Fizika-matematika fakul`teti. Geometriya fanidan
|
|
- Κύμα Δεσποτόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 O`zekiston Respuliksi Xlq t`limi vzirligi Ajinioz nomidgi Nukus dvlt pedgogik instituti Fizik-mtemtik fkul`teti Mtemtik o`qitish metodiksi kfedrsi Geometri fnidn Tuzuvchi: f.-m.f.n. G. Qpnzrov Nukus 5.
2 VEKTOR HAQIDA TUSHUNCHA Tnich tushunchlr: Yo`nlgn gsm, vektor uzinligi, irlik vektor, nollik vektor, kolliner vektor, vektorlrni qo`shish, irish, song ko`ptirish. Fizikd v oshq tenikvi fnlrd, shiningdek mtemtikt qrldign miqdorlr soson ikkig o lindi. Birinchisi, o zlrining son qimtlri iln uchrdign `ni itt son iln to`l niqlndign fizikvi oki menik miqdorlrni uchrtmiz. Bu miqdorlrg misol: mss, tempertur, vqt, uz, hjm v.h.k. Bu miqdorlr cklr miqdorlr de tldi. Ikkinchisi son qimti iln to`l niqln olmdign miqdorlrni uchrtmiz. Bu miqdorlrning son qimtlri iln irg ulrning o`nlishlri ko rstilishi tlp qildi. Bu miqdorlrg misol: kuch, tezlik, tezlenish o`ldi. Ulr vektor miqdorlr deildi. T`rif-. Berilgn gsmning uchlrining qsi uchi irinchi, qsi uchi ikkinchiligi niqlngn o`ls, u gsm o`nlgn gsm de tldi. T`rif-.Yo`nlgn gsm vektor de tldi. Biz vektorni AB ko`rinishid oki itt kichik lotin hrfi iln, c, ko`rinishid elgilmiz. Vektorni AB ko`rinishid elgilsk A, B nuqtlr mos vektorning oshi v oiri jolshgn nuqtlr o`li topildi. A v B nuqtlr orsidgi msof AB vektorning uzunligi deildi, u o`ls AB, ko`rinishid elgilndi. Yo`nlishlri ir il o`lgn vektorlr ir il o`nlgn vektorlr deildi v ko`rinishid erildi. Yo`nlishlri qrm-qrshi o`lgn vektorlr qrm-qrshi vektorlr deildi v ko`rinishid erildi. Agr vektorning oshi v oiri ir nuqtt o`ls, u nol vektor deildi. Nol vektor o`nlishg eg ems, Uning uzinligi o`ls nolg teng. Nol vektor ko`rinishid ozildi Uzinligi irg teng o`lgn vektor irlik vektor oki ort de tldi. T`rif- 3.Bir to`g`ri chiziqq prllel vektorlr kolliner vektorlr deildi. Bir il uzinlikg, ir il o`nlishg eg o`lgn v kolliner o`lgn vektorlrg teng vektorlr deildi v ko`rinishid elgilndi. Vektorlr ustid chiziqli mllr Vektorlr ustid jrildign mllr chiziqli mllr de tldi.
3 Vektorlrni qo`shish Vektorlrni irish Vektorni song ko`ptirish Vektorlrni qo`shish T`rif-4. Ikki AB v CD vektorlrdn CD vektor oshi AB vektor oirig qoilgnd AB vektor oshign CD vektor oirig o`nlgn vektor, u vektorlrning ig`indisi deildi v ko`rinishid ozildi. (-rsm) -rsm Yuqorid keltirilgn vektorlrni qo`shish qoidsi uchurchk qoidsi deildi. Vektorlrni irish Arifmetikdgidek, u hold hm vektorlrni irish mli qo`shish mlig teskri ml siftid niqlndi. T`rif-5. Berilgn v vektorlrning irmsi de, tengligin qnotlntirdign vektorig tildi. (-rsm) -rsm Vektorni song ko`ptirish
4 T`rif-. Berilgn hqiqi son v vektorning ko`ptmsi shund vektor o`li topildi, uning uzunligi g teng, o`nlishi > o'lgnd vektor o`nlishi iln ir il, < o`lgnd es vektor o`nlishig qrm-qrshi o`ldi. Ko`ptm ko rinishd ozildi. Vektorlr lgrsi degnd, vektorlr to`plmid vektorlr ustid qo`shish v sklr song ko`ptirish mllri tushinildi. Biz V iln hmm vektorlr to`plmini elgilmiz. Bu hold vektorlrimiz ir to`g`ri ciziqd, ir tekislikd oki fzod otgn o`lishi mumkin. Vektorlrni qo`shish v sklr song ko`ptirish mllri quidgi osslrg eg:, V uchun; kommuttivlik.,, cv uchun; ( ) c ( c) -ssositivlik. V uchun V, V uchun; -irlik element., V hmd R uchun ( ), R v V uchun: ( ), R v V uchun ( ) ( ) V uchun Bu osslrining 'zi irovlrini isotlmiz, `zilrning isotlnishi o`ls tllrg mustqil ishg erildi. Birinchi ossni isotlsh uchun itiori ikki v vektorlr oshini ir O nuqtg jolshtirmiz v A B O C 3-rsm 3-rsmdgi OABC prllelogrmmni hosil qilmiz. Bu prllelogrmmdgi OAB uchurchkdn OB tenglik, OCB uchurchkdn o`ls OB tenglikni hosil qilmiz.
5 Ikkinchi ossni isotlsh uchun vektorning oshini O nuqtg, vektorning oshini vektorning oirig jolshtirmiz v c vektorning oshini o`ls vektorning oirig jolshtirmiz. Chizmtn quidgi tengliklrni hosil qilmiz ( ) c OC ( c) OC Hr ir AB vektor uchun BA vektor vektorg qrm qrshi o`nlgn, uzunligi o`ls ning uzunligig teng vektor. Vektorlrni qo`shish qoidsig ko r AB BA tenglikni hosil qilmiz. Beshinchi ossni isotlsh uchun v vektorlrning oshlrini ir nuqtg jolshtiri, ulr ordmid quidgi ABCD prllelogrmmni hosil qilmiz. 4-rsm Berilgn son uchun v vektorlrg qurilgn ABCD prllelogrmm ABCD prllelogrmmg o`shsh. Shuning uchun Uning digonlining uzunligi ABCD prllelogrmm digonli uzunligidn mrt ktt. Bu holdn o`ls tenglikni hosil qilmiz. ( ) Oltinchi ossni isotlsh uchun v hollrni qrmiz. Birinchi hol v sonlrining ishorsi ir il o`ldi. Shuning uchun ulrning ikklsi hm oki must oki mnfi o`ldi. Biz ulrning ikklsi hm mnfi o`lgn holni qrlik. Bu hold ( ), vektorlr vektorg qrm-qrshi o`nlgn o`ldi. Demk ulr ir il o`nlishg eg. Ulrning uzunliklri o`ls g teng.agr v sonlri must son o`ls, uqoridgi mulohz tkrorlndi. v sonlrining elgilri hr il o`ls iz n ikki holni qrmiz: v. o`lgnd ( ),, vektorlr vektor iln ir il o`nlishg eg. vektorning oshin vektorning oirig
6 jolshtiri, ulrning uzunliklri v tengligini ko rmiz. Qolgn hollr uqoridgidek mulohzlr sosid tekshirildi. Teorem- 3. Nol vektordn frqli, vektorlr kolliner o`lishi uchun R son mvjud o`li, tenglikning jrilishi z rurli v etrli. Isotlnishi. Vektorlr uchun isotlsh sodd o`lgnligi uchun Uni isotlshni zrurligini ko'rstmiz. Agr shrt jrils,, vektorlr kollinerligini tllrg hvol etmiz.bu shrtning, vektorlr kolliner o`ls, ulrni prllel ko shirish ntijsid ir to`g`ri chiziqq jolshtirish mumkin. Shuning uchun ulr l to`g`ri chiziqd otdi v ulrning oshi O nuqtt de hisolmiz. Agr, vektorlr ir il o`nlishg eg o`ls uchun tenglik jrildi. Agr o`ls uchun tenglik jrildi., vektorlr qrm qrshi o`nlishg eg vektorlr deildi. T`rif-. Ucht c,, vektorlr ir tekislikg prllel o`ls, ulr komplnr T iiki, Agr vektorlr prllel o`ls, ulrni prllel ko shirish ntijsid ir tekislikd jolshtirishimiz mumkin. Tekshirish uchun svollr Vektor de nimg tildi? Vektorlr qnd elgilndi? Vektorlrning qnd turlrini ilsiz? Vektorlr ustid qnd mllr jrish mumkin v ulr qnd mllr de tldi? Vektorlr ustid chiziqli mllrning qnd osslrini ilsiz? Komplnr vektorlr de qnd vektorlrg tildi?
7 VEKTORLARNING CHIZIQLI BOG`LANISHLILIGI. VEKTOR KOORDINATALARI Tnch tushunchlr: Vektorlrning chiziqli komigsisi, chiziqli og`lnishli vektorlr vektor fzoning vzisi, o`lchmi. o`ls, Bizg,...,,, 3 n vektorlr oilsi v,,..., n hqiqi sonlr erilgn... n n vektor,,..., n Vektorlrning chiziqli kominsisi de tldi. Chiziqli kominsit nistn sonlrning ittsi noldn frqli o`ls, u notrivil chiziqli komigsi de tldi. T`rif- Berilgn,, 3,..., n frqli o`lgn,,..., n sonlr mvjud o`li,... n n tenglik jrils,,..., vektorlr oilsi uchun kmid ittsi noldn,, 3 n vektorlr oilsi chiziql i og`lnishli deildi. Teorem- Ikki vektordn iort oil chiziqli og`lnishli o`lishi uchun vektorlrning kolliner o`lishi zrurli v etrli. u oil Isot. Oilg tegishli ikki v vektorlr chiziqli og`lnishli o`ls, kmid ittsi noldn frqli, sonlri mvjud o`li, tenglik jrildi. Agr o`ls, ( / ) tenglikni hosil qilmiz. Bu o`ls - teoremg ko r v vektorlrning kolliner eknligini ko rstdi. V ksinch, v vektorlr kolliner o`lsin. Ulrning oshlrini ir nuqtg jolshtirsk, ulr ir to`g`ri chiziqd otdi. Bu to`g`ri chiziqd vektorlr oshi jolshgn nuqtnii koordint oshi siftid oli, koordintlr sistemsini kiritmiz. Vektorlrning oqirlrini A h m B h rflr iln elgilmiz: OA, OB. Vektorlrdn iri, msln noldn frqli vektor o`lsin. Demk, h m O nuqt AB kesmni qndd ir nistd o ldi: BO / OA oki BO OA Endi =- ten likni ko'rstmiz. Agr AB kesmg tegishli ems v. Agr, vektorlr o`nlishi ir il o`ls, O nuqt, vektorlr o`nlishi qrm-qrshi o`ls, >
8 o`ldi. Shuning uchin h m - vektorlrning o`nlishlri ir il. Ulrning uzunliklri hm tengdir: = BO = OA = =-. Demk, u vektorlr teng. Endi =- tenglikdn tenglik keli chiqdi. Demk, v vektorlr chiziqli og`lnishli oilni hosil qildi. Teorem-.Ucht vektordn iort oil chiziqli og`lnishli o`lishi uchun ulrning komplnr o`lishi zrurli v etrli. Isot. Oilg tegishli uch, v c vektorlr chiziqli og`lnishli o`ls, ulrning komplnr o`lishini isotlmiz. Chiziqli og`lnishlili t`rifig ko`r, kmid ittsi noldn frqli,, sonlr uchun c tenglik o`rinli. Aniqlik uchun noldn frqli o`lsin, uchin hold u tenglikdn c = tenglik gli chiqdi. Bu tenglikd λ=/, μ= / elgilshlrni kiritip c tenglikni hosil qilmiz. Agr, v c vektorlrning oshi ir umumi O nuqtt jolshgn o`ls, smustgi tenglikdn c vektor v vektorlrg qurilgn prllelogrmm digonlig tengligi gli chiqdi. Bu o`ls ulr ir tekislikd otdi degnidir, demk, ulr komplnr vektorlr. V ksinch, eknligini isotlmiz., v c vektorlr komplnr o`lsin. Ulr chiziqli og`lnishli Berilgn uch vektor orsid kolliner vektorlr o`lgn holni chiqri thslmiz. Teorem- g soslni, shu vektorlr juftligi chiziqli og`lnishli o`lr edi v erilgn uch vektorlrning chiziqli og`lnishliligi gli chiqr edi. Shuning uchun, v c vektorlr orsid hesh ir juft kolliner o`lmgn holni ko`ri chiqmiz (soson, ulr orsid nol vektor o`q). Vektorlrni ir tekislikg ko'shiri, ulrning oshlrini jolshtirmiz (-rsm). O nuqtg
9 . -rsm So`ng c vektorning C uchi orqli v vektorlrg prllel to`g`ri chiziqlr o'tkizmiz, vektor otgn to`g`ri chiziqning vektorg prllel to`g`ri chiziq iln gsisish nuqtni A iln elgilmiz v vektor otgn to`g`ri chiziqning vektorg prllel to`g`ri chiziq iln gsishish nuqtsini B iln elgilmiz. (Shu nuqtlrning mvjud eknligi, v Vektorlrning nokollinerligi gli chiqdi). Vektorlrni qo`shishning prllelogrmm qoidsig ko r c vektor OA v OB vektorlr ig`indisig teng, 'ni c OA OB. OA vektor noldn frqli vektorg kolliner (u iln ir to`g`ri chiziqd otuvchi), demk, Shund qili λ hqiqi son topildi, OA tenglik o`rinli o`ldi. Shong u`qshsh, OB tenglik hm o`rinli. Bu tengliklrdn c tenglik gli chiqdi.smustgi tenglikni c ko'rinisht jozi olish mumkin. Bu tenglikdgi λ, μ v sonlrning kmid ittsi noldn frqli o`lgnligi sli, smustgi tenglik Teorem isotlndi. Ntij- Agr, v c Vektorlrning chiziqli og`lnishligini ngltdi., v c vektorlr komplnr o`lms, ulr chiziqli erkli o`ldi. Ntij- Itiori uch komplnr o`lmgn vektorlr orsid o`l olmdi. Shongdek ulr orsid nol vektor hm o`lmdi. ikki kolliner vektorlr
10 T`rif-.Berilgn e,...,, e e n vektorlr oilsi chiziqli erkli o`li, Itiori vektorni ulrning chiziqli komigtsisi ko`rinishid ozish mumkin o`ls, u oil vektor fzoning zisi de tldi. T`rif-3. Agr Bzisning hr ir vektori irlik vektor o`li, ulrning hr ikkitsi o zro perpendikulr o`ls, u hold zis ortonormllng n zis deildi. Bzisning vektorlr suni fzoning o`lchmi de tldi. Quidgi fktlr o`rinli: Tekislikt hr qnd ikki nokolliner vektorlr zisni tshkil etdi.. Fzod hr qnd uch nokomplnr vektorlr zisni tshkil etdi T`rif-4. Bizg e, e,..., e n zis erili, vektor uchun e e n e n tenglik jrils,,,, n sonlr vektorning koordintlri de tldi. 3. Hr ir vektor erilgn ziste o'zining koordintlri iln niqlndi. Koordintlri iln erilgn vektorlr ustid chiziqli mllr V3 vektor Fzod e, e, e 3 zisg nistn v vektorlr quidgi koordintlrg eg o`lsin:,, e e e 3 3 3,, e e e dn v vektorlrni qo`shmiz: e e e e e e Bu tengliklrdn vektorlrni qo`shish v song ko ptirish mllrining osslri oich,, e e e Demk ikki vektorning ig`indisi koordintlri qo`shiluvhi vektorlrning mos koordintlrining ig`indisidn iort. Shu singri ning koordintlri:,, 3 3 3,, vektorning song ko ptmsining koordintlri : 3,,.
11 Misol-. 3,,,,, v,,, c, 3, 3c vektorlrning koordintlrini niqlng. c vektorlr erilgn. Yechilishii. vektorning koordintlri 3,,,, ; c vektorning koordintlri,,,, ; 3 33, 3,3,3 9, 6,3 ; 3c vektorning koordintlri 3 3, 3, 3, 8, Tekshirish uchun svollr Chiziqli komigsi de nimg tildi? Chiziqli og`lnishli vektorlr de qnd vektorlrg tildi? Vzis de nimg tildi? Vektor fzo o`lchmi de nimg tildi? Koordintlri iln erilgn vektorlr ustid chiziqli mllr qnd jrildi? IKKI VEKTORNING SKALYAR KO`PAYTMASI VA UNING XOSSALARI Tnich tushunchlr: proektsi, sklr ko`ptm, vektorlr orsidgi urchk, prllel vektorlr, perpendikulr vektorlr. Vektorlrning sklr ko`ptmsi T`rif- 5. Ikki v vektorlrning sklr ko`ptmsi de, u vektorlrning uzunliklri v ulr orsidgi urchk kosinusini ko`rinis`ptirishdn hosil oldı`lgn song tildi v, cos ko`rinis`rinishid ozildi. Bu erd, v vektorlr orsidgi urchk. Sklr ko`ptmning t`rifidn quidgi fktlr keli chiqdi:
12 -oss. Ikki vektorning sklr ko`ptmsi nolg teng o`lishi uchun ulrning o zro perpendikulr o`lishi z rurli v etrli.,, -oss. Hr qnd vektorning o z-o`zig sklr ko`ptmsi, u vektor uzunligining kvdrtig teng:, 3-oss. Sklr ko`ptm o`rin lmstirish (kommuttivlik) qoidg o`sindi:,,. 4-oss. Sklr ko`ptirish, sklr ko`ptirishig nistn grupplsh qoid:,,, R 5-oss., c, c, c Beshinchi ossning isotlnishi proeksining ikkinchi oss dn keli chiqdi:, cos = c c ï ð c ï ð c ï ð c ï ð c 6-oss. Ortonormllngn e, e, e3 ee i j,, i j i j u erd i, j,,3. c l l l zis uchun c cos c cos Sklr ko`ptmning koordintlrd ifodlnishi Vektor fzod ortonormllngn e, e, e3 zisni ollik., vektorlr u zisg nistn,, z v,, z e e ze3 e e ze3 koordintlrg eg o`lsin: Sklr ko`ptmning 4- v 5-osslrig soslni, e e ze3 e e ze3 e e z z e e e 3 z z e e z z e e 3 3
13 nistni oz olmiz, u erd 7-osstn fodlnsk,, e e z z e 3 Demk, koordintlri iln erilgn ikki vektorning sklr ko`ptmsi, u vektorlrning mos koordintlri ko`ptmlrining ig`indisig teng. Bu holdn Shund qili ntij keli chiqdi:,, z vektorning uzinligi uning koordintlrining kvdrtlrining ig`indisidn olingn rifmetik kvdrt ildizg teng: z Ikki vektor orsidgi urchk Ikki vektor orsidgi urchk quidgi formul oich hisolndi: cos, e e z z e 3 z z,, z v,, zz. z vektorlrning perpendikulrlik shrti quidgich o`ldi: Misol-.,,,,, vektorlr orsidgi urchkni toping. Yechilishii., vektorlrning koordintlrini ikki vektor orsidgi urchkni topish formulsig qo`miz: cos, Bu holdn, Tekshirish uchun svollr. Nuqtning to`g`ri chiziqq proeksisi de nimg tildi?. Nuqtning tekislikd proeksisi de nimg tildi? 3. Vektorning o`qq proeksisi de nimg tildi? 4. Ikki vektorning sklr ko`ptmsi degndnimni tushinsiz? 5. Ikki vektor orsidgi urchk qnd topildi? 6. Ikki vektorning perpendikulrlik shrti qnd?
14 IKKI VEKTORNING VEKTOR KO`PAYTMASI. UCHTA VEKTORNING ARALASH KO`PAYTMASI Tnich tushunchlr: vektor ko`ptm, rlsh ko`ptm, uchurchk uzsi, prllelepiped hjmi T`rif-. T rtilngn c,, uchlikd c vektor oiridn, vektorlr tekisligig qrgnimizd dn g qisq urilish o`nlishi sot strelksi o`nlishig qrm-qrshi o`nlgn o`ls, u uchlik o ng uchlik de tldi. Agr u o`nlish sot strelksi o`nlishi iln ustm-ust tushs,,, c uchlik chp uchlik deildi. Bizg,, c ( o ng) v,, c (chp ) uchlik erilgn o`lsin(, -rsmlr) c c -rsm -rsm T`rif-. Ikki v vektorlrning vektor ko`ptmsi de quidgi shrtlrni qnotlntirdign c vektorig tildi: c vektorning uzinligi v vektorlrning uzinliklri iln ulr orsidgi urchk sinusining ko`ptmsig teng, `ni c sin. c vektori v vektorlrning ikklsig hm perpendikulr, `ni c, c. c,, trtilngn vektorlr uchligi must uchlik o`lishi kerk. Vektor ko`ptmning osslri:.,, ;.,,,, R; 3., c, c, c ; 4.,.
15 Vektor ko`ptmning koordintlrd erilishi Endi v vektorlrning vektor ko`ptmsining koordintlrini i toplik: e e ze3 e e ze3 Vektor ko`ptmning osslrini v zis Vektorlrning vektor ko`ptmsining e`tiorg olsk:, e e ze3, e e ze 3 z z e z z e z z e e e e Demk 3 3 z z z z,,, z z () Uchurchk uzsi v vektorlrning vektor ko`ptmsining moduli tomonlri shu vektorlrdn iort o`lgn prllelogrm uzsig teng o`lgni uchun, Unin rimi shu v vektorlrg qurilgn uchurchkning uzsig teng o`ldi, demk uchurchkning uzsi S, Misol-- A,,, B,,, C,,3 uzsini hisolng. () nuqtlr erilgn. ABC uchurchkning Yechilishii. AB v AC ning koordintlrini i hisolmiz: AB,, 3, AC,, u vektorlrning vektor ko`ptmsini topmiz: 3 3 AB, AC,, 5,,. Endi
16 AB, AC 5 ( ) 7. () oich S 7. Uch vektorning rlsh ko`ptmsi T`rif-3.Birinchi ikki vektorning vektor ko`ptmsidn iort vektorni, uchinshi vektorg cklr ko`ptirishdn hosil o`lgn son ucht,, c vektorlrning rlsh ko`ptmsi de tldi, `ni,, c, u ko`ptm c ko`rinishid elgilndi: Arlsh ko`ptm quidgi osslrg eg. Agrd c,, vektorlr o`zro komplnr o`ls, u hold ulrning rlsh ko`ptmsi nolg teng v ksinch. Arlsh ko`ptmtgi ikki vektorning o`rnin lmstirishdn rlsh ko`ptmning ishorsi teskrig o`zgrdi, solut qimti o`ls o`zgrmdi, `ni c c c. Arlsh ko`ptmtgi ko`pushilrni siklli o`rin lmstirishdn rlsh ko`ptmning m`nosi o`zgrmdi: c c c Berilgn c,, vektorlrning ittsini hqiqi soni-g ko`ptirishdn ulrning rlsh ko`ptmsi shu soni-g ko`pdi, `ni eg: c c c c Vektorlrning rlsh ko`ptmsi h`r ir ko`pttuvchig nistn distriutivlik ossg c c c c c c c c c c Endi rlsh ko`ptmning geometrik m`nosini qr shiqlik: Berilgn nokomplnr (chiziqli erkli),, c vektorlr must uchlikni tshkil ets, ulrning rlsh ko`ptmsi ulrg qurilgn prllelipipedning hjmig, ksinch o`ls hjmning mnfi elgi iln olingnig teng o`ldi.
17 Biz,, c vektorlrdn qurilgn prllelipipedning hjmini V iln elgilmiz. Agr S iln v vektorlr g qurilgn prllelogrmmning uzsin elgilsk: t`rifg soslni,, c, c cos,, c o`li, c cos kttlik c ning, vektor o`nlishidgi to`g`ri chiziqdgi proesisig teng o`li prlllepipedning lndligi `ni c cos h (3-rsm) Ushin hold,, c S h V Bu son prlllepipedning hjmini niqldi. (3),, c lr chp uchlikdn iort o`ls,, vektor iln c vektor orsidgi urchk cos (4-rsm). U hold,, c V. Demk,, c V Biz quidgini isotldik: uch vektorning rlsh ko`ptmsidn iort sonning solut qimti qirrlri shu vektorlrdn iort prlllepipedning hjmig teng. (4) Meli ucht Arlsh ko`ptmnining koordintlrd ifodsi,, c vektorlr koordintlri iln erilgn o`lsin: {,, }, {,, }, c { c, c, c } Shu ucht vektorning rlsh ko`ptmsini hisolsh grk. U uchun dstl, vektorniing koordintlrini topish grk. Bizg m`lum 3 3, ; ; 3 3 Endi, v c vektorlrni sklr ko`ptirmiz:,, c c c c c c c3
18 Demk, 3 c (5) 3 c c c 3 Bu holdn quidgi qoid gli chiqdi: ucht vektorning rlsh ko`ptmsi irinchi o`li irinchi vektorning koordintlridn, ikkinchi o`li Ikkinchi vektorning koordintlridn, uchinchi o`li uchinchi vektorning koordintlridn turdign uchinchi trtili determinntg teng o`ldi. (5) formultn fodlni, o`zining koordintlri iln erilgn ucht vektorning komplnrlik shrtini ko`rstishg o`ldi. Bizg m`lum ucht,, c vektorlri o`zro komplnr o`lishi uchun ulrning rlsh ko`ptmsining nolg teng o`lishi zrurli v etrli. Shuning uchun c c c shrti ucht,, c vektorlrning komplnrlik shrti o`ldi. (6), c c 3-rsm 4-rsm,
19 Endi uchlrining koordintlri oich tetr edrning hjmin hisolsh formulsini keltiri chiqrlik.,,,,,,,,,,, A z B z C z D z nuqtlr tetr edrning koordintlri o`lsin AB,, z z, AC,, z z, AD,, z z,. tetr edrning hjmi tetr edrning ir uchidn ucht qirrsig qurilgn prllepiped hjmining 6 qismig teng o`lgni uchun, shuningdek (5) formultn z z Vtet AB AC AD mod 3 3 z3 z 6 6 z z (7) (7) formul iz izlgn tetr edrning hjmini hisolsh formulsi o`li topildi. Misol-. AB,,, AC3,4,, AD3,4, vektorlrg qurilgn tetr edr erilgn. Quidgilr topilsin ) tetr edrning hjmi, ) ABC on sirtining uzsi, c) D uchidn tushirilgn lndlik, d) AB v BC qirrlri orsidgi urchk kosinusi, e) ABC v ADC o`qlri orsidgi urchk kosinusi. Yechilishii: ) (7) formultn 8 Vtet mod ) () oich S AB, AC c) tetr edrning hjmi sosining uzsi iln sosg tushirilgn lndligig ko`ptmsining uchdn irig teng: Vtet Sul h 3 8 ), ) lrni hisoq olsk, 3 4 h Bu holdn h. 3
20 d) AB v BC qirrlri orsidgi urchk kosinusi AB, kosinusig teng o`lgni uchun: AB, AC 4 cos. AB AC AC vektorlr orsidgi urchk e) ABC v ADC o`qlri orsidgi urchk shu o`qlrg perpendikulr vektorlr orsidgi urchkg teng. ABC o`qq perpendikulr vektor v AB, AC,, , v,,8 ADC o`qq perpendikulr vektor v AC AD 8, 8, 6,. Demk v, v 8 ( 6) 8 cos. Bu o`qlr o zro perpendikulr ekn. v v Tekshirish uchun svollr. Ikki vektorning vektor ko`ptmsi de nimg tildi?. Must uchlik v chp uchlik degnd nimni tushinsiz? 3. Vektor ko`ptmning osslri qnd? 4. Vektor ko`ptm koordintlrd qnd erildi? 5. Uchurchk uzsi qnd topildi? 6. Uch vektorning rlsh ko`ptmsi de nimg tildi? 7. Arlsh ko`ptmning osslri qnd? 8. Vektorlrning komplnrlik shrti qnd? 9. Tetredr hjmi qnd hisolndi?. Arlsh ko`ptm koordintlrd qnd erildi? TEKISLIKDAGI AFFIN KOORDINATALAR SISTEMASI Tnich tushunchlr: Koordint oshi, o`q, nuqtning koordintlri, ffin koordintlr sistemsi, to`g`ri urchkli koordintlr sistemsi, kesmni erilgn nistt o`lish, ikki nuqt orsidgi msof. Tekislikd ffin koordintlr sistemsi O nuqtsi (Koordint oshi) v shu nuqttn oshl slgn o`zro nokolliner, m`lum ir trtid olingn e OE, e OE vektorlrning erilishi iln niqlndi (-rsm). Bu holdgi e -irinchi vektor, l e -ikkinchi
21 vektor. Bu e v e vektorlr O nuqtsind kesilisetugin Ikki o`qni niqldi, u vektorlrning o zlri shu o`qlrning irlik vektorlri o`ldi. Birinchi o`q erilgn koordintlr sistemsiniing tsiss oki O o`qi, l Ikkinchi o`q ordint o`qi oki O o`qi de tldi. Koordint sistemsiniing o zi Oee oki O de elgilndi. E e O e E -rsm M tekislikdgi ir nuqt o`lsin. Bu nuqtning hr ir o`qq Ikkinchi o`q o`nlishid o`lgn proektsilrini mos M v M de elgilmiz. Shu hold OM v OM vektorlrning lgerik qimti M nuqtning mos irinchi v ikkinchi kordintsi (sisssi, ordintsi) de tldi. Odtt M nuqtning tisssini, ordintsini orqli elgilsh qvul qilingn. U nuqt qisq ko`rinishd M (, ) de ozildi. Demk, tekislikdgi hr qnd nuqtg m`lum ir trtilngn sonlr juftligi (, ) mos gldi. Aksinch hr qnd trtilngn sonlr juftligi (, ) irinchi koordintsi, Ikkinchi Koordintsi es o`lgn M nuqtsini niqldi. Shund qili qili, trtilngn sonlr juftligi iln tekislikning nuqtlri orsid o zro ir qimtli moslik o`rntildi. Bsqsh so z iln tgnd, grd tekislikd ffinlik Koordintlr sistemsi erils, u hold tekislikdgi hr ir nuqtg mos gldign trtilngn sonlr juftligin top olmiz v ksinch trtilngn sonlr juftligi erils, ong mos gldign tekislikdgi nuqtni s olmiz. Koordintlri, o`lgn M nuqtsini ssh uchun O v O o`qlrid e OM ; e OM
22 shrtlrni qnotlntirdign M v M nuqtlrini ssh grk. Shu hold OM shrtni qnotlntirdign M nuqtsi izlngn nuqt o`ldi (- OM OM rsm). M M O M -rsm. Tekislikdgi Oee Koordint sistemsiniing e, e irlik vektorlri tekislikdgi vektorlr to`plminning zisi o`l oldi. Erikli vektorining e, e zisg nistn koordintlri shu vektorining Oee ffinlik sistemsig nistn koordintlri de tldi. Ulr vektorniing Koordint o`qlrig proeksilrining lgerik qimtig teng o`ldi. koordintlri e e, o`lgn vektori qisq {, } de ozildi, Shu hold Agrd o`ls, u hold vektori ordint o`qig, l kolliner o`ldi. o`ls stsiss o`qig Meli Oee -tekislikdgi ffinlik koordintlr sistemsi, l M -tekislikdgi erikli nuqt o`lsin. Shu hold OM vektori M nuqtining rdius-vektori de tldi. OM vektorniing koordintlrini M nuqtining koordintlrig teng eknligini ko rish mumkin. Demk M nuqtining koordintlri Uning rdius vektorining koordintlrig teng o`ldi. O zro teng vektorlrining mos koordintlri o zro teng o`ldi v ksinch. Ikki vektorning mos koordintlri o zro teng o`ls, u vektorlr o zro teng o`ldi. Agrd izg,,, A B nuqtlri erils, u hold AB vektorining koordintlri quidgich niqlndi
23 AB { ; } `ni, vektorning Koordintsi Uning smusti nuqtining koordintlridn dstlki nuqtining mos koordintlrini olgng teng. Biz to`g`ri urchkli koordintlr sistemsiniing irlik vektorlrni elgilmiz. Shu hold koordintlr sistemsiniing o`zi Oi jk de elgilndi. i, j orqli To`g`ri urchkli koordintlr sistemsi ffinlik koordintlr sistemsiniing ususi holi olgnlikdn, ffinlik koordintlr sistemsid isotlndign hmm teoremlr v formullr to`g`ri urchkli koordintlr sistemsi uchun o`rinli. Lekin teskri tsdiq to`g`ri o`lmdi. Ko`p hollrd geometrik msllrni to`g`ri urchkli koordintlr sistemsid qrgnimizd, ulrning erilishi v gli chiqqn formullr irqnch soddlshdi. Shuning uchun iz u hold msllrni to`g`ri urchkli koordintlr sistemsid qrmiz Kesmni erilgn nistt o`lish Meli izg tekislikd d to`g`ri chizig`i v Uning ustid o`nlgn AB kesm erilgn o`lsin. Agrd d to`g`ri chizig`i ndgi ziir C nuqtsi AC : CB () tenglikni qnotlndirs, u hold C nuqtsi AB kesmni nistd o`ldi de tildi. Bu tushunchning `zi osslrini keltirmiz ) C nuqtsi B nuqtsidn frqli Itiori nuqt olgnd AB kesmni C nuqtsi o`ldign nist mvjud o`ldi. ) Agrd C nuqtsi A v B nuqtlrining orsid jts, u hold C nuqtsi AB kesmni o`ldign nisti must, l C nuqtsi A v B nuqtlrining orsid otms, u hold nisti mnfi o`ldi. C nuqtsi A nuqtsi iln ustm-ust, u hold C. o`ldi. isotlmiz. c) Itiori o`ls AB kesmni nistd o`ldign gon C nuqtsi mvjud Birinchi ikki ossning to`g`riligi o`z-o`zign ko`rindi. Shung uchun iz c) ossni olgn erikli hqiqi son. AB to`g`ri chizig`id AC CB tengligin qntlndirtug`in C nuqtsin topmiz. Bu hold C nuqtsi gon o`ldi. Bu nistdn AC AC ( AC CB) AB oki olgnligidn. AC AB
24 AC AB demk C nuqtsi AB kesmni nistd o`ldi. AB to`g`ri chizig`id AB kesmni nistd o`ldign nuqtning AB olmsligini ko`rstmiz. Hqiqtd hm, Agrd o`ls, oki CB AC CB, AC CB, AB, `ni AB nollik vektor. Msl- Meli izg tekislikd ffinlik Koordint sistemsi v,,, A B nuqtlri erilgn o`lsin. Shu AB kesmni nistd o`ldign C nuqtining koordintlri AC,, z lrni topish grk. Yechilishii. Mslning shrti o ich AC CB CB. (). Bu holdn Meli AB, v C nuqtlrining rdius-vektorlri mos r, r v r o`lsin. Shu hold AC r r CB r r,. Bulrni () tenglikg qosq, r r r r ( ) tengligig eg o`lmiz. Bu vektor tenglik elementr lmshtirishlrdn gin quidgi ko`rinishg gldi. r r r Bu tenglik koordintlrd quidgich ozildi., (4) formul kesmni erilgn nistd o`lish formulsi de tldi. (3) Xususi hold, grd C nuqtsi AB kesmni teng o`rtsidn o`ls, u hold o`ldi v (4) formul quidgi ko rinishg gldi: (4), (5) Demk (5) formul kesmning teng o`rtsining koordintsini topish formulsi hisolndi. Ikki nuqt orsidg`i msof Bizg A, v, msof AB ni topish grk. B nuqtlri erilgn o`lsin. A v B nuqtlri orsidgi Izlngn msof AB shu ikki nuqt iln niqlngn AB vektorining uzunligig teng oldi, `ni AB AB (3-rsm).
25 B, A, 3-rsm Bizg m`lum AB { ; }. Shuning uchun ( A, B) AB ( ) ( ) Misol- ffin koordintlr sistemsid uchlri A,, B,5, C,3 uchurchk medinlrining kesisish nuqtlrin toping. nuqtlrdn iort Yechilishii. Bizg m`lum uchurchkning qsi ir uchsidn tushirilgn medin qrshi otgn tomonni teng ikkig o ldi. Uchurchkning medinlri ir nuqtt kesishdi v shu nuqtt ulrning hr iri : nistt o lindi. Shu ossg ko r AD medin uchun D nuqtning koordintlri quidgich topildi: 5 3 ; 4, D,4. Medinlrning kesisish nuqtsi O uchun :, izlngn O nuqtning koordintlri quidgich topildi: ; Demk, O, 3 3. Tekshirish uchun svollr. Affin koordintlr sistemsi qnd kiritildi?. Nuqtning koordintlri qnd topildi?
26 3. To`g`ri urchkli koordintlr sistemsi degnd nimni tushinsiz? 4. Kesmni erilgn nistt o`lish formullri qnd keltirili chiqrildi? 5. Ikki nuqt orsidgi msof qnd topildi? TEKISLIKNING ORIENTATSIYASI. QUTB KOORDINATALAR SISTEMASI Tnsh tushunchlr: O tish mtrissi, mtrits determignti, must v mnfi orientsi, Qut o`qi, polus, nuqtning Qut v dekrt koordintlri. e, e v e, e vektorlri oich ozmiz: e e e, e e e zislri erign o`lsin. Ikkinchi zis vektorlrini irinchi zis e, e Vektorlrning u zisg nistn koordintlridn Ikkinchi trtili kvdrt mtritsni tuzmiz. Bu mtrits irinchi zisdn Ikkinchi zisg o tish mtritssi de tldi.,,, sonlr mtritsning elementlri. Bu mtrits ikki qtor v ikki usting eg :, sonlr irinchi qtorni,, sonlr ikkinchi qtorni,, sonlr irinchi ustinni,, sonlr ikkinchi ustinni tshkil etdi. son mtritsning determignti deildi. Uni, det oki ko`rinishid elgilmiz. Hmm zislr to`plmini iln elgilmiz. Bizg, zislr erilgn o`lsin. T`rif-. Agr zisdn zisg o tish mtritssining determignti must(mnfi) son o`ls, u hold, zislr ir il(hr il) tmtgi zislr deildi. Tekislikning hmm zislrin ir il ismlilik tushinchsidn, ikki sinfg jrtish mumkin, u sinflrning ir sinfining ittsig tegishli hmm zislr ir il ismli o`li, ikkinchi sinfg tegishli zislr ir il ismli o`lmdi. Shu sinflrning hr iri orienttsi de tli, u hold zislr orientirlengn zislr de o`ritildi. B`zid u zislrni ir-irign jrtish uchun must orienttsili oki chp orienttsili de hm tildi. Bzisning orienttsisi m`lum o`lgn tekislik orienttsili
27 tekislik de tldi. Agr e, e v e, e zislr ir il(qrm-qrshi) orienttsili o`ls, Oee v Oe e koordint sistemlri ir il(qrm-qrshi) orienttsili deildi. Odtt, Oee koordintlr sistemsiniing e vektorni O nuqt trofid e vektor ustig tushirish uchun qisq o`l oich urish sot strelksig qrm-qrshi o`ls, u must orienttsili deildi. Misol- Tekislikd Oee v Oe e koordintlr sistemsinii qrmiz, u erd e e, e e o`lsin(-rsm). Bzisning vektorlri zis oich quidgi oilmg eg o`ldi: e e e, e e e e,, e,. - e O e e -rsm e O e -rsm
28 e O e zisdn. zisg o tish mtritssining determinnti Demk, u Oee v Oe e koordint sistemlri qrm-qrshi orienttsili. -rsmd qrm-qrshi orienttsili koordintlr sistemlrd irinchi koordint vektorlridn, Ikkinchi Koordint vektorlrig qr qisq o`l o`l` urish o`nlishlri qrm-qrshi eknligi ko rindi. -rsmd Oee v Oe e koordintlr sistemlri o`ls ir il orienttsili. Qut koordintlr sistemsi Geometrit ffin koordintlr sistemsi v to`g`ri urchkli dekrt koordintlr sistemlri iln ir qtord oshq koordintlr sistemlri hm qrldi. Shulrning ko`proq ishltildigni Qut koordintlr sistemsi o`li topildi. Tekislikd Qut koordintlr sistemsini kiritish uchun qnqdir ir O nuqtsi v shu nuqttn o tuvshi o`qni tnlp olmiz. Tnlngn nuqt Qut oshi, o`qni o`ls Qut o`qi de tmiz v uni l iln elgilmiz. Tekislikd erilgn Itiori O nuqttn frqli M nuqt uchun iln OM msofni, iln o`ls o`q iln OM nur orsidgi urchkni elgilmiz. Bu miqdorlr M nuqtning Qut koordintlri deildi v M, ko`rinishid elgilndi. Tekislikning O nuqttn frqli nuqtlri iln Qut koordintlri o'rtsidgi moslik o'zr ir qimtli o'lishi uchun v miqdorlrg Quidgi shegr qo`ildi:,. Bu to`g`ri urchkli koordintlr sistemsiniing oshlng`ich nuqtsi v mssht irligi uchun Qut koordintlr sistemsiniing oshlng`ich nuqtsin v mssht irligin, must stsiss rim o`qi uchun Qut rim o`qni qvul etmiz. Shu holdgide eti stsiss o`qi niqlndi. Astsiss o`qin urishning must o`nlishid C nuqtsi trofid urchkg
29 urishdn gli chiqqn o`qni ordint o`qi uchun qvul etmiz. Shund qili, niqlngn to`g`ri urchkli koordintlr sistemsi erilgn qut koordintlr sistemsi iln og`lnishli olg`n sistem de tldi (3-Rsm). Agr, dekrt koordintlr sistemsinii 3-rsmdgidek kiritsk, quidgi cos, sin og`lnishlrni olmiz. Berilgn M nuqtning dekrt koordintlri m'lum o`ls, uning qut koordintlrini topish uchin formul oich irinchi qut koordintni topmiz. Ikkinchi qut koordintni topish uchun M nuqtning qsi chorkd jolshgnligini ilishimiz grk v rctg, rcctg tengliklrdn fodlnishimiz grk. M 3-rsm r, cos r, sin r () Bu () formul to`g`ri urchkli koordintlrdn qut koordintlrig o`tishg imkonit erdi. Misol-.Dekrt koordintlr sistemsid M 3,4 nuqtnining koordintlrini Qut koordintlr sistemsid ozing. () formullr oich r r 5, 3 3 cos ; rccos r 5 5
30 4 4 sin rcsin. r 5 5 Tekshirish uchun svollr Bzisdn zisg o tish mtrissi de nimg tildi? Must v mnfi orientsi de nimg tildi? Qut koordintlr sistemsi qnd kiritildi? Nuqtning Qut v dekrt koordintlri orsidgi og`lnish qnd ko`rinishd o`ldi? AFFIN VA DEKART KOORDINATALAR SISTEMASINI ALMASHTIRISH Tnich tushunchlr: ffin koordintlr sistemsi, dekrt koordintlr sistemsi, irinchi koordintlr sistemsidn Ikkinchi koordintlr sistemsig o tish formullri, prllel ko shirish. Tekislikd Ikki Oee v Oe e ffin koordintlr sistemlri erilgn o`lsin(- rsm). M e O e e O e -rsm. Qullik uchun, ulrning irinchisini eski koordintlr sistemsi, ikkinchisini es ngi koordintlr sistemsi de tmiz. Bu holdn tshqri, ngi koordintlr sistemsining eski koordintlr sistemsig nistn vziti erilgn o`lsin, `ni O c, c, e,, e,, OO c e c e ()
31 e e e, e e e () Bu erd. Tekislikd M nuqtni olmiz. Bu nuqtning eski v ngi koordintlr sistemsig nistn koordintlrini mos v,, orqli elgilmiz. U hold OM e e, OM e e. Vektorlrni qo`shish t`rifi v (), () nistlrdn fodlnsk, oki OM OO OM c e c e e e c e c e e e e e (3) e e c e c e e, e vektorlrning chiziqli erkli eknligini hisoq olsk, c, c (4) M nuqtning eski sistemg nistn koordintlri,, Uning ngi sistemsig nistn koordintlri, orqli (4) ko`rinishid ifodlndi. (4) formullr ir ffin koordintlr sistemsidn ikkinchi ffin koordintlr sistemsig o tish formullri deildi. Bu formullrd shrt iln og`lngn oltit koeffisient qtnshgn. Quidgi ikkit holni qrmiz: O O, e e, e e (-rsm). Bu hold, o`li (4) formullr c, c (5) ko rinisg gldi. (5) formullr koordintlr sistemsini prllel ko shirish formullri de tldi. O O v zis vektorlr hr il o`lsin (3-rsm). Bu hold c co`li, (4) formultn, (6)
32 M e e O e O e -rsm M e O e e e 3-rsm
33 Dekrt koordintlr sistemsini lmshtirish Tekislikd Oi j v Oi j dekrt koordintlr sistemlri erilgn o`lsin. Bu hold (4) formullrdgi, lr i vektorning,, lr j vektornin Oi j dekrt koordintlr sistemsig nistn koordintlri o`ldi, `ni i i j, j i j. (7) ii, o`lsin. Agr Oi j v Oi j dekrt koordintlr sistemlri ir il orienttsili o`ls (4-rsm), u hold i, j 9, i, j 9, j, j (8) Oi j v Oi j dekrt koordintlr sistemlri ir il orienttsili o`ls (5-Shu shter), u hold i j i j j j, 7,, 9,, 8 (9) (7) tengliklrni ize-izlik iln i, j vektorlrg sklr ko eitsek,, cos,, cos,, cos,, cos i i i i i j i j j i j i j j j j (8) v (9) nistlrni hisoq olsk, i, jvektorlrning Oi j dekrt koordintlr sistemsig nistn koordintlri, Agr Oi j v Oi j dekrt koordintlr sistemlri ir il orienttsili o`ls, cos,sin, j sin,cos i Oi j v Oi j dekrt koordintlr sistemlri qrm-qrshi orienttsili o`ls, cos,sin, jsin, cos i Bu hold (4) formul Quidgi ko rinisg eg o`ldi: cos sin c sin cos c cos sin c sin cos c () v () formullrin ir () ()
34 cos sin c sin cos c () ko`rinishidgi ozuvg irlstirish mumkin, u erd. Shund qili, Oi j v Oi j koordint sistemlri dekrt koordintlr sistemlri o`lgnd, ulrning irinchisidn ikkinchisig o tish () formul iln ifodlndi. Bu erd, Oi j v Oi j koordint sistemlri ir il orienttsili o`ls,, ksinch o`ls. Misol-. Ikki Oee v Oe e ffin koordint sistemlri erilgn o`li, u hold,,,,, O e e o`lsin. M nuqtning Oee koordintlr sistemsig nistn koordintlri, eknligini ilgn hold, u nuqtning Oe e ffin koordintlr sistemsig nistn koordintlri, lrni toping. Yechilishii. Berilgn,, c,,, c. Bu qimtlrni (4) formulg qosq,,., eknligini hisog olsk,, oki,, u sistemni echip,, ni topmiz. Demk, M nuqtning Oe e ffin koordintlr sistemsig nistn koordintlri,. j j i j O i O i 4-rsm
35 j O j j i i O i 5-rsm. Tekshirish uchun svollr Tekislikd ffin koordintlr sistemsini qnd lmshtirildi? O`tish v Prllel ko shirish formullri qnd? Dekrt koordintlr sistemsini lmshtirish qnd jrildi? TEKISLIKDA TO G RI CHIZIQNING TURLI TENGLAMALARI Tnich tushunchlr: o`nltiruvchi vektor, to`g`ri chiziq chiziq, urchk koeffitsient, to`g`ri chiziqning prmetrik, knonik tenglmsi Berilgn to`g`ri chiziqq kolliner o`lg`n, nollik vektordn frqli h`r qnq vektor shu erilgn to`g`ri chiziqning o`nltiruvchi vektori de tldi. Bu t`rifdn erilgn to`g`ri chiziqning o`nltiruvchi vektorlrining sheksiz ko`p eknligini ko`rmiz. Ulrning mvjudlig`i u vektorlr o`zro kolliner o`ldi. Shuning uchun ulrning irisi ikkinchisini noldn frqli song ko`ptirishdn hosil o`ldi. To`g`ri chiziqning urchk koeffitsientli tenglmsi Tekislikd ffin koordintlr sistemsi erilgn o`lsin. Tekislikd erilgn l to`g`ri chiziq koordint o`qlrining ittsig prllel o`li jolshishi oki hesh ir koordint o`qig prllel o`lm jolshishi mumkin. Biz shu hollrning h`r irini lohid qrmiz.
36 l to`g`ri chizig`i ordint o`qig prllel v stsiss o`qini A (,) nuqtsid kesi o`tdign o`lsin (-Rsm). M nuqt l to`g`ri chiziqning itiori nuqtsi o`lsin. Shu hold hmm OM vektorning stsiss o`qig ordint o`qi o`nlishid olg`n proektsilri OA vektori iln ustm-ust l M tushdi, `ni l to`g`ri chiziq hmm M nuqtlri uchun () o`ldi. Aksinch, stsisssi g` teng O A o`lgn nuqtlrning hmmsi l to`g`ri chizid otdi. U hold () ordint o`qig -rsm prllel olg`n to`g`ri chiziqning tenglmsi o`ldi. l to`g`ri chiziq stsiss o`qig prllel v ordint o`qini B (, ) nuqtsid kesi o`tdign o`lsin. U hold uqoridgig o`shsh hold u to`g`ri chiziqning tenglmsining () o`lishini ko`rmiz. vektori {, } Ordint o`qig prllel o`lmgn to`g`ri chiziqning itiori o`nltiruvchi uchun uning ikkinchi koordintsining irinchi koordintsig nisti : o`zgrms k sonig teng o`ldi v u k soni erilgn to`g`ri chiziqning urchk koeffitsienti de tldi. Hqiqtdn hm {, }, {, } o`nltiruvchi vektori o`lsin. U hold o`ldi. Bundn ;, olgnligidn, :. erilgn l to`g`ri chiziqning ikki tengligini qnotlntirdign soni mvjud Endi ordint o`qig prllel o`lmgn l to`g`ri chiziqning tenglmsini topmiz. U to`g`ri chiziqning O o`qi iln kesisish nuqtsini S (, ) elgilmiz (-rsm), l urchk koeffitsientini k iln
37 l to`g`ri chiziqining ustidn S nuqtsidn frqli M (, ) nuqtsini olmiz. U hold -Rsm e O e S (, ) OM {, } vektori l to`g`ri chiziqning o`nltiruvchi vektori o`ldi. Shuning uchun k `ni k (3) Demk l to`g`ri chiziqning hmm nuqtlrining koordintlri (3) tenglmni qnotlntirdi. Aksinch, koordintlri (3) tenglmni qnotlntirdign h`r qnd M ( ; ) nuqtning l to`g`ri chiziqq tegishli eknligini ko`rinis`rstish mumkin. Astsisssi olg`n v l to`g`ri chiziqq tegishli itt M nuqtsi mvjud o`ldi. Bu M nuqtsi l to`g`ri chiziqq tegishli o`lgnligi uchun, uning koordintlri (3) tenglmni qnotlntirdi. Demk M nuqtning ordintsi k o`ldi, `ni M nuqtsi M nuqtsi iln ustmust tushdi. U hold M nuqt l to`g`ri chiziqq tegishli o`ldi. Shund qili, l to`g`ri chiziqning hmm nuqtlrining koordintlri (3) tenglmni qnotlntirdi v koordintlri (3) tenglmni qnotlntirdign hmm nuqtlr d to`g`ri chiziqq tegishli o`ldi. U hold (3) tenglm l to`g`ri chiziqning tenglmsi o`ldi. To`g`ri chiziqning umumi ko`rinishdgi tenglmsi Tekislikd O Dekrt koordintlr sistemsi n kiritilgn o lsin. Agr tekislikd iror to gri chiziq erilgn o ls, und otgn nuqtlr koordintlri l irinchi drjli A B C tenglmni M (,) M(,) qnotlntirishini ko rstmiz.tekislikd ngi O Chizm-3 koordintlr sistemsini shund kiritmizki to gri chiziq tsiss o qi iln ustm-ust tushsin.yngi O koordintlr sistemsid to gri chiziqdgi nuqtlrning koordintlri tenglmni qnotlntirdi.biz O koordintlr sistemsidn eski O
38 koordintlr sistemsig o tsk uqoridgi tenglm A B C ko rinishg eg o ldi.bu erd koeffisientlr quidgi munostni qnotlntirdi: A B > Teskri msl qo miz, ni erilgn tenglmg A B C ko r to gri chiziqni niqlmiz. Koordintlri B C iln, A tenglmni qnotlntiruvchi M nuqtdn o tuvchi v n A, B elgilsk, M nuqtni olmiz.agr vektorg perpendikulr to g ri chiziqni M, nuqt to g ri chiziqq tegishli o lishi uchun M M vektor n A, B vektorg ortogonl o lishi zrur v etrlidir.ortogonllik shrtini sklr ko ptm orqli ozsk, A B C, (4) tenglmni hosil qilmiz.bu tenglm to g ri chiziqning umumi tenglmsi deildi.agr (4) tenglmd A o ls, (4) tenglm O o qig prllel to g ri chiziqni, B v C o lgn hollrd mos rvishd O o qig prllel v koordint oshidn o tuvchi to g ri chiziqlrni olmiz. To`g`ri chiziqning kesm ko`rinishidgi tenglmsi Bizg erilgn (4) tenglmning hmm koeffisientlri noldn frqli o ls, tenglmni ko rinishd ozi v C A C B C C, elgilshlr kiriti, uni A B ko rinishg keltirmiz. Bu tenglm to g ri chiziqning kesm ko`rinishdgi tenglmsi deildi. Bu hold to g ri chiziq koordint oshidn o tmdi v koordint o qlridn kttliklri mos rvishd v lrg teng (6) (5) To g ri chiziqning knonik tenglmsi Agr to g ri chiziqning itt nuqtsi v o nltiruvchi vektori erilgn o ls,uning tenglmsini tuzish mslsini qrlik.agr,m o nltiruvchi vektor
39 o li, M, nuqt to g ri chiziqq tegishli o ls, to g ri chiziqning hr ir M, nuqtsi uchun M M vektor,m vektorg kolliner o lishi kerk.kollinerlik shrtini ozsk quidgi tenglmni olmiz: m Bu tenglm to g ri chiziqning knonik tenglmsi deildi. Yuqoridgi (7 ) tenglmning o ng v chp tomonlrini t iln elgilsk quidgi prmetrik tenglmlrni olmiz: t, mt Agr ssiss o qig prllel o lmgn L to g ri chiziq OX o qini A nuqtd kesi o ts, ssiss o qi iln to g ri chiziq orsidgi urchkni iln elgilmiz. To`g`ri chiziqning norml tenglmsi To`g`ri chiziqni ffin koordintlr sistemsid qrgn edik. Endi to`g`ri chiziqni to`g`ri urchkli koordintlr sistemsid qrmiz. l to`g`ri chiziq erilgn o`lsin. Agrd n vektori shu to`g`ri chiziqdgi itiori vektorg` ortogonl o`ls, u hold n vektori l to`g`ri chiziqq ortogonl` de tldi. l to`g`ri chiziqdgi vektorlr o`zro kolliner olgnligudn, n vektori l to`g`ri chiziqq orthogonl o`lishi uchun uning l to`g`ri chiziqdgi itiori (7) ir vektorg ortogonl o`lishi etrli. Berilgn to`g`ri chiziqq ortogonl o`lgn vektorlr o`zro kolliner vektorlr sistemsini hosil qildi. To`g`ri chiziqq ortogonl o`lgn itiori noldn frqli vektor to`g`ri chiziqning norml vektori de tldi. Agrd to`g`ri chiziq o`zining umumi tenglmsi A B C (8) iln erilgn o`ls, u hold n { A, B} vektori shu to`g`ri chiziqning norml vektori o`ldi. Hqiqtdn hm (4) to`g`ri chiziqning o`nltiruvchi vektori { B; A}, n, A( B) AB o`lgnligidn n vektori (8) to`g`ri chiziqq perpendikulr, `ni uning norml vektori o`ldi. To`g`ri chiziq to`g`ri urchkli koordintlr sistemsid to`g`ri chiziqning tenglmsini norml ko`rinis`rinish de tlgn sodd ko`rinishg oli kelishg o`ldi. U uchun to`g`ri chiziq ning irlik norml vektori n ni qrmiz. Agrd l to`g`ri chiziq koordint oshidn o`tms, ON u hold n vektorning o`nlishi n nistidn niqlndi, u holdgi N -koordint ON
40 oshign l to`g`ri chiziqq tushirilgn perpendikulrning sosi. Agrd l to`g`ri chiziq koordint oshidn o`ts, u hold n vektorning o`nlishi itiori rvishd olindi. Koordint oshidn l to`g`ri chiziqgch msof P v n vektorning O o`qi iln sgn urchk erilgn o`lsin. Bu erilgnlr oich l to`g`ri chiziqning tenglmsini tuzishimiz kerk. Msl shrti oich n {cos,sin }, ON n. To`g`ri chiziqning itiori M nuqtsining rdius vektorini r iln elgilmiz (4-Rsm). M nuqtning to`g`ri chiziqd otishining kerkli v etrli shrti N NM n o`ldi. NM OM ON r n 4-Rsm quidgich ozildi. cos sin (9) Shuning uchun ( r n ) n oki rn. M nuqtning koordintsi (, ) o`lsin.u hold r (, ) v Yuqoridg`i tenglik koordintlrd Bu tenglm to`g`ri chiziq ning norml ko`rinishdgi tenglmsi de tldi. Bu tenglmning to`g`ri chiziqning oshq tenglmlrign frqliligi hmm koeffitsientlri geometrik qimtg eg : v lrning koeffitsientlri irlik norml vektorining koordintlridn iort, ozod hd mnfi qimtd olingn koordint oshign to`g`ri chiziqgch o`lgn msof. Shuning iln irg u tenglmd hmm vqtt koeffitsientlrining kvdrtlrining ig`indisi irg teng. O n Endi to`g`ri chiziqning umumi ko`rinis`rinishdgi tenglmsini norml ko`rinishg keltirish mslsini qrmiz. (8) erilgn l to`g`ri chiziqning umumi ko`rinis`rinishdgi tenglmsi, (9) norml` ko`rinis`rinishdgi tenglmsi o`lsin. U hold ikki to`g`ri chiziqning ustm-ust tushish shrti oich M cos A ; sin B; AC () d Bu () tengligi C olg`nd ning ishorsini niqlshg imkon erdi. olgnligidn Shuning uchun ning ishorsi C ning ishorsig qrm-qrshi o`ldi.
41 ning modulin niqlsh uchun () ning irinchi ikki tengligini kvdrtq oshiri q`oshmiz. U hold ( A Bu holdn B A B Moduli ) cos A B sin ishorsi C ning ishorsig qrm-qrshi o`lgn soni(9) tenglmning norml ko`ptiruvchisi deildi. C o`ls ning ishorsi itiori rishd sl olindi. (9) ning ikkit tomonini norml ko`ptiruvchig g ko`ptiri, iz u tenglmni to`g`ri chiziqning normlko`rinishdgi tenglmsig lntirmiz. Tekserish uchun svollr. To`g`ri chiziq chiziqting o`nltiruvchi vektori de nimg tildi?. To`g`ri chiziqning urchk koeffitsientli tenglmsi qnd ko`rinishd erildi? 3. To`g`ri chiziqning umumi ko`rinishdgi tenglmsi hqid nim ilsiz? 4. To`g`ri chiziqning umumi ko`rinishdgi tenglmsini kesm ko`rinishidgi tenglmsig qnd keltirish mu`mkin? 5. To`g`ri chiziqning norml tenglmsi qnd ko`rinishd erildi? TEKISLIKDAGI IKKI TO`G`RI CHIZIQNING O`ZARO VAZIYATI. NUQTADAN TO`G`RI CHIZIQGACHA MASOFA Tnich tu`shunchlr: colliner vektorlr, nokolliner vektorlr, perpendikulr vektorlr, to`g`ri chiziq, to`g`ri chiziqlr orsidg` urchk Tekislikdgi ikki to`g`ri chiziqning o`zro vziti Bizg d v d to`g`ri chiziqlri
42 A B C () A B C () tenglmlri iln erilgn o`lsin. Shu to`g`ri chiziqlrning o`zro qnd jolshgnligini niqlmiz. Bizg m`lum d to`g`ri chizig`ining o`nltiruvchi vektori { B ; A}, d to`g`ri chiziqning o`nltiruvchi vektori { B ; A }. U hold quidgi vzitlr o`lishi mu`mkin. v vektorlr o`zro nokolliner. Bu hold d v d to`g`ri chiziqlri o`zro kesishdi. Aksinch, gr d v d to`g`ri chiziqlri kesishs, u hold v vektorlri o`zro kolliner o`lmdi. Bu v vektorlrning nokollinerlik shrti quidgich ozildi: B B A A A B oki A B Bu (3) sh`rt ikki to`g`ri chiziqning kesisish shrti o`ldi. (3) sh`rt jrilgnd () v () to`g`ri chiziqlrning kesisish nuqtsini topish uchun () v () tenglmlrni irglikd echish kerk. v vektorlri o`zro kolliner. Bu hold d v d to`g`ri chiziqlri prllel o`ldi. Aksinch d v d to`g`ri chiziqlri prllel` o`ls, u hold ulrning o`nltiruvchi (3) vektorlri o`zro kolliner o`ldi. v vektorlrning kollinerlik shrti quidgich ozildi. B B A A Bu (4) sh`rt A ; B A B oki A B A B (5) shrti iln teng kuchli. Bu (4) v uning iln teng kuchli o`lgn (5) sh`rtlr ikki to`g`ri chiziqning prllellik shrti de tldi. Bu hold quidgi ikki hol o`lishi mu`mkin. ) A A ; B B v C C (6) A A ; B B v C ( ) ) (4) C (7) ) hold () v () tenglmlr ir tenglmg lni ketdi. Demk d v d to`g`ri chiziqlri o`zro ustm-ust tushdi. Aksinch d v d to`g`ri chiziqlri ustm-ust tushi, ir to`g`ri chiziqq lns, u hold ulrning tenglmlri hm ir il o`lishi kerk
43 ) hold () v () tenglmlr ir tenglmg lnmdi, demk ulr orqli niqlngn to`g`ri chiziqlr hm h`r il o`ldi. Demk (7) sh`rt o`zro ustm-ust tushmdign ikki to`g`ri chiziqning prllellik shrti, (6) sh`rt es ikki to`g`ri chiziqning ustm-ust tushish shrti o`ldi. A A Agrd mtritsning rngi tushinchsini fodlnsk, `ni B B v A A B B C C mtritslrining rnglrini r v R orqli elgilsk, u hold uqoridgi ntijlrni quidgich tish mumkin : etrli. ) () v () to`g`ri chiziqlri kesisishi uchun r o`lishi zrurli v etrli. ) () v () to`g`ri chiziqlri ustm-ust tushishi uchun R o`lishi zrurli v etrli. c) () v () to`g`ri chiziqlri prllel o`lishi uchun r ; R o`lishi zrurli v Misol-. 4 v 3 to`g`ri chiziqlrning o`zro vziti niqlng. Yechilishii: 4 3 shrti o`rinli o`ldi, demk u to`g`ri chiziqlr kesishdi. Nuqttn to`g`ri chiziqgch msof To`g`ri urchkli dekrt koordintlr sistemsid cos sin (8) tenglemsi iln niqlng`n d to`g`ri chizig`i v `ziir ) M nuqtsidn d to`g`ri chizig`igch msofni topish kerk. M ( nuqtsi erilgn. Shu M nuqtsidn d to`g`ri chizig`igch msof degnd M nuqtsidn shu to`g`ri chizig`ig tushirilgn perpendikulrning uzinligini tushinmiz. U msof ( M d) de elgilndi. Agrd M nuqtsidn d to`g`ri chiziqq tushirilgn perpendikulrning sosi H (, ) orqli elgilsk, u hold ( M d) HM (-Rsm).
44 O n H M, d Agrd M d o`ls, u hold ( M d). Shuning uchun M d de qvul etmiz. Bizg m`lum d to`g`ri chizig`ining irlik norml vektori n {cos, sin }, l HM {, } Bu ikki vektor o`zro kolliner. Shuning -Rsm uchun H M n H M n cos( H M ^n ) Demk ( M d) HM n. Endi HM n HM n ( cos sin ( ) cos ( cos H M. sklr ko`ptmsini hisolmiz )sin sin ) H (, ) nuqtsi d to`g`ri chizig`id otdi. Shuning uchun cos sin oki cos sin Buni uqoridg`i tenglikg oori qusk, HM n cos sin U hold M d) cos sin (9) ( Demk nuqtdn to`g`ri chiziqgch msofni hisolsh uchun to`g`ri chiziqning norml tenglmsining o`ng trfidgi ifodg erilgn nuqtning koordintlrini qoi hisolsh kerk. Shu hold keli chiqqn kttlikning moduli erilgn nuqtdn to`g`ri chiziqgch msof o`ldi. Agrd d to`g`ri chizig`i umumi tenglmsi iln erils A B C () u hold M ( ) nuqtdn shu to`g`ri chiziqgch msofni hisolsh uchun dstlki to`g`ri chiziqning umumi tenglmsini norml ko`rinishg keltiri irish kerk, `ni ()
45 tenglmning ikki trfin hm formulg eg o`lmiz. ( M, d) A Misol-., B A B C A B g ko`ptirish kerk. N`tijd quidgi M nuqtdn 3 to`g`ri chiziqgch msofni toping. A B Yechilishii: ( M, d) formul o`ich d A B C Ikki to`g`ri chiziq orsidg`i urchk Tekislikdgi ikki to`g`ri chiziq orsidg`i urchk de, ulrning ittsining itiori o`nltiruvchi vektori iln ikkinchisining itiori o`nltiruvchi vektori orsidg`i urchkg tmiz. Bu t`rif izg ir-iri g to`ldirilishi ikki urchkni, `ni ikki keshishgn to`g`ri chiziqlrdn slgn ikki qo`shni urchkni erdi(-rsm). -Rsm d d d A B C () : d : A B C () B To`g`ri urchkli koordintlr sistemsid d v d to`g`ri chiziqlri o`zining umumi tenglmsi iln erilgn o`lsin: Bu to`g`ri chiziqlrning o`nltiruvchi vektori { ; A }; { B; A}. Ulr orsidg`i urchkning kosinusi quidgi formul oich niqlndi A A BB cos (3) A B A B Agr A A BB o`ls, u hold d v d to`g`ri chiziqlri orsidg`i urchk o`tkir, A A BB o`ls, u urchk o`tms o`ldi.
46 A A B B (4) tengligi d v d to`g`ri chiziqlrining perpendikulrlig`ining zrurli v etrli shrti o`ldi. Ikki to`g`ri chiziq orsidg`i urchkni quidgich hm niqlsh mumkin. d v d to`g`ri chiziqlrning norml vektorlri n { A, B}; n { A, } B. Bu vektorlr orsidg`i urchk d v d to`g`ri chiziqlrning kesishidn slgn qo`shni urchklrning ittsig teng o`ldi (3-Rsm). n d n d 3-Rsm Misol v 3 to`g`ri chiziqlr orsidgi urchk topilsin. Yechilishii: Bu to`g`ri chiziqlrning norml vektorlri mos n,4, n, 3 Ulr orsidg`i urchkni topmiz: cos A A B B 4 ( 3) A B A B 4 ( 3) 5 lrdn iort. Tekshirish uchun svollr: Ikki to`g`ri chiziqning o`zro vzitini qnd niqlmiz? Nuqtdn to`g`ri chiziqgch msofni toppish formulsini qnd hosil qilmiz? Ikki to`g`ri chiziq orsidgi urchk qnd topildi?
47 TO PLAMLARNI AKSLANTIRISH VA ALMASHTIRISH O`shshlikning geometrik nzrisini umumi o`lgn t`rifdn oshlmiz. Bizg o`sh o`lmgn ikki XY, to`plmlr erilgn o`lsin, `ni X, Y T`rif - Agr X to`plmning hr ir elementig f qoid iln Y to`plmning niq ir elementi mos qo`ilg`n o`ls, u hold X to`plmning Y to`plmg kslntirishi erilgn deildi. f qoid X to`plmni Y to`plmg kslntirdi degn jumlni f : X Y oki ko`rinishd ozmiz. Agr X element f kslntirishd Y elementg mos kels, uni f X f Y singri ozildi, tegishli elementning f kslntirishdgi orzi, o`ls elementning proorzi dep tldi. X to`plmning rch elementlrining orzlrining to`plmi f X ko`rinishd elgilndi v f kslntirishdgi X to`plmning orzi deildi. f X, Misol-.O nuqtsi mrkzi umumi o`lgn ikki kontsentik lnni qdrmiz. r rdiusli lnning nuqtlrining to`plmi X, R rdiusli lnning nuqtlrining to`plmi Y o`lsin. X to`plmning hr ir M nuqtsig OM nurd otgn M nuqtsini mos keltirlik. Ntijd irinshi lnning ikkinshi lng kslntirilishi hosil o`ldi: M f M, N f N hokz (-rsm). v r M M R O N N -rsm
48 Bu erd f qoid O nuqtdn chiqqn nurning irinshi ln iln kesishgn nuqtsining ikkinshi ln iln kesishgn nuqtsig mos keltirishdn iort. f : X Y kslntirishning kerkli ususu hollri iln tnishmiz.. Agr X to`plmning hr qnd ikki, elementi uchin f f o`ls, und f : X Y kslntirish in`ektiv kslntirish deildi. Boshqsh tgnd, f kslntirish in`ektiv o`ls, Y to`plmning hr ir elementi ittdn ortiq olmgn proorzg` eg. Misol-. X rim lnning hmm nuqtlr to`plmi, Y o`ls u rim ln dimetri orqli utgn to`g`ri chiziqning rch nuqtlr to`plmi o`lsin(-rsm). Yrim lnning hr ir nuqtsig u nuqtning l to`g`ri chiziqdgi orthogonl proertsisini mos keltirmiz. Bu erd f qoid rim lnning hr ir nuqtsining l to`g`ri chiziqdgi orthogonl proetsisini topishdn iort. Ntijd X to`plmning Y to`plmg kslntirishi hosil etildi. Bu kslntirishd M f M, N f N M N, f M f N. v hokzo o`li, -rsm. II. Agr f kslntirishdgi orzlr to`plmi Y to`plmdn iort, `ni f X Y o`ls, und f : X Y kslntirish sur`ektiv kslntirish deildi. Missl- X to`plmdgi hmm vektorlr to`plmi, Y to`plmi o`ls O mrkzli to`g`ri chiziqlr dstsi o`lsin(3-rsm). X X \O to`plmning hr ir m vektorig Y to`plmning l m to`g`ri chizig`ini moslshtirmiz. Bu iln X to`plmni Y to`plmg f X Y kslntirish i hosil o`li, u kslntirishd f X Y.demk, f kslntirish sur`ektiv, lekin u in`ektiv ems, si hr qnd m n, m n vektorlr uchin f m f n.
49 m O 3-suwret. III. Bir vqtd hm in`ektiv, hm surektiv o`lgn f : X Y kslntirish iektiv ki o`z-r ir qimtli kslntirish deildi. Akslntirish iektiv o`lgnd Y to`plmning hr ir elementi ir proorzg` eg. Biektiv kslntirishg misol keltirlik. Misol- 3. Tekislikd ffin koordintlr sistemsini kiritish iln hmm trtiplngn hqiqi sonlr juftlri to`plmg, v ksinch trtiplngn hmm hqiqi sonlr juftlri to`plmini tekislikning rch nuqtlri to`plmig kslntirildi. Bund koordintlr sistemsini kiritish qoidsi o`ldi. f qoid ffin X - tekislikdgi rch nuqtlr to`plmi, Y m`lum ir trtid olingn hmm hqiqi sonlr to`plmi (oki ksinch ) o`lsin desk, u kslntirishd hr ir M X nuqtg ir juft, Y son v ksinch sonlrning hr ir, Y juftig ir M X nuqt mos keldi. T`rif-. X to`plmni Y to`plmg hr qnd f : X Y iektiv kslntirish erilgn v hr qnd X element uchin f f : Y X o`lsin. U hold f qoid iln jrilgn kslntirish f uchin teskri kslntirish deildi. X to`plmni Y to`plmg f kslntirish iektiv o`lgnd ung teskri f kslntirish or o`ldi v iektiv kslntirish hm o`ldi. Hqiqtn hm, ir f : X Y iektiv kslntirish o`lgnd u ir vqtd hm in`ektiv, hm sur`ektiv o`ldi. T`rif- 3. X to`plmni o`z-o`zig hr qnd f : X Y iektiv kslntirish X to`plmd lmshtirish deildi. f kslntirish X to`plmning iror lmshtirishi o`ls, uning X g o`tkzdign lmshtirishd X to`plmd lmshtirish o`ldi. Uni f lmshtirishg teskri lmshtirish deildi.
50 Agr iror ir X element uchin (mos X to`plmning qism to`plmi uchin ) f lmshtirishd f f o`ls, element ( qism to`plm) f lmshtirishd qo`zgolms element oki invrint element deildi. f : X X lmshtirish nn lmshtirish deildi. Ann lmshtirish E elgilndi. iln T`rif-4 f, f lr X to`plmning itiori ikki lmshtirishi o`lsin, f lmshtirish hr ir X elementni f elementg, f f lmshtirish o`ls elementni elementg o`tkzsin. Ulr ketm-ket jrils, `ni element ustid f lmshtirishni v hosil etilgen orz ustid f lmshtirish jrils, ntijd tegishli elementg o`tkzdugn f 3 lmshtirish hosil o`ldi. f 3 lmshtirish f, f lmshtirishning ko`ptmsi (oki kompozitsisi) deildi v f f f 3 ko`rinishd ozildi (und vvl f, songr f jrildi). Misol-4. Uullik f tekislikni l to`g`ri chiziqq nistn simmetrik lmshtirish, f o`ls shu tekislikni l to`g`ri chiziqq perpendikulr o`lgn vektorg qdr prllel ko`shirish o`lsin. M tekislikning itiori nuqtsi o`lsin. Avvl f f lmshtirishni jrmiz. Tekislikni l to`g`ri chiziqq nistn f simmetrik lmshtirish M nuqtni M nuqtg o`tkzdi. Tekislikni vektorg` qdr f prllel ko`shirish M nuqtni M nuqtg o`tkzdi(4-rsm). Bu lmshtirishlrning ko`ptmsi f f lmshtirish M nuqtni M nuqtg o`tkzdi. Endi ff lmshtirishni jrmiz. Tekislikni vektorg qdr f prllel ko`shirish M nuqtni N nuqtg o`tkzdi. l to`g`ri chiziqq nistn f simmetrik lmshtirish o`ls N nuqtni N nuqtg o`tkzdi, ulrning ko`ptmsi, `ni tekislikni ff lmshtirish M nuqtni N nuqtg o`tkzdi. M N. Demk, u misold f f f f.
51 N M M l M 4-rsm. N Teorem-. Almshtirishlrni ko`ptirish ssotsitivlik qoidg osindi, `ni X to`plmning itiori ucht,, 3 f f f f f f. f f f lmshtirish uchin 3 3 Isot: X to`plmning itiori elementi o`lsin. f lmshtirishdgi ning orzi, f lmshtirishdgi ning orzi z, f 3 lmshtirishdgi z ning orzi t o`lsin. Und lmshtirishlrni ko`ptirish t`rifig ko`r f f lmshtirish elementni z elementg o`tkzdi, f f 3 lmshtirish elementni t elementg o`tkzdi. Shung kor, f f f f z t f f f f f t, Bundn o`ls, f f f f f f.# 3 3 f itiori lmshtirish o`lsin. Ung teskri f lmshtirish v E nit lmshtirish uchin fe E f f v ff f f E tengliklr o`rinli o`ldi. Almshtirish ler gruppsi. Almshtirishlr gruppsining qism grupplri X to`plmdgi f, f, f... lmshtirishlr to`plmini iln elgillik. 3, T`rif-5. Agr to`plmdn olingn itiori ikkit f v f lmshtirish ning f f ko`ptmsi to`plmg tegishli o`ls v undgi hr ir f lmshtirishg teskri lmshtirish hm to`plmg tegishli o`ls, to`plm grupp deildi. f
52 ning hr qnd ikki f, f lmshtirishi uchin f f f f o`ls, grupp kommuttiv grupp oki Ael gruppsi deildi. Misol-. Frz qillik, irort tekislikdgi hmm prllel ko`chirishlr to`plmi P o`lsin, f, f P lmshtirishlrni olik, f lmshtirish vektorg qdr prllel ko`chirish, f lmshtirish o`ls vektorg` qdr prllel ko`chirish o`lsin. Tekislikning itiori M nuqtsini f lmshtirishg shund M nuqtg o`tkizdi, und MM o`ldi, f lmshtirish o`ls M nuqtni shund M nuqtg o`tkizdi, und MM o`ldi, f, f lmshtirish lrning f f ko`ptmsi M nuqtni M nuqtg o`tkizdi. Vektorlrni qo`shish qoidsig ko`r MM MM MM c, `ni MM c (5-rsm). f, f prllel ko`chirishlrning ko`ptmsi c vektorg qdr prllel ko`chirish o`li topildi. M M M 5-rsm. Endi f prllel ko`chirishg teskri mlni jrlik. f lmshtirish vektorg` qdr prllel ko`chish o`lgligidn ung teskri ml o`ldi(6-rsm). vektorg qdr prllel ko`chirish
53 M M Shund qili, f, f P f f P v f P f P. 6-rsm. Demk P grupp ekn. Shuning iln irge P kommuttiv grupp o`ldi, si f f lmshtirish vektorg qdr prllel ko`shirish, ff o`ls vektorg` qdr prllel ko`shirish. o`lgni uchin f f f f Endi irort ir lmshtirishlr gruppsi, o`ls to`plmning qism to`plmi o`lsin. T`rif-6. Agr ) ning itiori ikki lmshtirishning ko`chirishdgi ning hr ir lmshtirishig teskri lmshtirish n g tegishli o`ls, gruppning qism gruppsi deildi. Boshqsh tgnd, gruppning ning qism gruppsi o`lishi uchin uning o`zi gruppni qursh kerk. g tegishli, ) tegishli qism to`plmi Misol-. Tekislikdgi hmm vektorlrg nistn prllel ko`chirishlr to`plmini P iln elgillik. ( P ning kommuttiv grupp tshkil etishi izg m`lum.) Bu tekislikd irort ir l to`g`ri chiziqq prllel vektorlrg qdr hmm prllel ko`chirishlr to`plmi o`ls P o`lsin. Bizg m`lum, P P, shuning iln irg P gruppni tshkil etdi.( P ning grupp tshkil etishini P ning grupp tshkil etishini ko`rstgndek ko`rstildi. Demk, P grupp P gruppning qism gruppsi o`ldi. O`XSHASHLIK ALMASHTIRISH. GOMOTETIYA Tnich tushunchlr: O`shshlik lmshtirish, gomoteti, gruppsi, o`shshlik lmshtirishlr qism grupplri o`shshlik lmshtirishlr
54 k son erilgn o`lsin. T`rif- Tekislikning hr qnd ikki MN, nuqtsig M, N km, N (3) shrtni qnotlntiruvchi M, Nnuqtlrni mos keltirdign lmshtirish tekislikd k koeffitsientli uqshshlik lmshtirish deildi v koeffitsienti deildi. k p ko`rinishid elgilndi. k son o qshshlik Tekislikt o qshshlik lmshtirishi rch msoflrni k mrt o zgrtirdi. T rif- Agr figurni uning istlgn ikki nuqtsi orsidgi msofni k son mrt o`zgrtdign qili koeffitsientli o qshsh deiledi. figurg iektiv kslntirish or o ls, figur figurg k Birinchi trifdn o qshshlik lmshtirish hr qnd erilgn figurni o`zig o qshsh figurg o`tkzishi rvshn. Agr o qshshlik koeffitsient k o ls, tekislikt hrkt hosil qilindi. Demk hrkt o qshshlik lmshtirishning ususi holidir. O qshshlik lmshtirishg n ir ir misol siftid gomoteti iln tnishmiz. Tekislikt S nuqt v k son erilgn o lsin. T rif- Tekislikning hr ir M nuqtsig SM ksm (4) Shrtti qnotlntiruvchi M nuqtni mos keltirdign lmshtirish tekislikt k koeffitsientli v S mrkzli gomotetik lmshtirsh, qisqch gomoteti de tldi. S nuqt gomoteti mrkzi, k son gomoteti koeffitsienti deildi. S mrkzli v k koeffitsientli gomoteti k H S iln elgilndi. Gomoteti mrkzi S o`z-o`zig mos hisolndi. k koeffitsientli gomoteti tekislikd nn lmshtirish o ldi, chunki k d SM SM, undn M M. Agr k o ls, SM, SM vektorlr ir il unlishli o li, mos MM, nuqtlr gomoteti mrkzidn ir tomondn otdi( -chizm). k o ls, SM, SM vektorlr qrm-qrshi unlishli v mos MM, nuqtlr gomoteti mrkzidn turli tomond otdi.(-chizm).
55 -chizm -chizm Berilgn figurni tshkil etuvchi rch nuqtlrini erilgn S mrkz v erilgn k koeffitsient iln gomotetik lmshtirishdn hosil o lgn nuqtlr to plmi erilgn figurg gomotetik figur deildi. Gomoteti osslri Gomotetid to g ri chiziqtgi uch nuqtning oddi nistini sqldi.. Gomoteti to g ri chiziq o zig prllel to gri chiziqq o tdi. 3. Gomotetik lmshtirishd urchkning kttligi o zgrmdi. 4. Gomotetid to g ri chiziqlrning prllelligi sqlndi. 5. Gomotetik lmshtirishd kesmning uzunligi k mrt o`zgrdi. O qshshlik lmshtirish osslri.o qshshlik lmshtirishd to g ri chiziqdgi uch nuqtning oddi nisti sqlndi.. O qshshlik lmshtirishi urchkni uning o zig congruent urchkk o tkizdi. 3. O qshshlik lmshtirishd prllel to g ri chiziqlrning orzlri h m prllel oldi. O qshshlik lmshtirishning nlitik ifodlnishi Tekislik dekrt koordintlr referini qrmiz. Tekislikni shund k koeffitsientli k P o qshshlik lmshtirishi u koordintlr referni O ee koordintlr referig o`tkizdi(- chizm), e e, e e k o ldi.
56 -chizm M tekislikning itiori nuqtsi, M o ls, uning k P dgi orzi o lsin. M nuqt irinchi koordintlr referig nistn, koordintlrg eg o lgnd uning M orzi ikkinchi koordintlr referig nistn, koordintlrg eg o ldi. Hqiqtn M nuqt ikkinchi koordintlr referig nistn, koordintlrg eg o lsin. MM OA v MM OAto g ri chiziqlrni o tkizmiz, und M nuqt OA to g ri chiziqq tegishli, und OM OM M AO, M A O. OA OA k k P ( M) M, P ( M ) M o lsin. O qhshlik lmshtirishd nuqtning to gri chiziqt otishi v to g ri chiziqlrning prllelligi sqlngnligii uchun: M nuqt OA to g ri chiziqq tegishli, M nuqt OA to g ri chiziqq tegishli v OM M M OA M AO OA OM OA, M AO. O qshshlik lmshtirishd uch nuqtning oddi nisti sqlngnligi uchun MAO M AO, M A O M A O k referd M P M,. Demk, dekrt koordintlr nuqt ush, koordintlrg eg. sistemsig nistn M,, O, k, e k k e k cos, sin sin, cos. ie, irinchi koordintlr o lsin. U hold i, j ziske nistn
57 OM i j, OO i j. () Bu erd irinchi v ikkinchi koordintlr referi ir il(qrm-qrshi ) orienttsili olgnd ( ) o ldi v () tengliklrni hisog oli, OM OO OM v en ( cos sin ) ( sin cos ) i j k i k j Yoki k( cos sin ) k( sin cos ) () Munostlrg eg o lmiz. Birinchi koordintlr referid M nuqtning, koordintlri M nuqtning koordintlri orqli () formullr o ich niqlndi. ()- formullr o qshshlik lmshtirishining nlitik ifodsidir. Tekshirish uchun svollr. O qshshlik lmshtirish de nimg tildi?. O qshshlik lmshtirish qnd elgilenedi? 3. Gomoteti degenimiz nim? 4. O qshshlik lmshtirishning nlitik ifodlnishi qnd erildi? 5. O qshshlik lmshtirishning osslri nimlrdn iort? ELLIPS T rif- Ikkinchi trtili chiziq tenglmsini irort O dekrt koordint sistemsid (3) ko rinishid ozish mumkin o ls, u ellips de tldi. Bu erd koeffisientlr munostni qnotlntirdi.
58 Bu tenglmni o rgnish ntijsid ellipsni chizmiz v uning osslrini keltiri chiqrmiz. Tenglmdn ko rini turidiki, c, F,, c, o zgruvchilr tengsizliklrni qnotlntirdi. Assiss o qid otuvchi F nuqtlr ellipsning fokuslri, e niqlnuvchi to g ri chiziqlr ellipsning direktrislri de tldi.bu erd tenglmlr iln c, c e o li, e soni ellipsning ekssentrisiteti deildi. Tenglmdn ko rini turidiki, ellips koordint o qlrig nistn simmetrik jolshgn o li, koordint oshi uning simmetri mrkzidir. Ellips osslri:. Ellipsning itiori nuqtsidn uning fokuslrigch o lgn msoflr ig indisi o zgrms v g tengdir. Bu oss evosit hisolsh ordmid isotlndi. r r tenglikni tekshirish ordmid Ellipsning itiori nuqtsidn uning fokuslrigch o lgn msoflrning mos direktrislrgch o lgn msoflrg nisti o zgrms v e sonig tengdir. Bu oss evosit r d r d e tenglikni tekshirish ordmid isotlndi. c c c r d e e e e e e d e e r Ellipsning geometrik niqlnishi. Tekislikd ikkit nuqt erilgn o ls, u nuqtlrgch o lgn msoflrining igindisi o zgrms song teng o ldign nuqtlrning geometrik o rni ellips o ldi.
59 Isot.Tekislikd F, F nuqtlr erilgn.biz tekislikning nuqtsidn u nuqtlrgch o lgn msoflrni mos rvishd r,r ko rinishd elgil r r const tenglikni qnotlntiruvchi nuqtlrinng geometrik o rnini niqlshimiz kerk. Berilgn nuqtlr orsidgi msofni c iln elgilsk, r r tengsizlikdn c munost keli chiqdi. Tekislikd dekrt koordintlr sistemsini quidgich kiritmiz.berilgn F,F nuqtlrdn o tuvchi to g ri chiziqni ssiss o qi siftid olmiz, und must o nlish F nuqtdn F nuqtg qr o nlgn o ldi. Koordint oshini F,F nuqtlrning o rtsig jolshtiri, ordint o qi siftid ssiss o qig perpendikulr itiori o qni olmiz. Msoflr uchun r c, r c ifodlrni uqoridgi tenglikg qo i c c tenglikni hosil qilmiz. Bu tenglikning ikkl tomonini kvdrtg oshiri, hdlrni ichmlshtiri v n ir mrt kvdrtg oshiri tenglmni hosil qilmiz. Bu erd c elgilsh kiritilgn. Bizg l to g ri chiziq v ung tegishli o lmgn nuqt F erilgn o ls, tekislikd erilgn nuqtgch o lgn msofsining erilgn to g ri chiziqqch o lgn msofsig nisti o zgrms irdn kichik e sonig teng o lgn nuqtlrning geometrik o rni ellips o ldi. Bu fktni isotlsh uchun erilgn F nuqtdn to g ri chiziqq perpendikulr to g ri chiziq o tkzi, uni ssiss o qi siftid olmiz. Ntijd ssiss o qini F nuqt ikki qismg jrtdi.berilgn F nuqtdn to g ri chiziqqch o lgn msofning e sonig ko ptmsini p iln elgil, quidgi tengliklr iln p v c e, e c
60 , c sonlrni kiritmiz.koordint oshini ssiss o qining l to g ri chiziqni kesmdign qismid F nuqtdn c irlik msofd jolshtirmiz. Ntijd koordint oshidn l to g ri chiziqqch o lgn msof p c p e e e e e e kttlikk teng o ldi. Bu erd p iln F nuqtdn l to g ri chiziqqch o lgn msof elgilngn. Demk l to g ri chiziq tenglmsi e ko rinishd o ldi. Ikkinchi koordint o qini tekislikning l to g ri chiziqq prllel o tkzi, M, nuqtsidn F nuqtgch o lgn msofni r iln, l to g ri chiziqqch o lgn msofg d iln elgilsk, r ed tenglikdn tenglmni olmiz. Urinm tenglmlrini tuzishd iz mkt kursidn m lum o lgn f tenglmdn fodlnishimiz mumkin. Misol uchun ellipsning ordintlri mnfi o lmgn nuqtlrdn iort qismi, funksining grfigi o ldi. Bu funksininig hosilsini topsk, u
61 ko rinishd o ldi. Bu ifodlrni hisog oli, ellipsg tegishli tenglmsini ozmiz:. Bu tenglmd tenglikni hisog olsk, uqoridgi tenglm ko rinishg keldi., nuqtdgi urinm GIPERBOLA Giperol knonik tenglmsi T rif- Ikkinchi trtili chiziq tenglmsini irort O Dekrt koordint sistemsid () ko rinishid ifodlsh mumkin o ls, u chiziq giperol de tldi. Bu erd koeffisientlr munostni qnotlntirdi. Giperol tenglmsini tekshirish ntijsid quidgilrni olmiz: ), o zgruvchilr, tengsizliklrni qnotlntirdi.assiss o qidgi c, F, F nuqtlr giperolning fokuslri, e, c tenglmlr iln niqlnuvchi to g ri chiziqlr giperolning direktrislri deildi.bu erd c e o li, e soni giperolning ekssentrisiteti deildi. c, ) Tenglmd, o zgruvchilrning fqt ikkinchi drjlri qtnshgnligi uchun giperol koordint o qlrig nistn simmetrik jolshgndir. Bundn tshqri koordint oshi giperolning simmetri mrkzidir.
62 Giperol osslri : Giperolning itiori nuqtsidn uning fokuslrigch o lgn msoflr irmsining moduli o zgrms v g tengdir. Giperolning itiori nuqtsidn uning fokuslrigch o lgn msoflrning mos direktrislrgch o lgn msoflrg nisti o zgrms v e sonig tengdir. Bu oss evosit r d r d e isotlndi. Giperolning tenglikni tekshirish ordmid M, nuqtsidn fokuslrgch o lgn msoflr uchun r e, r e tengliklr o rinlidir.bu erd ildiz chiqrish mlini jrsk gr o ls r e, r e gr o ls r e, r e tengliklrni hosil qilmiz.ntijd gr o ls r r, gr o ls r r uchun r r tenglik o rinli o ldi. Tekislikd ikkit nuqt erilgn o ls, u nuqtlrgch o lgn tenglik o rinli o ldi.demk itiori
63 msoflri irmsining moduli o zgrms song teng o ldign nuqtlrning geometrik o rni giperol o ldi. Tekislikd F, F nuqtlr erilgn. Biz tekislikning nuqtsidn u nuqtlrgch o lgn msoflrni mos rvishd r,r ko rinishd elgil r r tenglikni qnotlntiruvchi nuqtlr to plmi giperol eknligini isotlmiz. Berilgn nuqtlr orsidgi msofni c iln elgilmiz v tekislikd dekrt koordintlr sistemsini quidgich kiritmiz. Berilgn F,F nuqtlrdn o tuvchi to g ri chiziqni ssiss o qi siftid olmiz, und must o nlish F nuqtdn F nuqtg qr o nlgn. Koordint oshini F, F nuqtlrning o rtsig jolshtiri,ordint o qi siftid ssiss o qig perpendikulr itiori o qni olmiz. Msoflr uchun r e, r e ifodlrni uqoridgi tenglikg qo i c c tenglikni hosil qilmiz. Bu tenglikni kvdrtg oshiri v zruri lgeric lmshtirishlrni jri munostni olmiz. Bu erd c elgilsh kiritilgn. Bizg l to g ri chiziq v ung tegishli o lmgn nuqt F erilgn o ls, tekislikd erilgn nuqtgch o lgn msofsining erilgn to g ri chiziqqch o lgn msofsig nisti o zgrms irdn ktt e sonig teng o lgn nuqtlrning geometrik o rni giperol o ldi. Bu ossni isotlsh o quvchilr uchun topshiriq siftid hvol etmiz. Biz uqorid e o lgnd ellips hosil o lishini ko rstgn edik. Bu erd p soni ellipsdgi ki, giperolning ktt v kichik rim o qlri
64 p e, c tengliklr iln niqlndi. Bu erd c soni c e tenglik iln niqlndi. PARABOLA Prolning knonik tenglmsi T rif- Ikkinchi trtili chiziq tenglmsini iror dekrt koordintlr sistemsid p, p () ko rinishd ozish mumkin o ls, u prol de tldi. Tenglmdgi p soni prol prmetri deildi. Misol. Siz mkt kursidn tenglm iln erilgn prolni shi ilsiz. Bu tenglmni knonik ko rinishg keltirish uchun, lmshtirish jrmiz. Ntijd tenglmni hosil qilmiz. Bu erd p. Mustqil ish-o quvchig tnish c tenglm iln erilgn prolni chizing v tenglmsini knonik ko rinishg keltiring. Biz ikkinchi tenglmni tekshirish ordmid prolning osslrini o rgnmiz v uni chizmiz. Tenglmdn ko rini turidiki, gr, koordintli nuqt prolg tegishli o ls,, nuqt hm prolg tegishli o ldi. Demk prol O o qig nistn simmetrik jolshgndir. Bundn tshqri koordint oshi prolg tegishli, mnfi qimtlrni qul qilmgnligi uchun prol O o qining o ng tomonid jolshgn. Bu mulohzlrdn fodlni iz chizmd prolni quidgi ko rinishd tsvirlshimiz mumkin.
65 Tekislikd p tenglm iln erilgn to gri chiziq prolning direktissi, p, F nuqt es uning fokusi de tldi. Prol osslri:. Prolning itiori nuqtsidn direktisgch o lgn msof fokusgch o lgn msofg tengdir. Prol nuqtsidn msofni d iln elgil p F, nuqtgch o lgn msofni r iln, direktisgch o lgn r d tenglikni isotlmiz. r p p p 4 ifodd p tenglikdn fodlnsk v munostni hisog olsk r p p formulni hosil qilmiz. Direktrisgch o lgn msofni hisolsh uchun nuqtdn to g ri chiziqqch o lgn msof formulsidn fodlni d p p r tenglikni hosil qilmiz.. Prolning geometrik niqlnishi. Berilgn to gri chiziq v und otmdign nuqtdn ir il uzoqlikd jolshgn nuqtlr to plmi proldir.
66 Tekislikd to g ri chiziq v ung tegishli o lmgn F nuqt erilgn o lsin. Berilgn F nuqtdn to g ri chiziqqch o lgn msofni p iln elgil v F nuqtdn to g ri chiziqq perpendikulr rvishd o tuvchi to g ri chiziqni ssiss o qi siftid oli koordintlr sistemsini kiritmiz. Assiss o qining must o nlishi to g ri chiziqdn F nuqt trfg o nlgn, koordint oshini to g ri chiziq v F nuqt o rtsig quidgi chizmdgi ki jolshtirmiz. Ordint o qi es to g ri chiziqq prlleldir. Ntijd to g ri chiziq: p tenglmg, F nuqt es p, to g ri chiziqqch o lgn msofning shu nuqtdn F nuqtgch o lgn msofg tengligidn p koordintlrg eg o ldi.tekislikning M, nuqtsidn tenglmni hosil qilmiz. F Chizm- IKKINCHI TARTIBLI CHIZIQLARNING UMUMIY TeNGLAMASI Tnch tushunchlr: Ikkinchi trtili chiziqning umumi tenglmsi, ITCh mrkzi, simptotik v nosimptotik o`nlishlr, ITCh urinmsi, simtotsi, dimetri Biz u od tekislikd dekrt koordintlr sistemsid ()
67 tenglm iln erilgn ikkinchi trtili chiziqni tekshirish iln shug ullnmiz. Bu ishni koordintlr sistemsini o zgrtirish v ()tenglmni soddlshtirish ordmid mlg oshirmiz. Birinchi nvtd prllel ko chirishd () tenglm koeffitsientlri qnd o zgrishini tekshirmiz. Buning uchun, () formullr ordmid lmshtirishlrni jrmiz. Bu hold koordint o qlrining o nlishlri o zgrmdi,fqt koordint oshi O, nuqtg ko chdi.bu formullrdn, lrni topi v () g qo i ( ) ( ) (3) tenglmni hosil qilmiz. Bu tenglmd koeeffisientlr uchun,,, 3 3, 3 3, 33 F(, ) (4) tengliklr o rinli o li, F(, ) iln () tenglmning chp tomonidgi ifod elgilngn. Yuqoridgi (3) formullrdn ko rini turidiki, prlllel ko chirishd ikkinchi drjli hdlr oldidgi koeefisientldr o zgrmdi. Agr O, nuqtning koordintlri 3 3, (5) sistemni qnotlntirs, (3) tenglmd irinchi drjli hdlr qtnshmdi. T rif-.tekislikdgi M (, ) nuqtning koordintlri (5) sistemni qnotlntirs, u () tenglm iln erilgn ikkkinchi trtili chiziqning mrkzi deildi. Tiiki, (5) sistem gon echimg eg o lishi, cheksiz ko p echimg eg o lishi oki umumn echimg eg o lmsligi mumkin. Agr
68 munost o rinli o ls, (5) sistem gon echimg eg o ldi. Agr munost o rinli o ls sistem cheksiz ko p echimg, munost jrils sistem echimg eg ems. Bulrni e tiorg oli, iz ikkinchi trtili chiziqlrni ucht sinfg jrtmiz: ) gon mrkzg eg o lgn chiziqlr; ) cheksiz ko p mrkzg eg o lgn chiziqlr; v) mrkzg eg o lmgn chiziqlr; Biz quidgi determinntlrni kiritmiz, u erd, 3 3, 3 3. elgilshlr kiritilgn. Ygon 3 mrkzg eg chiziqlr uchun, gon mrkzg eg o lmgn chiziqlr uchun. Chiziqlr cheksiz ko p mrkzg eg o lishi uchun tenglik jrilshi kerk. Uchinchi trtili determinntni ko rinishd ozi olsk, oirgi determinnt g tengdir. Agr o ls, irort k soni uchun k, 3 3 k 3 3 munost jrildi. Bu tenglikni hisog oli
69 k tenglikni hosil qilmiz. Agr tenglik hm jrils 3 k 3 v 3 3 tengliklrdn kmid ittsi o rinli o ldi. Bu tengliklrning irinchisi o rinli uls k munostdn 3 3 k munosot keli chiqdi. Agr 3 3 uls, k v 3 tengliklrdn k munosot keli chikdi.demk v tengliklrning ir vqtd jrilishi 3 3 k shrtg teng kuchlidir. Ntijd iz quidgi tsdiqni hosil qilmiz: Tsdiq- Ikkinchi trtili chiziq ) o ls gon mrkzg eg, ) v o ls cheksiz ko p mrkzg eg v mrkzlr to plmi itt to gri chizikni tshkil etdi; v) v o ls mrkzg eg ems.
70 IKKINCHI TARTIBLI CHIZIQ VA TO GRI CHIZIQNING O ZARO VAZIYATI Bizg () tenglm iln niqlngn ikkinchi trtili chiziq v lt mt () prmetrik tenglmlr ordmid to gri chiziq erilgn o lsin. To g ri chiziq v ikkichi trtili chiziqning kesishish nuqtlrini topish uchun () ifodlrni () g qo miz. Ntijd quidgi l l lm l F m, m t m 3 l 3 m t kvdrt tenglmni hosil qilmiz.bu tenglmd ikkinchi drjli hd oldidgi ifod to g ri chiziqning o nlishig og liq olos. B zi o nlishlr uchun u ifod nolg teng o ldi v uqoridgi tenglm chiziqli tenglmg lndi. B zi o nlishlr uchun u ifod nolg teng ems v uqoridgi tenglm kvdrt tenglm o ldi. (3) T rif- Berilgn,m o nlish uchun l lm m (4) tenglik jrils,u o nlish simpotik o nlish, l lm m (5) munost jrils nosimptotik o nlish deildi. To g ri chiziqning o nlishi nosimptotik o ls,uqoridgi tenglm kvdrt tenglm o ldi.demk u to g ri chiziq () chiziq iln ikkit oki itt umumi nuqtg eg o lishi mumkin. Nosimptotik o nlishdgi to g ri chiziq ikkinchi trtili chiziq iln itt nuqtd kesishs,u urinm de tldi.
71 To g ri chiziqning o nlishi simptotik o ls, uqoridgi tenglm chiziqli tenglm o ldi. Demk u hold to g ri chiziq () iln itt nuqtd kesishdi, oki to g ri chiziqning hmm nuqtlri ()g tegishli o ldi.agr ikkinchi drjli hd koeffisienti nolg teng o li, ozod hd noldn frqli o ls,to g ri chiziq ikkinchi trtili chiziq iln kesishmdi. Asimptotik o nlishdgi to g ri chiziq ikkinchi trtili chiziq iln kesishms u ikkinchi trtili chiziq uchun simptot deildi. Biz l lm m tenglmd o ls, m k elgilsh kiriti uni k k ko rinishd, gr m o ls, k m elgilsh kiriti uni k k ko rinishd ozmiz. Ikkl hold hm diskriminnt uchun D tenglik o rinli. Demk o ls simptotik o nlish mvjud ems.bu hold () chiziq elliptik chiziq deildi,gr o ls, siptotik o nlish itt v u hold () chiziq prolik, o ls ikkit simptotik o nlish mvjud, chiziq es giperolik chiziq deildi. Yuqoridgi () tenglmdgi irinchi drjli hd oldidgi koeffitsient m m m 3 (6) ko rinishg eg. Agr
72 m m (7) tengliklr ir vqtd jrilms, (3) tenglm to g ri chiziqni niqldi. Berilgn,m o nlish uchun(4) tengliklr jrils,,m o nlish msus o nlish deildi. Ikkinchi trtili chiziq uchun o ls,(4) sistem fqt trivil echimg eg v demk gon mrkzg eg o lgn chiziqlr uchun msus o nlishlr o q. T rif-msus o lmgn,m o nlish uchun (3) tenglm niqlovchi to g ri chiziq ikkinchi trtili chiziqning,m o nlishg qo shm dimetri de tldi. Tekshirish uchun svollr Ikkinchi trtili chiziqning umumi tenglmsi qnd ko`rinishd erildi? Ikkinchi trtili chiziq mrkzi qnd topildi? Asimptotik o`nlish de qnd o`nlishg tildi? Nosimptotik o`nlish de qnd o`nlishg tildi? Ikkinchi trtili chiziq urinmsi de nimg tildi? Ikkinchi trtili chiziq simptotsi de nimg tildi? Ikkinchi trtili chiziqning turlri qnd? FAZODA AFFIN VA TO G`RI BURCHAKLI DEKART KOORDINATALAR SISTEMASI Koordintlr sistemsi tekislikd qnd kiritilgn uls, fzod m shu usuld kiritildi. Aniqrog`i, koordintlrning ffin sistemsi (ffin reper) iror O nuqt v shu nuqtdn kuilgn m`lum trtid olingn ucht nokomplnr e, e, e 3 vektorlr sistemsidn iort, u sistemni B (O, e, e, e 3 ) kurinishd elgilmiz. O nuqtdn uti, e, e, e 3 vektorlr iln niklndign tugri chiziklr mos rvishd O Ou Oz de elgil, ulr koordint uklri, irinchisi tsisslr uki, ikkinchisi ordintlr uki v niot, uchinchisi ppliktlr uki de tldi.
73 Bu uklrning r ikkitsi koordint tekisliklri iln niklndign ucht tekislik Ou, Oz, uoz, de elgil, ulr koordint tekisliklri de tldi (- chizm). z Oz Oz e 3 O e e O -chizm B sistem erilgnd, fzodgi r ir M nuqtg ir OM vektorini doimo mos keltirish mumkin, `ni oshi koordintlr oshid, oiri es erilgn M nuqtd ulgn vektorni mos keltirdi. OM vektorning koordintlri (, u, z) uls, u old u ucht, u, z son M nuqtsining ffin reperdgi koordintlri uldi. OM (,u,z) M(,u,z) Demk, fzo nuqtlri tuplmi iln m`lum trtid olign kiki sonlr uchliklri tuplmi orsid iektiv moslik mvjud. Berilgn nuqtlr koordintlrini topish uchun shu nuqt rdius- vektorining koordintlrini topish kifo v ksinch. Msln, 56- chizmd koordintlri (; 3; ) ulgn nuqtni ssh usuli kurstilgn. Umumn, M(,, c) nuqtni ssh uchun, `ni OM = e + e + ce 3
74 vektorning oirini topish uchun kudgi koiddn fodlnildi; koordintlr oshidn O UK uich e vektor, uning oiridn Ou ukk prllel old e vektor kuildi, sungr uning oiridn ce 3 vektor sls, shu vektorning oiri izlngn nuqt uldi. Ucht koordint tekisligi irglikd fzoni 8 kismg jrtdi, ulrning hr iri oktntlr de tldi. Quidgi jdvld oktntlr v undgi koordintlrningishorlri erilgn. oktntlr I II III IV V VI VII VIII koordintlr z Kesmni erilgn nistd ulish Bioror ffin reperd M(,, z), M(,, z) (M M) nuqtlr v iror kiki ( -) son erilgn ulsin. T`rif M nuqt uchun M M = MM Shrt jrils, M nuqt MM kesmni nistd uldi deildi. M, M nuqtlrning koordintlri orkli M nuqtning, u, z koordintlrini toplik. () g sosn M M =OM - OM = ( - ) e + (u u) e + (z- z) e 3, M M (-, -, z-z). MM = OM - OM = ( - ) e + ( - ) e +(z - z) e 3, MM (,, z z).
75 Bu ufodlrni (3) g kui v e, e, e 3 ning chizikli erkliligini e`tiorg olsk, - = ( ), u u= ( u u), z - z= ( z z). Bulrdn X=, u=, z= z z (4) Berilgn kesmni erilgn nistd uluvchi nuqtning koordintlrini topish formullri shulrdir. M nuqt oldi: X= MM kesmning urtsi uls, (4) formullr kudgi kurinishni, =, z= z z. (5) Bu formullr kesm urtsining koordintlrini topish formullridir. Misol : B (O, e, e, e 3 ) ffin reperd A(, 3, -), V(3, -), S(,, ) nuqtlrini s, AVS uchurchk ogirlik mrkzining (mdinlrning kesishgn nuqtsi ) koordintlrini toping. Echish. A(, 3 -) OA (, 3, -) OA = e + 3 e - e 3, V(3,, -) OB (3,, -) OB 3e e3, S(,, ) OC (,, ) OC = e e e3. A, V, S nuqtlrini ssh ntijsid 57- chizmdgi AVS uchurchk osil kilindi. VS kesmning urtsid D ning koordintlrini toplik. 3 X= =, u= =, Z=, D= (,,). Medinlrning kesishgn nuqtsi ADni A dn oshl : nistd ulgni uchun izlgn N nuqt AD kesmni : nistd uldi, `ni
76 * X=, 3 * 4 3, * 3 z. 4 (,, ) 3 3 N. FAZODA TO G`RI CHIZIQ TENGLAMALARI. FAZODA TO G`RI CHIZIQ VA TEKISLIKNING O`Z-ARO VAZIYATI Dekrt koordintlr sistemsi kiritilgn fzod izg to g ri chiziq erilgn o s,, vektor to gri chiziqq prllel vektorlrdn ittsi o lsin,, z, 3 to gri chiziqq tegishli irort nuqt o lsin.berilgn, z iln elgilsk, fzod rdius-vektori r o lgn M, z o lishi r r v,, 3 M es, M, nuqtning rdius-vektorini r, nuqtning to g ri chiziqq tegishli vektorlrning prllelligig teng kuchlidir.bu shrtni r r t () ko rinishd ozi,to g ri chiziqning vektor ko rinishdgi tenglmsini olmiz..bu erd t prmetr dn gch o zgrgnd r vektor oiri to g ri chiziq nuqtlrini hosil qildi.yuqoridgi tenglmni koordintlr orqli ozsk t, t, z z 3t tengliklrni hosil qilmiz.bu tenglmlr to g ri chiziqning prmetric tenglmlri deildi.agr u tenglmlrdn t ni o qotsk z 3 z () tenglm keli chiqdi.bu tenglm to gri chiziqning knonik tenglmsi deildi. Ikki nuqtdn o tuvchi to gri chiziq tenglmsi Fzod rdius-vektorlri,r r o lgn M, z v M, z,, nuqtlr erilgn
77 o ls, u nuqtlrdn o tgn to g ri chiziq uchun r r vektor o nltiruvchi vektor o ldi.yuqoridgi () tenglmdgi vektor o rnig r nuqt siftid, z, prmetrik tenglmsini r vektorni qo sk, M, z, M nuqtni olsk to g ri chiziqning vektor ko rinishdgi r r r r t (3) ko rinishd ozish mumkin.agr (3) tenglmd t prmetrni o qoti uni koordintflr orqli ozsk to g ri chiziqning knonik tenglmsini z z z z (4) ko rinishd hosil qilmiz. To g ri chiziq ikkit tekislikning umumi qismidir Bizg to gri chiziq knonik z 3 z tenglm ordmid erilgn o lsin.bu tenglmdn quidgi ikkit tenglmlrni hosil qilmiz, z 3 z (5) Bu tenglmlrni, z z ko rinishd ozsk to gri chiziq 3 v z z 3 tenglmlr iln niqlnuvchi tekisliklrning kesishishidn iort o lishini ko rmiz.agr izg ikkit v tekisliklr A B C z D v A B C z D
78 tenglmlr iln erili A A B B C C mtrisning rngi g teng o ls,ulr prllel o lmdi v irort to g ri chiziq o l kesishdi.bu to g ri chiziqning knonik tenglmsini tuzish uchun uning irort nuqtsini v itt o nltiruvchi vektorini ilishimiz etrli.biz koordintlri A A B Cz D B Cz D sistemni qnotlntiruvi, z M nuqtni topi, to g ri chiziqning o nltiruvchi, vektori siftid n A, B C v n A, B C,, olmiz,chunki u vektor ko ptm to g ri chiziqq prlleldir. To g ri chiziq v tekislikning o zro vziti vektorlrning vektor ko ptmsini Bizg to g ri chiziq z z tenglm iln, tekislik 3 A B Cz D tenglm iln erilgn o ls, ulrning tenglmlri o ich o zro vzitini niqlmoqchimiz. Tekislik v to g ri chiziq orsidgi urchk to g ri chiziqning o nltiruvchi vektori v tekislik norml vektori orsidgi urchkning,, 3 gch o lgn to ldiruvchisig tengdir, ni gr v n A, B, C vektorlr orsidgi urchk g teng o ls,tekislik v to g ri chiziq orsidgi urchk sin g tengdir.bu urchk A A B B C C 3 3 formul o ich hisolndi. Tekislik v to g ri chiziqning prlellik shrti A B C3 tenglikg, perpendikulrlik shrti es
79 munostg teng kuchlidir. A B C 3 Agr A B Cz D v A B C tengliklr jrils to g ri chiziq tekislikd otdi. 3 NUQTADAN TO G`RI CHIZIQQACHA BO LGAN MASOFA VA IKKI AYQASH TO G`RI CHIZIQLAR ORASIDAGI MASOFA Fzod to g ri chiziqlrning o zro vziti Bizg ikkit, to g ri chiziqlr mos rvishd z z 3 v z z 3 knonik tenglmlr ordmid erilgn o lsin.bu tenglmlrni vektor ko rinishd ozsk ulr r r t v r r s ko rinishlrg keldi. Prllellik.Bu to g ri chiziqlr ir tekislikd oti kesishms ulr prllel to g ri chiziqlr deildi.agr iz ucht r r MM, v vektorlrning ir tekislikd otishi shrtini ozsk z 3 3 z tenglikni hosil qilmiz.to g ri chiziqlr prllel o lmgnligi uchun v vektorlr o zro kolliner ems. Aqsh to g ri chiziqlr. To g ri chiziqlr ir tekislikd otms ulr qsh to g ri chiziqlr deildi.bu hold r r MM, v vektorlr komplnr o lmgnligi uchun z 3 3 z
80 tengsizlik o rinli o ldi. o ldi, Agr to g ri chiziqlr kesishs r r MM, v vektorlr komplnr v vektorlr es kolliner ems. Fzod nuqtdn to g ri chiziqqch o lgn msofni hisolsh Bizg fzod to g ri chiziq v ung tegishli o lmgn, z M nuqt erilgn, o lsin.biz ilmizki to g ri chiziq v ung tegishli o lmgn nuqt orqli itt tekislik o tkzish mumkin..buning uchun iz to g ri chiziqning tekislikdgi tenglmsini v nuqtning tekislikdgi koordintlrini ilishimiz kerk.lekin u o lmgnlini uchun iz evosit to g ri chiziqning r r t tenglmsidn fodlnmokchimiz.bizg to g ri chiziqning M, z, ish hr doim qul nuqtsi v uning o nltiruvchi vektori m lum. Agr N nuqt to g ri chiziqq tegishli o li,, M, z v N nuqtlrdn o tuvchi to g ri chiziq to g ri chiziqq perpendikulr o ls, M, z v N nuqtlr orsidgi msof, z, chiziqqch o lgn msofdir.biz NM vektorni NM de M nuqtdn to g ri, ko rinishd oz olmiz.bu erd d NM, e es NM vektor iln ir il o nlishg eg o lgn irlik vektordir.xuddi shund vektorni e ko rinishd ozi, NM v vektorlrning vektor ko ptmsi uchun NM, d e e, tenglikni olmiz.bu tenglikdn d NM,
81 formulni hosil qilmiz.lekin u formuld N nuqt koordintlri nom lum o lgnligi uchun iz undn evosit fodln olmmiz.lekin chizmdn kurini turidiki,iz NM vektorni NM r t ( r ) ko rinishd oz olmiz.bu erd t - prmetrning N nuqtg mos keluvchi qimtidir.endi u ifodni o qoridgi M formulg qo i v t, vektorlrning vektor kuptmsi nol vektor eknligini hisog olsk d r r, e N d O r M formulni olmiz.bu formulni koordintlr orqli ozsk, u Chizm- d z z 3 z z 3 3 ko rinishg keldi. Ikkit qsh to g ri chiziqlr orsidgi msof Biz ikkit r r t v r r s tenglmlr iln erilgn, qsh to g ri chiziqlr orsdgi msofni hisolsh formulsini keltiri chiqrmoqchimiz.ikkit, to g ri chiziqlr orsidgi msof d inf d A, B, A B, formul o ich niqlndi.bu erd A B d, - A v B nuqtlr orsidgi msofdir.agr to g ri chiziqlr kesishs ulr orsidgi msof nolg teng o ldi.prllel, to g ri chiziqlr
82 orsidgi msofni hisolsh uchun itt A no qtni oli undn to g ri chiziqqch o lgn msofni hisolsh etrlidir.to g ri chiziqlr qsh o lgn hold iz vvlo mos rvishd, to g ri chiziqlrg tegishli o lgn A v B nuqtlr mvjud o li,u nuqtlrdn o tuvchi to g ri chiziqning, to g ri chiziqlrg perpendikulr eknligini ko rstmiz.buning uchun iz A B vektorni A B t ( r s ) ( r ) ko rinishd ozi, uning v vektorlrg perpendikulrlik shrtlrini ozmiz.bu shrtlrni sklr ko ptm orqli ozsk,ulr r,, s, t r r, s, t r (5), ko rinishg keldi.bu tengliklr s,t nom lumlrg nistn chiziqli tenglmlr sistemsidn iortdir.bu sistemning sosi determinnti noldn frqli,chunki,,,,, munost o rinlidir.demk (5) sistem gon echimg eg, ni A, ) juftlik ( B gondir.endi A B kesm uzunligi to g ri chiziqlr orsidgi msofg tengligini ko rstmiz.buning uchun mos rvishd, to g ri chiziqlrg tegishli v rdius vektorlri vektorlrdn iort r t, r s A, B nuqtlr uchun AB A B tengsizlikni isotlmiz. Bu tengsizlikni isotlsh uchun AB vektorni r r ( s t r r s t s s t t AB ) ko rinishd ozmiz.bu ifodd A B r r s t tenglik o rinli.ikkit o zro perpendikulr p, q vektorlr uchun
83 ( p q) p q tenglik o rinlidir.bu tenglik umumlshgn Pifgor teoremsi deildi. Bu tenglikni vektorlr uchun ozsk p A B, q s s t t AB r r s t [ s s t t ] tenglikni olmiz.bu tenglikdn es AB r r s t A tengsizlikni hosil qilmiz. Endi A B kesm uzunligini hisolsh uchun formul keltiri chiqrmiz.shu mqsdd tekshirmiz.arlsh ko ptm moduli uchun A B A B, tenglik o rinli eknligini ilmiz.bundn es B A B,, vektorlrning rlsh ko ptmsini d A B A B, munostni olmiz. Arlsh ko ptmdgi AB A B A A A B BB vektorni ko rinishd ozmiz.bu erd A, A v OA r, OA r.shuning uchun A A vektor vektorg, B B vektor es vektorg prlleldir.bulrni hisog olsk d A B, formul keli chiqdi.bu formulni koordintlr ordmid ozsk,u ko rinishg keldi. d s z z 3 3
84 IKKINCHI TARTIBLI SILINDRIK VA KONUS SIRTLAR Tnich tuchunchlr: silidrik sirt, silidrik sirt onltiruvchisi, silidrik sirt sovchilri, silidrik sirt tenglmsi, silidrik sirt turlri, konus sirt, konus sirt trifi, tenglmsi, tekisliklr iln kesimlri. Biror tekislikd L ikkinchi trtili chiziq hmd shu tekislikk prllel o`lmgn l to`g`ri chiziq erilgn o`lsin. T`rif-. l to`g`ri chiziqq prllel v L chiziq iln kesishuvchi fzodgi rch to`g`ri chiziqlr to`plmi ikkinchi trtili silindrik sirt de tldi. T`rifd qtnshotgn ` chiziq shu silindrik sirtning o`nltiruvchisi, to`g`ri chiziqlr es uning sovchilri deildi. T`rifdn fodlni, ffin koordintlr sisremsid silindrik sirt tenglmsini keltiri chiqrlik. Soddlik uchun, o`nltiruvchi chiziqni O tekislikd olmiz: L : F, () l to`g`ri chiziqning o`nltiruvchi vektori,, (-rsm). 3 z l O L -rsm Itiori M,, z nuqtni olmiz. Shu M nuqtdn o`tgn sovchining O tekislik iln kesishgn nuqtsi M,, o`lsin. U hold MM,, z v MM, `ni
85 MM. Bundn:,, z 3, ( 3 ) z 3 dn ni topi, oldingi ikki tenglikk qo`miz z, z () 3 3 Ammo M L F,, demk, 3 3 F z z Shund qili, (3) tenglm silindrik sirt tenglmsi. Demk, o`nltiruvchisi F, ko`rinishdgi tenglm iln erilgn, sovchilri es vektorg prllel silindrik sirt tenglmsini hosil qilish uchun () dgi, o`rnig mos rvishd, ifodlrni qo`ish kerk ekn. Oz dn iort ususi hold z, z e,, v (3) tenglm ushu ko`rinishni oldi: F, Demk sovchilri Oz o`qq prllel silindrik sirt tenglmsi o`nltiruvchi tenglmsining o`zginsidir. Msln, O tekislikd ellips fzod sovchilri Oz o`qq prllel silindrik sirtdn iort. (3) tenglmsi iln erilgn o`ls, u tenglm Ikkinchi trtili silindrning o`nltiruvchilri: ellips, giperol, prol, ikkit kesishuvchi to`g`ri chiziq, ikkit o`zro prllel (ustm-ust tushmgn) to`g`ri chiziqlrdn iort o`lishi mumkin. Yo`nltiruvchilri shu chiziqlrdn iort ikkinchi trtili silindrik sirtlr mos rvishd elliptik silindr, giperolik silindr, prolik silindr, ikkit kesishuvchi tekislik, ikkit o`zro prllel tekislik (ustm-ust tushmgn) de uritildi (oirgi ikkitsi `zn nign silindr de hm uritildi). T rif-. Ikkinchi trtili sirt tenglmsini irort dekrt koordintlri sistemsid ko rinishd ozish mumkin o ls, u elliptik silindr de tldi. Bu tenglmd, munostlr jrilishi tl qilindi. (4)
86 Elliptik silindr tenglmsid, o zgruvchilrning fqt ikkinchi drjlri qtnshgnligi uchun koordint oshi uning simmetri mrkzi o ldi,koordint tekisliklri es simmetri tekisliklridir. Silindrning simmetri mrkzidn sovchilrg prllel o tdign to g ri chiziq silindrning o qi deildi.elliptik silindrni (4) tenglm ordmid niqlgnimizd uning o qi Oz o qi iln ustm-ust tushdi.bu sirtnining o qig perpendikulr tekisliklr iln kessk, kesimd ellipslr hosil o ldi. -rsm. T rif-3. Ikkinchi trtili sirt tenglmsini irort dekrt koordintlri sistemsid ko rinishd ozish mumkin o ls, u giperolik silindr de tldi. Bu tenglmd, munostlr jrilishi tl qilindi. Giperolik silindr tenglmsid, o zgruvchilrning fqt ikkinchi drjlri qtnshgnligi uchun elliptik silindr ki koordint oshi uning simmetri mrkzi o ldi,koordint tekisliklri es simmetri tekisliklridir. Giperolik silindrni unig o qig perpendikulr tekisliklr iln kessk,kesimd (5) tenglm iln niqlnuvchi giperol hosil o ldi. (5)
87 3-rsm. T rif-4. Ikkinchi trtili sirt tenglmsini irort dekrt koordintlri sistemsid p p (6) ko rinishd ozish mumkin o ls, u prolik silindr de tldi.. 4-rsm Ikkinchi trtili sirt tenglmsini irort dekrt koordintlri sistemsid (7) ko rinishd ozish mumkin o ls, u ikkit kesishuvchi tekislikdn iort o ldi
88 5-rsm Ikkinchi trtili sirt tenglmsini irort dekrt koordintlri sistemsid (8) ko rinishd ozish mumkin o ls, u ikkit prllel tekislikdn iort o ldi. 6-rsm
89 Biror tekislikd L ikkinchi trtili chiziq v u tekislikk tegishli o`lmgn M nuqt erilgn o`lsin. T`rif-.Fzodgi M nuqtdn o`ti, L ni kesi o`tuvchi rch to`g`ri chiziqlr to`plmi ikkinchi trtili konus sirt (oki konus) de tldi. M konus uchi, L chiziq es konus o`nltiruvchisi, konusni hosil qiluvchi to`g`ri chiziqlr uning sovchilri de tldi. Konus sovchilri mrkzi konus uchid o`lgn to`g`ri chiziqlr og`lmig tegishlidir. Endi konus tenglmsini keltiri chiqrlik. Affin koordintlr sistemsini shund tnl olmizki, konusning o`nltiruvchisi otgn tekislik O tekislikdn iort o`li, M,, z nuqt es fzoning O d otmgn itiori nuqtsi o`lsin (7-rsm). z z M e 3 e M O e L M 7-rsm L : F, (9)
90 Konusning itiori M,, z nuqtsini ollik, u hold MM to`g`ri chiziq konusning sovchisi o`li, L iln (`ni O tekislik iln) kesishgn nuqtsi M,, o`lsin. M, M, M nuqtlr ir to`g`ri chiziqd otgni uchun M M M M oki M M M M,, z z z Yoki,, z z z So`nggi tenglikdn ni topi, vvlgi ikki tenglikk qo`miz: z, z. () zz zz M L F, F z, z zz zz () Rvshnki, konusg tegishli rch nuqtlrning koordintlri () ni qnotlntirdi, konusg tegishli o`lmgn hech qnd nuqtning koordintlri () ni qnotlntirmdi, demk, () ifod konus tenglmsidir. Misol- Dekrt koordintlr sistemsid o`nltiruvchisi O tekislikdgi giperoldn iort, uchi (,,) nuqtdgi konus tenglmsini tuzing. Yechilishii: F(, ),,, z. Tenglmdgi ni z z z iln, ni z z z iln lmshtirsk, z z o`li, uni soddlshtirsk, konus tenglmsi hosil qilindi: z z z z z z 8 8 T`rif-3. Ikkinchi trtili sirt tenglmsini irort dekrt koordintlri sistemsid
91 z c () ko rinishd ozish mumkin o ls, u konus de tldi.bu tenglmd, c munostlr jrilishi tl qilindi. Konus tenglmsidn ko rini turidiki,u koordint tekisliklrig nistn simmetrik jolshgn,koordint oshi es uning simmetri mrkzidir.bundn tshqri,gr M, z nuqt konusg tegishli o ls, O,, v, z, o tuvchi to g ri chiziqdgi hr ir nuqt konusg tegishlidir. M, nuqtlrdn Tekshirish uchun svollr. Silindik sirt de nimg tildi?. Silindrik sirt o`nltiruvchisi v sovchisi nimdn iort? 3. Silindrik sirt turlri? 4. Konus sirt de qnd sirtg tildi? 5. Konus sirt tenglmsi qnd ko`rinishd erildi? 6. Konus kesimlri qnd chiziqlrdn iort o`ldi? ELLIPSOID, GIPERBOLOIDLAR, PARABOLOIDLAR Ellipsoid F, z Fzod dekrt koordintlri sistemsi kiritilgn o li,und ikkinchi drjli, ko phd ordmid erilgn,, z F () tenglmni qrlik.fzod koordintlri () tenglmni qnotlntiruvchi nuqtlr to plmi ikkinchi trtili sirt de tldi. T rif- Ikkinchi trtili sirt tenglmsini irort dekrt koordintlri sistemsid z c ()
92 ko rinishd ozish mumkin o ls, u ellipsoid de tldi.bu tenglmd c munost jrilishi tl qilindi. Ellipsoid tenglmsidn ko rini turidiki, u koordint o qlrig nistn simmetrik jolshgn,koordint oshi es uning simmetri mrkzidir. Ellipsoidning shklini chizish uchun uning koordint tekisliklrig prllel tekisliklr iln kesimini qrmiz.msln,uni o lgnd kesimd z h tenglm iln niqlngn tekislik iln kessk, h c h c tenglm iln niqlnuvchi ellips hosil o ldi.bu tenglmni h c h c ko rinishd ozish mumkin. Xuddi shund,ellipsoidni Oz,Oz tekisliklrig prllel tekisliklr iln iln kessk, kesimd ellipslr hosil o ldi. Yuqoridgilrni hisog oli,ellipsoidni chizmd tsvirlshimiz mumkin. Giperoloidlr T rif- Ikkinchi trtili sirt tenglmsini irort dekrt koordintlri sistemsid
93 z c (3) ko rinishd ozish mumkin o ls, u ikki pllli giperoloid de tldi.bu tenglmd, c munostlr jrilishi tl qilindi. Ikki pllli giperoloid tenglmsidn ko rish mumkinki,uchinchi o zgruvchi z c tengsizliklrni qkotlntirishi kerk. Demk z c v ikki pllli giperoloid ikki qismdn iort v uning nomi shklig mosdir.agr ikki pllli giperoloidni z h tenglm iln niqlngn tekislik iln kessk, h c o lgnd kesimd h c tenglm iln niqlnuvchi ellips hosil o ldi.bu ellipsning rim o qlri mos rvishd h h, c c kttliklrg tengdir. Agr ikki pllli giperoloidni h tenglm iln niqlngn tekislik iln kessk, hr qnd h uchun kesimd z c h tenglm iln niqlnuvchi giperol hosil o ldi.bu giperolning
94 rim o qlri mos rvishd h c, h kttliklrg tengdir. Xuddi shund ikki pllli giperoloidni iln kessk, hr qnd h uchun kesimd h tenglm iln niqlngn tekislik z c h tenglm iln niqlnuvchi giperol hosil o ldi. Bu giperolning rim o qlri mos rvishd h c, h kttliklrg tengdir. Bundn tshqri (3) tenglmdn ko rish mumkinki, giperoloid koordint tekisliklrig nistn simmetrik jolshgn,koordint oshi es uning simmetri mrkzi o ldi.bulrni hisog oli uni chizmd tsvirlshimiz mumkin.
95 Ikki pllli giperoloid T rif- Ikkinchi trtili sirt tenglmsini irort dekrt koordintlri sistemsid z c (4) ko rinishd ozish mumkin o ls, u ir pllli giperoloid de tldi.bu tenglmd, c munostlr jrilishi tl qilindi. Bir pllli giperoloidning tenglmsidn ko rish mumkinki, u koordint tekisliklrig nistn simmetrik jolshgn,koordint oshi es uning simmetri mrkzi o ldi. Bir pllli giperoloidni kesimd z h tenglm iln niqlngn tekislik iln kessk, hr qnd h uchun h c tenglm iln niqlnuvchi ellips hosil o ldi.bu ellipsning
96 rim o qlri mos rvishd h, c h c kttliklrg tengdir.agr h o ls,kesimd eng kichkin ellips hosil o ldi.bu ellips ir pllli giperoloidning o g zi de tldi. Bir pllli giperoloidni h, h tenglm iln niqlngn tekisliklr iln kessk, mos rvishd h v h o lgnd kesimd z c h z c h tenglmlr iln niqlnuvchi giperollr hosil o ldi.bu giperollrdn irinchisining o qlri mos rvishd rim h, c h c kttliklrg tengdir. Agr h oki h o ls,kesimd mos rvishd c z z v c tenglmlr iln niqlnuvchi ikkit kesishuvchi to g ri chiziqlr hosil o ldi.bu fktlrni hisog oli ir pllli giperoloidni chizmd tsvirlshimiz mumkin
97 Chizm-3 T rif- Sirtning r ir nuqtsidn shu sirtd otuvchi to g ri chiziq o ts, und sirt chiziqli sirt deildi. Sirt chegrlgn o ls,und to g ri chiziq otmdi v shuning uchun u chiziqli sirt o lmdi.demk ellipsoid chiziqli sirt o lmdi. Teorem-. Bir pllli giperoloid chiziqli sirt o li, uning hr ir nuqtsidn giperoloidd otuvchi ikkit to g ri chiziq o tdi. Isot. Bir pllli giperoloidning M, z nuqtsidn l m, n to g ri chiziqning prmetrik tenglmlri,, o nlishdgi z z l t mt nt (5) ko rinishd o ldi.bu to g ri chiziq ir pllli giperoloidd otishi uchun lt mt z nt c tenglik t ning hr qimtid jrilishi kerk.bu tenglikd z c munostni hisog olsk
О zbekiston Respublikasi Oliy va o rta maxsus ta lim Vazirligi. Namangan muhandislik-pedagogika instituti. Yu.P.Oppoqov OLIY ALGEBRA VA
О zbekiston Respubliksi Oli v o rt msus t lim Vzirligi Nmngn muhndislikpedgogik instituti Oli mtemtik kfedrsi Yu.P.Oppoqov OLIY ALGEBRA VA ANALITIK GEOMETRIYA Nmngn Oli mtemtik kfedrsi uslubi seminrid
B.Haydarov, E.Sariqov, A.Qo chqorov
.Hydrov, E.Sriqov,.Qo chqorov GEMETRIY 9 zbekiston Respubliksi Xlq t limi vzirligi umumiy o rt t lim mktblrining 9-sinfi uchun drslik siftid tsdiqlgn «zbekiston milliy ensiklopediysi» vlt ilmiy nshriyoti
SH. A. ALIMOV, O. R. XOLMUHAMEDOV, M. A. MIRZAAHMEDOV. Umumiy o rta ta lim maktablarining 7- sinfi uchun darslik
SH A ALIMOV, O R XOLMUHAMEDOV, M A MIRZAAHMEDOV Umumiy o rt t lim mktlrining 7- sinfi uchun drslik Qyt ishlngn v to ldirilgn 5- nshri O zekiston Respuliksi Xlq t limi vzirligi tsdiqlgn O QITUVCHI NASHRIYOT-MATBAA
IKROM RAHMONOV. O zbekiston Respublikasi Xalq ta limi vazirligi umumiy o rta ta lim maktablari uchun darslik sifatida tavsiya etgan
IKM MNV ekiston espuliksi Xlq t limi virligi umumi o rt t lim mktlri uchun rslik sifti tvsi etgn To lirilgn v qt ishlngn 2-nshri QITUVI NSIYT-MT IJDIY UYI TSKENT 2014 U K 744-512.164(075) KK 30.11721 30
BITIRUV MALAKAVIY ISHI
O ZBEKISTON RESPUBLIKSI OLIY V O RT MXSUS T LIM VZIRLIGI QRSHI DVLT UNIVERSITETI MTEMTIK NLIZ V LGEBR KFEDRSI Nzrov Frru Shurtovichig 546000 mtmti t lim yo lishi bo yich blvr drsii olish uchu CHIZIQLI
O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI SAMARQAND IQTISODIYOT VA SERVIS INSTITUTI. Begmatov A. MATEMATIKA KAFEDRASI
O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI SAMARQAND IQTISODIYOT VA SERVIS INSTITUTI Begmtov A. OLIY MATEMATIKA KAFEDRASI Fuksiyig dieresili v dieresil hisoig sosiy teoremlri mliy mshg
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Stereometriya asoslari. 8. Aksiomatik nazariya. Stereometriya aksiomalari. Ularning planimetriya aksiomalari bilan aloqasi. Fazodagi aksiomalar
Stereometriya asoslari. 8. Aksiomatik nazariya. Stereometriya aksiomalari. Ularning planimetriya aksiomalari bilan aloqasi. Fazodagi aksiomalar Stereometriya, ya'ni fazodagi geometriyani o'rganishni biz
19 ning oxirgi uchta raqamini toping. 5. 0<x< 2
FOYDALANILGAN ADABIYOTLAR O QUVCHILARNI MATEMATIK OLIMPIADALARGA TAYYORLASH MA Mirzhmedov МАТЕМАТИКА В ШКОЛЕ v КВАНТ (Rossi shrlri) jurllriig turli illrdgi solri Teglm butu solrd echt echimg eg: Teglmi
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
Sog liqni saqlash vazirligi Toshkent Farmatsevtika Instituti Muxandislik grafikasi fanidan ma ruzalar matni
Sog liqni saqlash vazirligi Toshkent Farmatsevtika Instituti Muxandislik grafikasi fanidan ma ruzalar matni Tasdiqlayman O quv ishlari bo yicha prorektor prof. X.S Zanutdinov 2014 y Toshkent-2014 1 Ushbu
π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.
Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)
o quv yili matematikadan 9-sinf imtihon biletlari yechimlari 1-bilet = 0,75 1,2+0,9. = 73; Javob: <CAB= 730
. (,,87),+0,9 40: 50. + x+ X, 8±0 ; x 6 8 0 6 05-06-o quv yili matematikadan 9-sinf imtihon biletlari yechimlari -bilet 0,75,+0,9 90 0,9+0,9 90 0; ; (x-) +(x+),5(x-)(x+); x 4x-4+4x+43x -3; 3x -8x-30; (-8)
Batigoal_mathscope.org ñược tính theo công thức
SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a
Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)
Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,
Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište
Sheet H d-2 3D Pythagoras - Answers
1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm
1.2 ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a
. ΑΘΡΟΙΣΜΑ ΔΙΑΝΥΣΜΑΤΩΝ ΜΕ ΚΟΙΝΗ ΑΡΧΗ. ΚΑΝΟΝΑΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ: a a a a ΑΘΡΟΙΣΜΑ ΔΙΑΔΟΧΙΚΩΝ ΔΙΑΝΥΣΜΑΤΩΝ:, ( ) 3 4 3 4 a a a a a 3 aaa3a4 a 3 a 4,,,,...,,,.,. .,,,, : () a ( ) () ( ) ( ) ( ) (3) 0 (4) (
*+,'-'./%#0,1"/#'2"!"./+3(,'4+*5#( *9.!/%#+7(,'#%*!.2 :;!"#/5".+!"#$() $!"#%"&'#$() 50&(#5"./%#0,1"/#'2"+*5#(35&* &*,'2-<:):0&3%!.2=#(,1,.%!.
# #$%&'#$( *+,'-'./%#0,1/#'2./+3(,'4+*5#(355. 678*9./%#+7(,'#%*.2 :; #/5.+#$( *+,'-'./%#0,1/#'2./+3(,'4+*5#(355. 678*9./%#+7(,'#%*.2 #$% $ #%&'#$( 50&(#5./%#0,1/#'2+*5#(35&* &*,'2-
SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia
SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %
Im{z} 3π 4 π 4. Re{z}
! #"!$%& '(!*),+- /. '( 0 213. $ 1546!.17! & 8 + 8 9:17!; < = >+ 8?A@CBEDF HG
ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ
taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά
Neodreeni integrali. Glava Teorijski uvod
Glv Neodreeni integrli. Teorijski uvod Nek je funkcij f :, b R. Definicij: ϕ- primitivn funkcij funkcije f ϕ f, b Teorem: ϕ- primitivn funkcij funkcije f ϕ+c- primitivn funkcij funkcije f Definicij: f
tel , version 1-7 Feb 2013
!"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 Y% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)
funksiyaning birinchi tartibli xususiy hosilasidan
A RUZA 8 URAKKA UNKSIYANING HOSILASI. TO`LA DIЕRЕNTSIAL TUSHUNCHASI. EKSTRЕULARI. TAQRIIY HISOLASH. DASTURIY PAKETLAR YORDAIDA HISOLASH. aqsad: Talabalarga ko po zgaruvchl uksalarg deresal, ekstremumlar
TOSHKENT IRRIGATSIYA VA MELIORATSIYA INSTITUTI BUXORO FILIALI "UMUMKASBIY FANLAR" KAFEDRASI "CHIZMA GEOMETRIYA VA MUHANDISLIK GRAFIKASI"
TOSHKENT IRRIGATSIYA VA MELIORATSIYA INSTITUTI BUXORO FILIALI "UMUMKASBIY FANLAR" KAFEDRASI "CHIZMA GEOMETRIYA VA MUHANDISLIK GRAFIKASI" fanidan ma'ruzalar matni Tuzuvchilar: S.R.Djuraeva Buxoro 2016 1
v w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ
Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),
Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου
Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.
Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH
http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
FOYDALANILGAN ADABIYOTLAR raqamlarining ba zilari orasiga + va - ishoralarini shunday qo yingki, natijada 100 hosil bo lsin.
FOYDALANILGAN ADABIYOTLAR. MATEMATIKA sinf uchun darslik. J. Ikromov. Toshkent 998.. MATEMATIKA sinf uchun darslik. M.A.Mirzaahmedov. Toshkent 00. MATEMATIKA 6 sinf uchun o quv qo llanma. J.Ikromov. Toshkent
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mthemtic.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mthemtic.gr. Μετατροπές
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
PHƯƠNG TRÌNH MẶT PHẲNG
CHƯƠNG 2 PHƯƠNG TRÌNH MẶT PHẲNG TÓM TẮT LÝ THUYẾT I. VECTƠ PHÁP TUYẾN (HAY PHÁP VECTƠ) CỦA MẶT PHẲNG Vectơ 0 gọi là vtpt của mặt phẳng a nếu giá của vuông góc mặt phẳng a. Vtpt của mp a thường ký hiệu
cz+d d (ac + cd )z + bc + dd c z + d
T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 7 Απριλίου 2017 Ασκηση 1.
!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667
!"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000
Σημειώσεις μαθήματος ΜΕΜ 102 Γεωμετρία και Γραμμική Άλγεβρα Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Εισαγωγή Θα συμπληρωθεί 1 Μέρος 1 Διανυσματική
())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*
! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
x ax by c y a x b y c
Γεωμετρία Affine - Εφαρμογές Δόρτσιος Κων/νος, Μαθηματικός mail:kdortsi@sch.gr Τσίντσιφας Γεώργιος, Μαθηματικός mail :gtsintsifas@yahoo.com Εισαγωγή Η Γραμμική Γεωμετρία περιέχει τρία είδη Μετασχηματισμών
= (2)det (1)det ( 5)det 1 2. u
www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det
3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,
E.E., Παρ. I, Αρ. 271, 16.12. 607 Ν. 7.2/ περί Συμπληρματικύ Πρϋπλγισμύ Νόμς (Αρ. 5) τυ 19 εκδίδεται με δημσίευση στην επίσημη εφημερίδα της Κυπριακής Δημκρατίας σύμφνα με τ Άρθρ 52 τυ Συντάγματς- - Αριθμός
ALGEBRA VA MAÒEMAÒIK ANALIZ ASOSLARI
O ZBEKISÒON RESPUBLIKASI OLIY VA O RÒA MAXSUS ÒA LIM VAZIRLIGI O RÒA MAXSUS, KASB-HUNAR ÒA LIMI MARKAZI A. U. Abduhamidov, H. A. Nasimov, U. M. Nosirov, J. H. Husanov ALGEBRA VA MAÒEMAÒIK ANALIZ ASOSLARI
Vn 1: NHC LI MT S KIN TH C LP 10
Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà
È http://en.wikipedia.org/wiki/icosidodecahedron
À Ô ÐÓ ÖÓÒØ ØÓÙÔ Ö ÕÓÑ ÒÓÙ Ò Ø Ô ØÓÙ Ô Ñ Ð Ø ØÓÙhttp://www.mathematica.grº Å Ø ØÖÓÔ LATEX ÛØ Ò Ã Ð Ò Ø ÃÓØÖôÒ Ä ÙØ Ö ÈÖÛØÓÔ Ô Õ ÐÐ ËÙÒ ÔÓÙÓ ËÕ Ñ Ø Å Õ Ð Æ ÒÒÓ ÉÖ ØÓÌ Ë Ð ¹ ÅÔÓÖ Ò Ò Ô Ö Õ Ò Ò Ñ Ð Ö º ÌÓß
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ
3/5/016 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΣΥΡΜΑΤΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Παραδείγματα Κεραιών Αθανάσιος Κανάτας Καθηγητής Παν/μίου Πειραιώς Δίπολο Hetz L d
GEOMETRIYA 7. Umumiy o4rta ta lim maktablarining 7-sinfi uchun darslik. Tuzatilgan va to4ldirilgan uchinchi nashr
GEMETRIY 7 Umumiy o4rta ta lim maktablarining 7-sinfi uchun darslik Tuzatilgan va to4ldirilgan uchinchi nashr 4zbekiston Respublikasi Xalq ta limi vazirligi tasdiqlagan TSHKENT œyngiy4l PLIGRF SERVIS 07
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com
Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =
Ó³ Ÿ , º 4(181).. 501Ä510
Ó³ Ÿ. 213.. 1, º 4(181.. 51Ä51 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ Š ˆ ƒ ˆ ˆŸ Ÿ ƒ Ÿ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ Š.. Œμ Éμ 1,.. Ê 2 Œμ ±μ ± μ Ê É Ò Ê É É ³. Œ.. μ³μ μ μ, Œμ ± ƒ ÒÎ ² É μ Ô - ³ Ê²Ó ²Ö ³ É ± Š. Ò Ï É Í μ Ò Ô Ö ³μ³
(2), ,. 1).
178/1 L I ( ) ( ) 2019/1111 25 2019,, ( ), 81 3,,, ( 1 ), ( 2 ),, : (1) 15 2014 ( ). 2201/2003. ( 3 ) ( ). 2201/2003,..,,. (2),..,,, 25 1980, («1980»),.,,. ( 1 ) 18 2018 ( C 458 19.12.2018,. 499) 14 2019
ΛΟΞΗ ΚΟΠΗ 1. ΓΕΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΗΜΕΙΩΣΗ
ΛΟΞΗ ΚΟΠΗ 1. ΓΕΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΗΜΕΙΩΣΗ Άξονας x: Κατά τη διεύθνση της ταχύτητας κοπής Άξονας y: Κάθετος στη διεύθνση της ταχύτητας κοπής Άξονας z: Κάθετος στο επίπεδο των x και y Άξονας x': Κάθετος
!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-
!"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ 212-213 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θέμα 1 ο Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου μιας γωνίας ισαπέχει
Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes
1 Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes Gonzalo Blay, Isabel Fernández, Alícia Marco-Aleixandre, and José R. Pedro Departament de Química Orgànica, Facultat de Química,
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
SKEMA PERCUBAAN SPM 2017 MATEMATIK TAMBAHAN KERTAS 2
SKEMA PERCUBAAN SPM 07 MATEMATIK TAMBAHAN KERTAS SOALAN. a) y k ( ) k 8 k py y () p( ) ()( ) p y 90 0 0., y,, Luas PQRS 8y 8 y Perimeter STR y 8 7 7 y66 8 6 6 6 6 8 0 0, y, y . a).. h( h) h h h h h h 0
ISBN , 2009
.... 2009 681.3.06(075.3) 32.973.26 721 367.. 367 : -. :.., 2009. 419.:.,. ISBN 978-5-88874-943-2. :. -,.,. (2006 2009),,,,.. 11-, -. matsievsky@newmail.ru. 681.3.06(075.3) 32.973.26 721 ISBN 978-5-88874-943-2..,
PDF hosted at the Radboud Repository of the Radboud University Nijmegen
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779
Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R)
Α Δ Ι Α - Φ 8 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 20 Δεκεμβρίου
C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ
»»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()
ẋ = f(x) n 1 f i (i = 1, 2,..., n) x i (i = 1, 2,..., n) x(0) = x o x(t) t > 0 t < 0 x(t) x o U I xo I xo : α xo < t < β xo α xo β xo x(t) t β t α + x f(x) = 0 x x x x V 1 x x o V 1 x(t) t > 0 x o V 1
ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 30ής ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΑΙΟΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ
K.AJI. 75/2004 ΠΑΡΑΡΤΗΜΑ ΤΡΙΤ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΚΡΑΤΙΑΣ Αρ. 906 της 0ής ΣΕΠΤΕΜΒΡΙΥ 2004 ΑΙΙΚΗΤΪΚΕΣ ΠΡΑΞΕΙΣ ΜΕΡΣ Ι Κννιστικές Διικητικές Πράξεις Αριθμός 75 Ι ΠΕΡΙ ΦΑΡΜΑΚΩ ΑΘΡΩΠΙΗΣ ΡΗΣΗΣ (ΕΛΕΓΣ
!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*
!"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"
Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ
Ó³ Ÿ. 2017.. 14, º 1(206).. 176Ä189 ˆ ˆŠ ˆ ˆŠ Š ˆ Œˆ ˆ ƒ ˆŸ Ÿ ˆ ˆ Ÿ Œˆ ˆ.. Š μ,. ˆ. Š Î 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μé ³ É É Ö μ²êî μ μ μ μ μ ² Ö Êα ÉÖ ²ÒÌ μ μ ÊÐ Ö ³ Ï μ³μðóõ ± μ Ö Êα μ μ Ì μ É. ± μ μ ÊÐ
ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές
ΦΥΣΙΚΑ ΜΕΓΕΘΗ Αριθμητικά ή Μονόμετρα μεγέθη: Όγκος Μάζα Χρόνος Ενέργεια κ.λ.π. Διανυσματικά μεγέθη: Μετατόπιση Δύναμη Ορμή Διανυσματικοί τελεστές κ.λ.π. ΔΙΑΝΥΣΜΑΤΑ Παράσταση διανύσματος ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΕΣ
. visual basic. int sum(int a, int b){ return a+b;} : : :
: : : : (),, : (),( )-,() - :,, -,( ) -1.... visual basic int sum(int a, int b){ return a+b; float f=2.5; main(){ float A[10]; A[f]=15; int x=sum(int(f), 10, A[2]);. -2.... -3.foolowpos(3) * ( a b c) (
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c
GENIKA MAJHMATIKA ΓΙΩΡΓΙΟΣ ΚΑΡΑΒΑΣΙΛΗΣ TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c 26 Μαΐου 2011 Συνάρτηση f ονομάζεται κάθε σχέση από ένα σύνολο A (πεδίο ορισμού) σε σύνολο B με την οποία
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE
DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:
ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ. Χεμερινό εξάμηνο ΗΜΕΡΟΛΟΓΙΟ
ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Χεμερινό εξάμηνο 2006-07 ΗΜΕΡΟΛΟΓΙΟ 1 ΔΕΥΤΕΡΑ, 9-10-06, 11-13. ΓΩΝΙΕΣ ΚΑΙ ΚΥΚΛΟΙ. Θεώρημα 1. Το άθροισμα των γωνιών τριγώνου είναι ίσο με 180 o. Θεώρημα 2. Κάθε εξωτερική γωνία τριγώνου
Άλγεβρα Boole και Υλικό Υπολογιστή
Άλγεβρα Boole και Υλικό Υπολογιστή Άλγεβρα Boole Η σχέση της άλγεβρας Boole με την δομή των υπολογιστών και με τον προγραμματισμό. Υλικό υπολογιστή Οργάνωση Κεντρικής Μονάδας Επεξεργασίας, μνήμη, είσοδος
..,..,..,..,..,.. $#'().. #*#'!# !" #$% &'( )*%!"( %+
!" #$% &'( )*%!"( %+,--%. )!%/%#-%. %% (*%!%!)..,..,..,..,..,..!" #$#%$"& $#% $#'().. #*#'!# -0 --%0 % %--/%#-%0 %%0 () - %)!" %1 -# #( )%+!"&/ #$%+/,!% 1%/!"& )(00& 3 ) %4%)!% "% %-" ) )!%1 )(-% 3 651300
!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-
!!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8
ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1
(1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ Να λύσετε στους ακέραιους την εξίσωση 4 xy y x = xy 6.
Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 1
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β ΑΡΤΙΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/liearalgebrai/lai2018/lai2018html Παρασκευή 12 Οκτωβρίου 2018 Ασκηση 1
Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³
Ασκήσεις στα ιανύσµατα
Ασκήσεις στα ιανύσµατα Λυγάτσικας Ζήνων zenon7@otenet.gr http://blogs.sch.gr/zenonlig/ Πρότυπο Πειραµατικό Γ.Ε.Λ. Βαρβακείου Σχολής 15 Νοεµβρίου 014 c:\education\ B lycee \module\ module\revision vec.tex
Microscopie photothermique et endommagement laser
Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université
R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.
5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța
Leaving Certificate Applied Maths Higher Level Answers
0 Leavin Certificate Applied Maths Hiher Level Answers ) (a) (b) (i) r (ii) d (iii) m ) (a) 0 m s - 9 N of E ) (b) (i) km h - 0 S of E (ii) (iii) 90 km ) (a) (i) 0 6 (ii) h 0h s s ) (a) (i) 8 m N (ii)
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Πίνακες Επιμέλεια: I. Λυχναρόπουλος 3. Αν A 5 4, B 4, C να υπολογίσετε τις ακόλουθες πράξεις 4 3 8 3 7 3 (αν έχουν νόημα): α) AB, b) BA, c) CB, d) C B,
Κεφάλαιο 2 Πίνακες - Ορίζουσες
Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος