛΕΛΕΓΧΟΥ ΤΗΛΕΧΕΙΡΙΣΜΟΥ

Διαβάστε περισσότερα

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ

ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΥΠΟΔΕΙΞΕΙΣ - ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Α' ΜΕΡΟΣ (ΑΛΓΕΒΡΑ) 1 ΠΙΝΑΚΕΣ- ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1 Α' Ομάδας i) 3x7 ii) π.χ. το στοιχείο α 12 μας πληροφορεί ότι η ομάδα «ΝΙΚΗ» έχει 6 νίκες. x = -7, y = 8, ω = 8..i) x

Διαβάστε περισσότερα

i 5 i 1 i 4 i 2 3 i 3

i 5 i 1 i 4 i 2 3 i 3 ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Εισαγωγή στη Θεωρία Κκλωµάτων LS Tecnology and omputer Arctecture Lab Εισαγωγή στη Θεωρία Κκλωµάτων Γ. Τσιατούχας ΒΑΣΙΚΑ ΗΛΕΚΤΡΟΝΙΚΑ ΜΙΚΡΟΗΛΕΚΤΡΟΝΙΚΗ Διάρθρωση. Ηλεκτρονικό

Διαβάστε περισσότερα

W ISR i = 5 15 ISR i + 4 15 ISR i 1 + 3 15 ISR i 2 + 2 15 ISR i 3 + 1 15 ISR i 4 W ISR W ISR ) E T hreshold = (1 Ẽ Ẽ + IQR (E) Ẽ IQR(E) E T hreshold = 0.99 e 1 N N i=1 (E i) + 0.01 Ẽ h(t) = H(y )(t)

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Εισαγωγή στην Κατάστρωση. Δυναμικών Εξισώσεων

Δυναμική Μηχανών I. Εισαγωγή στην Κατάστρωση. Δυναμικών Εξισώσεων Δυναμική Μηχανών I Εισαγωγή στην Κατάστρωση 4 1 Δυναμικών Εξισώσεων 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια

Διαβάστε περισσότερα

HY 571 - Ιατρική Απεικόνιση. ιδάσκων: Kώστας Μαριάς

HY 571 - Ιατρική Απεικόνιση. ιδάσκων: Kώστας Μαριάς HY 571 - Ιατρική Απεικόνιση ιδάσκων: Kώστας Μαριάς 1. Εισαγωγή Ιατρική Απεικόνιση Κλασική ακτινολογία Ηλεκτρονική λυχνία A D B C Πυρηνική ιατρική δέκτης σπινθηριστής Υπερηχοτοµογραφία Υπολογιστική τοµογραφία

Διαβάστε περισσότερα

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z)

Απόδειξη. Η ιδιότητα(vi) του ορισμού δεν ισχύει στην πράξη αυτή. Πράγματι, έχουμε. 1 (x, y, z) =(1 x, 1 y, 2 1 z) =(x, y, 2z) 1 ιανυσματικοί χώροι Άσκηση 1.1 Στο σύνολο R 3 όλων των διατεταγμένων τριάδων διατηρούμε την πρόσθεση, που ορίσαμε στο αντίστοιχο παράδειγμα, και ορίζουμε εξωτερικό πολλαπλασιασμό με τη σχέση λ(a 1,a 2,a

Διαβάστε περισσότερα

Ακρότατα πραγματικών συναρτήσεων

Ακρότατα πραγματικών συναρτήσεων Ακρότατα πραγματικών συναρτήσεων Ορισμός Έστω U R, U και f : U R R συνάρτηση τότε: )Το λέγεται τοπικό ελάχιστο της f αν υπάρχει περιοχή V του ώστε f f για κάθε V U Το λέγεται τοπικό μέγιστο της f αν υπάρχει

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗΣ

ΠΡΟΒΛΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΠΡΟΒΛΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Θεόδωρος Η. Αλεξόπουλος, Εµµανουήλ Α. ρης, Σταύρος Ε. Μαλτέζος, Γεώργιος. Τσιπολίτης Εργαστήριο Πειραµατικής Φυσικής Υψηλών Ενεργειών Σχολή Εφαρµοσµένων Μαθηµατικών και Φυσικών

Διαβάστε περισσότερα

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh

Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ask seic kai Jèmata sth JewrÐa Mètrou kai Olokl rwsh Ginnhc K. Sarant pouloc jnik Mets bio Poluteqne o Sqol farmosmłnwn Majhmatik n & Fusik n pisthm n TomŁac Majhmatik n 22 Febrouar ou 28 Perieqìmena Συμβολισμός

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Ανάλυση Ακολουθιακών Κυκλωμάτων Ανάλυση: Ο καθορισμός μιας κατάλληλης περιγραφής η οποία επιδεικνύει

Διαβάστε περισσότερα

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 2 Κίνηση σε µία διάσταση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο Κίνηση σε µία διάσταση Copyright 9 Pearson Education, Inc. Περιεχόµενα Κεφαλαίου Συστήµατα Αναφοράς και µετατόπιση Μέση Ταχύτητα Στιγµιαία Ταχύτητα Επιτάχυνση Κίνηση µε σταθερή επιτάχυνση Προβλήµατα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο ΚΕΦΑΛΑΙΟ 2 Περιγραφή της Κίνησης Στο κεφάλαιο αυτό θα δείξουμε πώς να προγραμματίσουμε απλές εξισώσεις τροχιάς ενός σωματιδίου και πώς να κάνουμε βασική ανάλυση των αριθμητικών αποτελεσμάτων. Χρησιμοποιούμε

Διαβάστε περισσότερα

Το αντικείμενο αυτό είναι χειροποίητο από 100% οικολογικό βαμβάκι, με φυτικές βαφές και φυτική κόλλα.

Το αντικείμενο αυτό είναι χειροποίητο από 100% οικολογικό βαμβάκι, με φυτικές βαφές και φυτική κόλλα. Cotton leather paper Με υπερηφάνια σας παρουσιάζουμε μια νέα σειρά χειροποίητων προϊόντων το...cotton leather paper. Το αντικείμενο αυτό είναι χειροποίητο από 100% οικολογικό βαμβάκι, με φυτικές βαφές

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 Ασκήσεις στις Ανισώσεις Παραδείγματα Θα ξεκινήσουμε από την υπόθεση α > 3, θα Αν ισχύει α > 3, να αποδείξετε ότι 2(α + 4) 6 < 20 εφαρμόσουμε τις ιδιότητες της διάταξης και θα καταλήξουμε στη ζητούμενη

Διαβάστε περισσότερα

2 Συντεταγµένες στο επίπεδο

2 Συντεταγµένες στο επίπεδο Συντεταγµένες στο επίπεδο Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Σύστηµα συντεταγµένων Ένα σύστηµα δυο κάθετων αξόνων µε κοινή αρχή Ο και µοναδιαία διανύσµατα, i και j λέµε ότι αποτελεί ένα καρτεσιανό σύστηµα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΦΑΡΜΟΓΗ ΑΝΕΛΑΣΤΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΠΡΟΣΟΜΟΙΩΜΑΤΟΣ ΒΛΑΒΗΣ ΣΤΟΙΧΕΙΩΝ ΤΟΙΧΟΠΟΙΙΑΣ ΣΕ ΥΠΟ ΚΛΙΜΑΚΑ ΚΤΙΡΙΑ ΤΟΙΧΟΠΟΙΙΑΣ ΥΠΟΒΑΛΛΟΜΕΝΑ

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 3: Απόκριση Συχνότητας - Φίλτρα. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 3: Απόκριση Συχνότητας - Φίλτρα. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 3: Απόκριση Συχνότητας - Φίλτρα Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΙΑΦΟΡΙΚΗΣ ΓΕΩΜΕΤΡΙΑΣ ΚΑΜΠΥΛΩΝ ΚΑΙ ΕΠΙΦΑΝΕΙΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΙΑΦΟΡΙΚΗΣ ΓΕΩΜΕΤΡΙΑΣ ΚΑΜΠΥΛΩΝ ΚΑΙ ΕΠΙΦΑΝΕΙΩΝ Ε. ΒΑΣΙΛΕΙΟΥ Μ. ΠΑΠΑΤΡΙΑΝΤΑΦΥΛΛΟΥ ΣΗΜΕΙΩΣΕΙΣ ΙΑΦΟΡΙΚΗΣ ΓΕΩΜΕΤΡΙΑΣ ΚΑΜΠΥΛΩΝ ΚΑΙ ΕΠΙΦΑΝΕΙΩΝ ΑΘΗΝΑ 2010 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΗΜΕΙΩΣΕΙΣ ΙΑΦΟΡΙΚΗΣ ΓΕΩΜΕΤΡΙΑΣ ΚΑΜΠΥΛΩΝ ΚΑΙ ΕΠΙΦΑΝΕΙΩΝ Οι σηµειώσεις αυτές είναι

Διαβάστε περισσότερα

γ γ(t) x 2 + y2 tan t. , et e t a 2 t +e t

γ γ(t) x 2 + y2 tan t. , et e t a 2 t +e t Εισαγωγή στη Διαφορική Γεωμετρία Καμπυλών και Επιφανειών Σημειώσεις παραδόσεων εαρινού εξαμήνου 011-01 Αντώνιος Μελάς Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα 013 Περιεχόμενα 1 Καμπύλες 1 1.1 Καμπύλες

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Μετασχηματισμός Fourier Ιδιότητες Επιμέλεια: Αθανάσιος N. Σκόδρας, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ

Διαβάστε περισσότερα

εξαρτάται από το θ και για αυτό γράφουμε την σ.π.π. στην εξής μορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ.

εξαρτάται από το θ και για αυτό γράφουμε την σ.π.π. στην εξής μορφή: ( θ, + ) θ θ n 2n (θ,+ ) 1, 0, x θ. Άσκηση : Έστω Χ,,Χ τυχαίο δείγμα μεγέους από την κατανομή με σππ 3 p (,, >, > 0 α Δείξτε ότι η στατιστική συνάρτηση Τ( Χ : Χ ( m X είναι επαρκής για την παράμετρο και πλήρης κ β Βρείτε ΑΕΕΔ του α Το στήριγμα

Διαβάστε περισσότερα

y(x) = g(x) Y (x), (1) y + P y + Qy = 0 (2)

y(x) = g(x) Y (x), (1) y + P y + Qy = 0 (2) ΜΑΘΗΜΑΤΙΚΟ ΣΥΜΠΛΗΡΩΜΑ Ι ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΠΟΥ ΙΑΤΗΡΟΥΝ ΤΗ ΜΟΡΦΗ ΜΙΑΣ ΙΑΦΟΡΙΚΗΣ ΕΞΙΣΩΣΗΣ (ΚΑΙ Η ΧΡΗΣΗ ΤΟΥΣ ΓΙΑ ΤΗ ΜΕΛΕΤΗ ΚΑΙ ΑΚΡΙΒΗ ΕΠΙΛΥΣΗ ΤΩΝ ΒΑΣΙΚΩΝ «ΒΟΗΘΗΤΙΚΩΝ» ΕΞΙΣΩΣΕΩΝ ΠΟΥ ΣΥΝΑΝΤΩΝΤΑΙ ΣΤΟ ΒΙΒΛΙΟ Περιεχοµενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

Αρµονικοί ταλαντωτές

Αρµονικοί ταλαντωτές Αρµονικοί ταλαντωτές ΦΥΣ 131 - Διαλ.30 2 Αρµονικοί ταλαντωτές q Μερικά από τα θέµατα που θα καλύψουµε: q Μάζες σε ελατήρια, εκκρεµή q Διαφορικές εξισώσεις: d 2 x dt 2 + K m x = 0 Ø Mε λύση της µορφής:

Διαβάστε περισσότερα

lan fil Ã. ÐÁÑÐÁÍÅËÁÓ Á.Å. Data ÊáôÜëïãïò Racks ÄïìçìÝíçò Êáëùäßùóçò 2009 Ðåñéå üìåíá óåë. 1-14 óåë.15-20 óåë. 21-28 óåë. 29-50

lan fil Ã. ÐÁÑÐÁÍÅËÁÓ Á.Å. Data ÊáôÜëïãïò Racks ÄïìçìÝíçò Êáëùäßùóçò 2009 Ðåñéå üìåíá óåë. 1-14 óåë.15-20 óåë. 21-28 óåë. 29-50 x x mm² Ø mm Kg/ Km Kg/Km mm² Ø mm Kg/ Km Kg/Km 20x2x 29.5 70. 24 5x2x.5 8.5 284. 57 30x2x 35.5 049.9 72 6x2x.5 20.2 355 59 8x2x.5 20.8 447.8 697 2x2x.5 2.9 8. 65 0x2x.5 24 55.2 875 3x2x.5 4.2 4.3 98 6x2x.5

Διαβάστε περισσότερα

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 2000-10 V1.4

ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 2000-10 V1.4 3 ΣΥΝΤΟΜΕΣ ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ ΥΠΟΛΟΓΙΣΜΟ ΑΤΡΑΚΤΩΝ ΑΞΟΝΩΝ ΚΑΤΑ DIN 743 : 000-0 V.4 4 Περιεχόμενα 5 Ειαγωγή...9 Ανοχή χαλύβων...9 3 Φόριη... 4 Υπολογιμός ε δυναμική θραύη... 4. Ονομαικές άεις (ημιεύρος δυναμικής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ

ΚΕΦΑΛΑΙΟ 3: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ : Η ΕΝΝΟΙΑ ΤΗΣ ΠΡΑΞΗΣ Μια συνάρτηση f : A B C αντιστοιχίζει σε κάθε ζεύγος (a,b) (με Γράφουμε τότε a A και b B ) ένα στοιχείο c C f(a,b)c Η συνάρτηση αυτή μπορεί να χαρακτηριστεί και

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2011: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» 1 o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 2011: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ : ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. β.. α. 3. δ. 4. α. 5. α-λ, β-σ, γ-λ, δ-λ, ε-σ. ΘΕΜΑ B. Η σωστή απάντηση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ 12-12-2010

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ 12-12-2010 ΕΠΩΝΥΜΟ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ 12-12-2010 ΖΗΤΗΜΑ

Διαβάστε περισσότερα

3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.

3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx. 3 }t! t : () (f + g) f + g, (f g) f g (f g) f g + fg, ( f g ) f g fg g () [f(g(x))] f (g(x)) g (x) [f(g(h(x)))] f (g(h(x))) g (h(x)) h (x) (3) d vn n dv nv (4) dy dy, w v u x íªƒb N úb5} : () (e x ) e

Διαβάστε περισσότερα

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών

ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι

Διαβάστε περισσότερα

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ

Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ Μερική Παράγωγος και Εφαρµογές ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 19 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των µε- ϱικών

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια : xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ ΑΣΚΗΣΕΙΣ 101-00 Αφιερωμέν σε κάθε μαθητή πυ ασχλείται ή πρόκειται να ασχληθεί με Μαθηματικύς διαγωνισμύς

Διαβάστε περισσότερα

- 1 - Ενημέρωση: Αύγουστος 2015

- 1 - Ενημέρωση: Αύγουστος 2015 - 1 - Ενημέρωση: Αύγουστος 2015 < > Τεχνικές πληροφορίες για τη μορφή και την εκτύπωση του βιβλίου Η παγκόσμια Ηθική του εσωτερικού προσανατολισμού με τις αιώνιες αξίες (αρχική έκδοση, ISBN 978-960-93-6089-0

Διαβάστε περισσότερα

ΠΑΛΑΤΖΟΓΛΟΥ ΝΙΚΟΛΑΟΣ Α.Μ. 2981 ΤΣΕΡΚΕΖΗΣ ΑΘΑΝΑΣΙΟΣ Α.Μ. 2736

ΠΑΛΑΤΖΟΓΛΟΥ ΝΙΚΟΛΑΟΣ Α.Μ. 2981 ΤΣΕΡΚΕΖΗΣ ΑΘΑΝΑΣΙΟΣ Α.Μ. 2736 ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ J _^ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ U(3J.tiiUALi2 I 3^^ ^ i t -3 β Μ Ε Λ Ε Τ Η Ε Γ Κ Α Τ Α Σ Τ Α Σ Η Σ Κ Ι Ν Η Σ Η Σ Κ Α Ι Φ Ω Τ Ι Σ Μ Ο Υ Ε Ρ Γ Ο Σ Τ Α Σ Ι Ο Υ Ε Π Ε Ξ Ε

Διαβάστε περισσότερα

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ

1.1. ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ ΓΕ Κοκολάκης Σηµειώσεις Στοχαστικών Ανελίξεων Κεφ Ι Εισαγωγή Κεφ I Εισαγωγή ΕΙΣΑΓΩΓΗ ΚΑΙ ΠΡΟΚΑΤΑΡΚΤΙΚΕΣ ΕΝΝΟΙΕΣ Η ανάγκη µαθηµατικής περιγραφής και µοντελοποίησης συστηµάτων τα οποία εξελίσσονται χρονικά

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

KYMATA Ανάκλαση - Μετάδοση

KYMATA Ανάκλαση - Μετάδοση ΦΥΣ 131 - Διαλ.34 1 KYMATA Ανάκλαση - Μετάδοση q Παλµός πάνω σε χορδή: Ένα άκρο της σταθερό (δεµένο) Προσπίπτων Ο παλµός ασκεί µια δύναµη προς τα πάνω στον τοίχο ο οποίος ασκεί µια δύναµη προς τα κάτω

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mthemtic.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mthemtic.gr. Μετατροπές

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. 2. ίνεται η παράσταση Α= 1 x x.

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. 2. ίνεται η παράσταση Α= 1 x x. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 ίνεται η παράσταση Α= x + 4 x 4 α) Να βρείτε για ποιες τιµές του x ορίζεται η παράσταση Α β) Αν x=4, να δείξετε ότι Α Α=(10 5 ) 4 4 ίνεται η παράσταση Α= 1 x x α)

Διαβάστε περισσότερα

Κεφάλαιο T1. Ταλαντώσεις

Κεφάλαιο T1. Ταλαντώσεις Κεφάλαιο T1 Ταλαντώσεις Ταλαντώσεις και µηχανικά κύµατα Η περιοδική κίνηση είναι η επαναλαµβανόµενη κίνηση ενός σώµατος, το οποίο επιστρέφει σε µια δεδοµένη θέση και µε την ίδια ταχύτητα µετά από ένα σταθερό

Διαβάστε περισσότερα

MΕΡΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (πανεπιστημιακές παραδόσεις)

MΕΡΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (πανεπιστημιακές παραδόσεις) ΓΕΩΡΓΙΟΣ Δ ΑΚΡΙΒΗΣ Τμήμα Πληροφορικής Πανεπιστήμιο Ιωαννίνων e-mail: akrivis@csuoigr ΝΙΚΟΛΑΟΣ Δ ΑΛΙΚΑΚΟΣ Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών e-mail: nalikako@mathuoagr MΕΡΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (πανεπιστημιακές

Διαβάστε περισσότερα

P l+1 (cosa) P l 1 (cosa) 2δ l,0 1

P l+1 (cosa) P l 1 (cosa) 2δ l,0 1 Λεοντσ ίνης Στέφανος Ηλεκτομαγνητισ μός η Σειά Ασ κήσ εων 3 Το ηλεκτικό πεδίο έχει τη μοφή φ σ ε ˆr άα φ σ ε rr Tο δυναμικό σ ε σ φαιικές σ υντεταγμένες φ r, θ Al + B l r l+] l cosθ Για να είναι πεπεασ

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 04 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04 ΘΕΜΑ ο : * Θεωρούμε τους μιγαδικούς αριθμούς της μορφής xxi,

Διαβάστε περισσότερα

Μάθημα: Ειδικά Συστήματα Ελέγχου Πλοίου(8.3.45.8) Κεφάλαιο: Συστήματα Ελέγχου Πλοίου

Μάθημα: Ειδικά Συστήματα Ελέγχου Πλοίου(8.3.45.8) Κεφάλαιο: Συστήματα Ελέγχου Πλοίου Μάθημα: Ειδικά Συστήματα Ελέγχου Πλοίου(8.3.45.8) Κεφάλαιο: Συστήματα Ελέγχου Πλοίου Δρ.ΓεώργιοςΠαπαλάμπρου 1 Εισαγωγή Στο παρόν κεφάλαιο παρουσιάζονται συστήματα ελέγχου πλοίων, όπως αυτόματοι πιλότοι

Διαβάστε περισσότερα

Αξεσουάρ. Δέκτες για τα συστήματα ελέγχου 445R και 460R. Τηλεχειριστήριο για έλεγχο παλμών

Αξεσουάρ. Δέκτες για τα συστήματα ελέγχου 445R και 460R. Τηλεχειριστήριο για έλεγχο παλμών Αξεσουάρ Δέκτες για τα συστήματα ελέγχου 445R και 460R Μονοκάναλος δέκτης HEI 1 στο ξεχωριστό περίβλημα με καλώδιο σύνδεσης 7,0 m, 3κλωνο Λειτουργία: Παλμός Συχνότητα: 868,3 MHz Δικάναλος δέκτης HEI 2

Διαβάστε περισσότερα

Κανονικοποίηση Σχήματος

Κανονικοποίηση Σχήματος Κανονικοποίηση Σχήματος Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασμός Σχεσιακών Σχημάτων - Αποσύνθεση (διάσπαση) καθολικού σχήματος Επιθυμητές ιδιότητες - διατήρηση εξαρτήσεων (F +

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Μαγνητικό Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Μαγνητικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SERWAY, Physics fo scientists and enginees YOUNG H.D., Univesity

Διαβάστε περισσότερα

ΒΙΟΜΗΧΑΝΙΕΣ ΦΑΡΜΑΚΩΝ ΣΤΗΝ ΕΝΙΑΙΑ ΕΣΩΤΕΡΙΚΗ ΑΓΟΡΑ

ΒΙΟΜΗΧΑΝΙΕΣ ΦΑΡΜΑΚΩΝ ΣΤΗΝ ΕΝΙΑΙΑ ΕΣΩΤΕΡΙΚΗ ΑΓΟΡΑ ΤΕΙ ΣΧΟΛΗ ΤΜΗΜΑ ΚΑΒΑΛΑΣ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ V Ι,Τ ν txx'vjca ^ CT ο 4 - Φ + - L - ΒΙΟΜΗΧΑΝΙΕΣ ΦΑΡΜΑΚΩΝ ΣΤΗΝ ΕΝΙΑΙΑ ΕΣΩΤΕΡΙΚΗ ΑΓΟΡΑ ΚΑΘΗΓΗΤΗΣ ΣΠΟΥΔΑΣΤΡΙΑ Μ. ΧΡΥΣΟΜΑΛΛΗΣ ΧΑΣΑΚΗ

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα