19 ning oxirgi uchta raqamini toping. 5. 0<x< 2
|
|
- Κασσάνδρα Ακρίδας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 FOYDALANILGAN ADABIYOTLAR O QUVCHILARNI MATEMATIK OLIMPIADALARGA TAYYORLASH MA Mirzhmedov МАТЕМАТИКА В ШКОЛЕ v КВАНТ (Rossi shrlri) jurllriig turli illrdgi solri Teglm butu solrd echt echimg eg: Teglmi echig: 7 8 ig oirgi ucht rqmii topig 000 log log log Teglmlr sistemsii echig: + +z = + +z = 7 5 0<< uchu si + tg + tegsizliki isbotlg 6 Teglm butu solrd echt echimg eg? - = 7 Teglm butu solrd echt echimg eg? + =z 8 Grfigii sg: Agr +=z+t bo ls, (,,z,t Є Z) + +z +t ifod t butu soig kvdrtlri ig idisig teg bo lishii isbotlg 0 Teglmi echig: 8 Ifodi soddlshtirig 0 Tegsizliki isbotlg: z z -- --
2 Agr ( )( ) bo ls, i topig (-turl so) uchu quidgi tegsizlik bjrilishii isbotlg: 5 Agr,b,c-uchburchk tomolr v A,B,C-ulr qrshisidgi burchklr bo ls v bcosc+bccosa+ccosb=c teglik bjrils, bu uchburchk to g ri burchkli ekii isbotlg 6 ABC uchburchkd tga= tgb= tgc muosbt o rili bo ls, :b:c i topig 7 α β soi rtsiol bo ldig irrtsiol α v β lr mvjudmi? 8 Agr =- v >0 bo ls, + < i isbotlg Teglmi echig: [si]{si}=si ([]-soig butu qismi, {}-ksr qismi) 0 Teglmi echig: { } [ ] Teglmi echig: log 6 ( ) log Shud,b,c butu solri topigki, 8si 50 bsi c teglik bjrilsi Tegsizlik to g rimi? Teglmi echig: - -=0 5 Teglmi echig: b c b c c b b c 6 + ifod 00 g bo lidig -turl solr cheklimi oki cheksizmi? -- Q A Y D L A R U CH U N --
3 Q A Y D L A R U CH U N -0-7 Istlg turl d tegsizlik o rili bo lishii isbotlg: 8 { } ketm-ketlik + = - + shrt bil berilg 0 = bo lishi uchu qd bo lishi kerk? Brch shud v b tub solri topigki, + +b b+ hm tub so bo lsi 0 Teglmi echig: Teglmlr sistemsii echig: Tegsizliki isbotlg: 8( ) b bc b c bc c bc bc, (α Є R), (,b,c >0) Teglmi turl solrd echig: ( + )(z +t )=(z+t) Teglmi echig: 5 Soig butu qismii topig: k (,k Є N) ko riishdgi echt iq kvdrt so bor? 7 Quidgi tegsizlik to g rimi? 006! ! 8 Teglmi echig: ( +)(-)=6 Tegsizliki isbotlg: si k α+cos k α (si k+ α+cos k+ α), (α Є R) -5-
4 0 Qd turl so,,z lrd tegsizlik bjrildi: z<+z+z? Teglmi echig: Teglmi echig: Teglmlr sistemsii echig: = ++ 5 = ( Є R) t bol 0 t qo ziqori terdi Bud itiori ikkitsi turli miqdord qo ziqori terishdi Shud 5 t bold ibort guruh topilishii isbotlgki, ulrig terg qo ziqorilri ig idisi 0 td oshmsi 5 Teglmi echig: (cos+)cos= 6 Itiori uchburchk uchu quidgi tegsizlik bjrilishii isbotlg: (m +m b +m c )(h +h b +h c ) 7S (Bu rd,b,c- uchburchk tomolri, m-medi, h-bldlik, S-uz) 7 Agr bo ls, g( ) f ( f ( f ( ))) f ( ) 007 i topig 8 Agr bo ls, + i isbotlg { } ketm-ketlik =, =, =, 5, ( ) shrt bil berilg Bu ketm-ketlikig brch hdlri butu so bo lishii isbotlg 50 Itiori uchburchk uchu h bc cos tegsizlik bjrilishii isbotlg (Bud α- tomo qrshisidgi burchk, h - tomog tushirilg bldlik) 7 J: =, = 7 ( 7) ig bo luvchilri es:,,,8,,58,6,; +7 8, Tekshirishlr shui ko rstdiki, =,,,5 J: t 7 ) m +m b >m c, m b +m c >m, m +m c >m b d echig 7 Mustqil echishg uriib ko rig 75 Tegsizlikdgi qvslri ochsk: -+-z+z-z< g keldi z<0, v (-)(-)(z-)<0 tegsizliklri qo shsk: z+++z--z-z-<0, z<0 bo lgi uchu ui tshlb uborsk: ++z--z-z-<0, (-) + ( -z) +z(-)< 76 ABO=0º-φ, AOB=0º, OAC=α-φ Mustqil dvom ettirig 77 teglmig echimi, m m bo lsi U km hold k m+ =k m -k m- =k m -k m-, -butu so, shuig uchu m m hm butu so, itiori m d k k m o rili k 78 Ko riib turibdiki, > Agr = bo ls, 0000:006=,850 Edi verguli o g tomog rqm 5 d kichik bo lguch surmiz U hold o surildi +=7, demk, =7 J: =7 d 7 O tkir burchkli uchburchk uchu tga+tgb+tgc=tgatgbtgc o rili Koshi tegsizligig ko r, tga+tgb+tgc tgatgbtgc tgatgbtgc tgatgbtgc bui hr ikkl tomoii kubg oshirmiz: (tgatgbtgc) 7tgAtgBtgC, (tgatgbtgc) 7, tgatgbtgc=tga+tgb+tgc Tegsizlik isbotldi Tegsizliki isbotlg: tg tg tg (α,β,γ-o tkir burchkli uchburchk burchklri tg tg tg
5 6 A 8 0 B S 0 v 0 v, 0v v, S 0 S 0 8 v S -S+60-0S-60=0, S=7 km 60 S 0 8 v, S v S v, S 0v ( S 0) S 6 Mtemtik iduksi metodi ordmid ko rish mumkiki, ifod fqt = d 80 g bo lid Boshq qimtlrd bo limdi 65 S=b 66 BF=, BE=, h= 0 6, S=( 6):= S r 6, =6-= bc 00 v 5 km piod, km velosipedd, 0 km mototsikld urish uchu sot 6 miut ketdi; 5 km piod, 8 km velosipedd, 0 km mototsikld urish uchu sot miut ketdi km piod, 5 km velosipedd, 80 km mototsikld urish uchu qch vqt ketdi? 5 Qd turl d quidgi teglik bjrildi: 5 Yig idii hisoblg: i verguld kei olg teg bo lmg ucht rqmi bo lg o li ksrlrig kvdrtlri ig idisi ko riishid ozig BEF ~ ABD, BF=, :=0:6, =5 S KE= 5 =6, S =(6 ):= r 556, 5 J: r =,5 sm 67 Ko rstm: hosil bo lg oltiburchkig uzi shu uchburchkig o rt chizig i v osog tushirilg perpedikulr hosil qilg to g ri to rtburchk uzig tegligii ko rstig Shu to g ri to rtburchkig bitt tomoi uchburchkig sosi rmig, ikkichi tomoi es bldligi rmig teg bo ldi 68 0+=k ) = d, 0+=k, 0=(k-)= 0= 5=5, J:,, ) = d 0=(k-)= 5 J: ) = d 0=(k-)=6 5, J: 6 Tekshirishlr shui ko rstdiki, ig boshq qimtlrid teglik o rili bo lmdi J:,,5,,6 solri 6 8log +log 6 tegsizlikig echimi Є [ ; ] i [ ; ] d ko rmiz: 0, cos = d,, ; = d, J: 70 Ko rstm: ABCD to rtburchkig prllelogrm ekligii ko rstig Teglmi echig: 57 Agr bo ls, f ( ) = 005 f f f i hisoblg( Є R) 58 Ifodig eg kichik qimtii topig: b c d (,b,c,d-musbt solr) b c c d d b 5 Agr d-bc= bo ls, +b +c +d +c+bd i isbotlg 60 Agr z t z t z t t z qimtii hisoblg 6 ( )( )( 6) bo ls, z z t t z t t z t ig ketm-ketlikig qsi hdlri 7 g bo lidi? -7-
6 6 ( )( )( 6) ketm-ketlikig qd hdlri rtsiol so bo ldi? 6 Agr,b,c,d,e,f >0 bo ls, tegsizliki isbotlg: b c d e f b c c d d e e f f b b 6 Tegsizliki isbotlg: (,b,c-musbt solr) b c c b 65 Ifodig eg ktt v eg kichik qimtii topig: 66 Soig butu qismii topig: 67 Agr zzz z (si si )cos z cos cos si z si si teglik o rili bo ls,,, z rqmlri topig (Bu erd -ikki oli so) 68 ig qd turl qimtid ksr qisqruvchi bo ldi: Tegsizliki echig: + + < Qd v k turl solrd + soi k - g bo lidi? 7 -musbt so bo lgd,, tomoli uchburchk mvjudligii isbotlg v uig uzii g bog liq bo lmg hold topig 7 >π uchu tegsizlik o rili ekligii isbotlg: si 7 [ ]=[ ] teglik ig itiori turl qimtid o rili -8- t= d, z bo lg hold iq kvdrtlri tekshirmiz: zt Є {5,0,60,7,50,6,7,80} tekshirishlr shui ko rstdiki msl shrtii fqt 7 qotltirdi J:,7,, rqmlri 56 J: EK= 7 57 cosαcosαcosα cos α= 58 (b-) 0 si cos cos cos si si si 5 =006 deb belgilmiz v quidgi tegsizliki mtemtik iduksi metodi bil isbotlmiz:, > ) = d to g ri: 8 ) =k d to g ri deb frz qilmiz: =k+ d to g riligii tekshirmiz: k k k k k k k k k k k k k k k k k k, k, k k k k k k k k k k k k k k k k k k ( k ) k( k ) k B C 60 AB=r, BC=b, AD=, CD= bo lsi ED=-b CED d h = -(-b) =(+-b)(-+b)=(-r)(b-r) +b=r+, =+b-r, h=r, r =(-r)(b-r) r, S= b b b r b b b b A E D 6 EKUK(,,5,7,)=60, 60+=6 J: 6 t 6 AE=EC, AO:OC=:, AO=, OC=, EO=0,5 EC=,5, AC digoli ko chirib, olib o tmiz OEL ~ ECN OE:OL=EC:CN, 0,5:=,5:CN, CN=6, CC =+6= AA =6-=7, J: AA =7 sm, CC = sm E O K D C A N E O 5 A B -7- A C h
7 5 Koshi tegsizligi: m+ m d fodlmiz: b b, b c bc, c c bu tegsizliklri hdlb ko ptirmiz: (+b)(b+c)(+c) 8 b c =8bc 6 h=h, DE=/AB, AB=DE S DEF =/DE h, DE h =8 S ABC =/ AB h=/ DE h =DE h =6 sm 7 J: =k-, =5-k 8 bc + bc cb =(+b+c)= 7(+b+c) bud bc cb ig 7 g bo liishi kelib chiqdi Ko rstm: KLMN ig kvdrt oki romb bo lishii ko rstig 50 J: 7 rqmi 5 (b+)- b(b+)+b (+)-b (+) 0 (b+)( (-b))+(+)(b (b-)) 0 (-b)( (b+)-b (+)) 0 (-b)((-b)(+b)+b(-b)) 0 (-b) (+b+b) 0 5 Belgilsh kiritmiz: = Teglm quidgi ko riishg keldi: Y+ 5 = 6, 6-5 -=0, ( 5 - -)=0, =0, =0, = =0, =0, (-)( )=0, =, = >0, chuki, >, > J: =0, = 5 ) =0 bo lsi: f(-)=f(0)+f() ) =0 bo lsi: f()=f()+f(0), f(0)=0 ) = bo lsi: f(0)=f()-, f()=, f()= J: f()= bo ldig α ig brch qimtlrii topig 7 Tub so ikkit bo luvchig eg: tub soig o zi v Qd solr ucht bo luvchig eg? 75 + ig g bo liishii isbotlg 76 Ifodi soddlshtirig: (+b)( +b )( +b ) ( 6 +b 6 ) 77 Agr +b+c=0 bo ls, +b +c =bc i isbotlg 78 (++ )(+ + 6 )(+ + 8 )( ) i hisoblg 7 Ifodi soddlshtirig: 80 Agr +b+c= v,b,c>0 bo ls, +b +c i isbotlg 0 8 Ifodi soddlshtirig: A 8 Ifodi soddlshtirig: A b b b b 8 Agr bcd= v,b,c,d>0 bo ls, +b +c +d +b+bc+cd+d+c+bd 0 i isbotlg 8 Teglmi echig: []+[]+[]= (bu erd []-soig butu qismi) 85 Solri tqqoslg: v Soig g v g bo liishii tekshirig J: (;) v (8;) 55 zt, t, z Ammo turl soig kvdrti oki bil tugmdi, demk t=0 oki t=0 d, z=0 bo ldi, 5, -iq kvdrt bo lishi kerk 600,500,600 v 00 msl shrtii qotltirmdi i hisoblg 87!+!+!+ +! i hisoblg (!= ) 88 Ifodig qimtii hisoblg:
8 8 00 ech oli so bo ldi? 0 Isbotlg: 0 0 < 00 <0 Itiori butu soig kvdrti ikkit 5 bil tugshi mumki emsligii isbotlg Itiori uchburchk uchu h h b teglik bjrilishii isbotlg (bu erd h, h b, h c -bldliklr; r-ichki chizilg l rdiusi) 7 ig oirgi ikkit rqmii topig,,,,, solri orsig + v - ishorlrii qo ib ol hosil qilish mumkimi? Tegsizliki isbotlg: ,, 5 tilik ordmid 0 tiii ech il usuld mdlsh mumki? 7 Musbt, b, c solri uchu quidgi tegsizlik bjrilishii isbotlg: b b h c b bc c r c c 8 Teglmi butu solrd echig: 60-77= Brch shud f() fuksilri topigki, f()+ f()=(+) f() f() shrt bjrilsi 00 f()=5 -+7 v g()=8- fuksilr grfiklri orsidgi eg qisq msofi topig 0 Limiti hisoblg: lim t t t t -0- Tomoi m bo lg mutzm uchburchki tekislikk tshlmiz Frz qillik uig bir uchu birichi il rgli uqtg v ikkichi uchu ikkichi il rgli uqtg tushsi Uchburchkig uchichi uchi ikkl il rgli uqtd birig tushdi Shrt bjrildi oki bo ldi Ifodig iqlish sohsi = uqt Bu uqtd ifod g teg 5 J: S=r (-,5π) 6 b c d ( b) ( b)( b c) ( b c)( b c d) b b b c b c b c d b c d b c d ( b c d) 7 (+) - =(+)+, (+)-juft so, shuiig uchu r= 8 Ko rstm: tegsizlikig hr ikkl tomoi g ko ptirib, o g tomoii chp tomoig olib o tig (+)(-)(-7) 0 0-msld fodlig J: =± J: t echim bor 500 m oli v oli bo lsi 0 m- < 500 <0 m, 0 - <5 500 <0 Bulri hdlb ko ptirsk: 0 +m- <0 500 <0 +m +m-<500<+m +m=50 J: 50 oli Aiqlish sohsi, Є (;); log (-) (-)= desk,, =± J: =± Frz qillik +5 v + solri p g bo lisi U hold +-(+5)=-, +5-(-)=+6, +6-(-)=7, p=7 bo ldi =7, +=7m 5 m, -5=m-8, -m=, -toq, m-juft, shuig uchu -toq, =d-, =7d-6 (p,,m,d Є N) -5-
9 8 Ko rstm: uchburchklr o shshligid fodlig J: 0sm v 5 sm Ko rstm: teglmi hr ikkl tomoii kubg ko trig J: =6 0 J: J: 8 S 7 J: E()=[-5;]U [;+ ) J: =πk, = +πk, k Є Z d fodlig J: =± 0 Qd Є Z lrd v lr bir vqtd g bo lidi? 0 Agr bo ls, i hisoblg 0 Agr +b+c=0 v +b +c =0 bo ls, +b +c i hisoblg (-toq so,,b,c Є Q) 05 Agr Є [-;] d +b+c h bo ls, + b + c h i isbotlg 06 Qsi biri ktt e e π π mi oki e π? 07 Tegsizliki isbotlg: log 6 7+log 7 8+log 8 <, 08 Agr α>, β>, γ> v lg lg bo ls, lg i isbotlg lg =588888, =5 5:7=005, 005-=00 J: rqmi 0 Kub ildizi topig: 5 6 cos si (cos si ) cos cos si cos cos cos (cos-) 0 7 Ko rstm: 8-msld fodlig J: Є [0,75;) 8 =t belgilsh kiritmiz: t -t+p=0, D=-p=0 p= J: p= +b +c + b+c (-b) +(b-c) 0 0 t o quvchi 0,,,, t to qildi Y t o quvchi 0,,,, t to qildi ++=7, 0-7= Qolg t o quvchi 0,,, solrid birich to qildi t o shd o quvchi topildi 0 Qsi biri ktt, mi oki mi? Agr >0, b>0, c>0 bo ls, tegsizliki isbotlg: +b + b+c + +c < +b+c+ + Agr, b, c tomoli uchburchk mvjud bo ls,, b, c tomoli uchburchk hm mvjudligii isbotlg Teskri mulohz to g rimi? Agr R(b+c)= bc bo ls, ABC uchburchkig turii iqlg Agr +=z+t bo ls, + +z +t ifod t soig kvdrtlri ig idisig teg ekligii iqlg >0 d, =; <0 d, =-; =0 d Є (- ;+ ) Grfig O(0;0) uqtd ibort -- --
10 Turli illrd Adijo viloti v Bliqchi tumi Mtemtik f olimpidlrid o quvchilrg tklif etilg msllr 5 Teglmlr sistemsii echig: z 0 6 z 5 6 Ifodig 6 g bo liishii isbotlg: (+)(7+), Є N 7 Ko ptuvchilrg jrtig: Rdiuslri 7 sm v 0 sm bo lg llr kesishdi Ulrig rdiuslri orsidgi msof g teg Ulrig umumi urimsi v mrkzlri orqli o tg to g ri chiziqig kesishish uqtsid llr mrkzlrigch msoflri topig Teglmi echig: Avvl log (+)>log + (+) i isbotllik: log ( ) log log ( ) ( ) ( ) log log ( ) ( ) log ( ) log ( ) ( ) 6 >7 0 chuki, 6 =6 6 5 > > > >7 0, shuig uchu log 6 7<, qolglri hm shudtopildi log 6 7+log 7 8+log 8 <,+,+,=, 08 α βγ, lgα lgβ+lgγ, lgα>0, lgβ>0, lgγ>0 lgβ+lgγ lg lg lgα lg lg 0 Ko rstm: 5 =+b 5 i kubg ko trib v b i topig 0 J: -so ktt 5 J: Belgilsh kiritmiz: =, b =, c =z v ozmiz: +z+z<z+, >, >, z> z--z-z+=(-)(-)(z-)+(-)(z-)+(-)(z-)>0 0 Teglmi echig: Ifodi soddlshtirig: +b>c, ( b ) =+b+ b >+b+c b > c Teskri mulohz hr doim hm to g ri ems M-, tomolri,, bo lg to g ri burchkli uchburchk mvjud, mmo tomolri =, =, ( ) = bo lg uchburchk mvjud ems Ifodig qimtii topig: S 5 57 Fuksiig iqlish sohsii topig: 8 Teglmi echig: +cos=cos ozilg sodgi 0000 o ridgi rqmi topig 6 cos 0 bo ls tegsizliki isbotlg: cos -- cos bc =R, b=c R bc J: ABC uchburchk -teg oli to g ri burchkli A=0º, b=c + +z +t = + +z +t -(+)-z-t)= + +z +t +-t-z= =(+) +(-z) +(-t) ; ; v ; ; Ko rstm: =k, k+ v k+ d tekshirig = = (-)-5(-)+6(-)= =(-)( -5+6)=(-)(-)(-) --
11 8 60=77+, J: =-77, =7-60 ) =0 bo lsi: f(0)= f(0) f(), f()= ) =0 bo lsi: f(0)= f(0) f(), f()= ) =- bo lsi: - f()+ (f(-)=0 f(-)= f(), =0 d f()=0; = d f()=0 J: f()=0 v f()= fuksilr 00 f '()=0 0 -=8, 0 =; g '()=8 =5-+7+8(-), =8+ 8 tgα=8, siα= 65 h= si 65 0 f()= fuksii qrmiz: 0 =, =e l, f '()=(e l )'= (l)'= (+l), demk lim= J: 0 -sod koeffitsieti 7 bo lg hdlri chiqrib tshlmiz: =( ++)(-)(-), ++ 7,0 chuki D=5 Demk =7k+ v 7k+ Ikkichi sod =7k+ v =7k+5 chiqdi J: =7k+ d, k Є Z 0 0, 0 ( ) uchu: bo lgi 0 c=-(+b), +b +c = +b -( +b +b(+b))=bc=0,,b,c solrid kmid bittsi olg teg bo lishi kerkm- c=0 bo lsi: =-b, +b +c =-b +b =0 05 f()= +b+c fuksii qrmiz: M=f()=+b+c, N=f(-)=-b+c =M+N-c, b=m-n M h, N h, c = f(0) h = M+N-c M + N + c h, b = M-N M + N h + b + c h+h+h=h 06 f: -πl fuksii qrmiz: f '()=-, =π d miimum; f(e)>f(π) e-π>π-πlπ, e+πlπ>π e e+πlπ >e π, e e π π >e π -- 7 Teglmi echig: []+[]+[]= 8 Agr - +p=0 teglmig ildizi bitt bo ls, p i topig Tegsizliki isbotlg: +b +c (b+c) 0 Sifd 0 t o quvchi bor Yozm ishd bitt o quvchi eg ko p t to qildi Qolglri bud km to qilishdi Shu sifd bir il miqdord to qilg kmid t o quvchi topilishii topig = fuksiig grfigii sg Teglmi grfigii sg: (- ) + =0 Tekislik itiori trtibd ikki il rgg bo lg Bir-birid m uzoqlshg v bir il rgli ikkit uqt topilishii isbotlg Ifodig qimtii topig: 5 r v r rdiusli llr o zro tshqi uridi Allr v ulrg o tkzilg umumi urim orsidgi figur uzii topig 6 Ifodi soddlshtirig: b c d ( b) ( b)( b c) ( b c)( b c d) 7 t ketm-ket turl so kublriig irmsii 6 g bo lgd qoldiq qolishii isbotlg 8 Tegsizliki isbotlg: +b+c b c bc (,b,c>0) Ifodi ko ptuvchilrg jrtig: Teglmi echig: 7 7 Agr 00+0+b<0 bo ls, ++b=0 teglm echt ildizg eg? 500 v solri ketm-ket ozilg Nech oli so osil bo lg? --
12 Teglmi echig: log (-) (-)=log (-) (-) ig qd qimtlrid 5 ksr qisqruvchi bo ldi? 5 Tegsizliki isbotlg: (+b)(b+c)(+c) 8bc (,b,c 0) 6 ABC uchburchkd DE o rt chiziq (DE //AB) AB tomod F uqt shud oligki, AF= sm v S DEF = sm ABC uchburchkig uzii topig 7 Teglmi butu solrd echig: += 8 Uch oli bc soi 7 g bo lis, bc cb ig idi hm 7 g bo liishii isbotlg Tomoiig uzuligi g teg bo lg ABCD kvdrtig AB, BC, CD v DA tomolrid mos rvishd K,L,M,N uqtlr olig Agr AK+LC+CM+NA= bo ls, KM LN i isbotlg 50 5 Yozilg sodgi 005 o ridgi rqmi topig 5 Tegsizliki isbotlg: (b+)+b (+) (b+b )+b (+ ),,b 0 5 Teglmi echig: + 5 = +5 5 Agr Є R v Є R bo ls, itiori v lrd f(-)=f()+f()- shrti qotltiruvchi brch f fuksilri topig soi g bo lidi v i topig 55 zt = + +z +t muosbti qotltiruvchi,, z, t rqmlri topig 56 ABCDEF mutzm oltiburchkig tomoi g teg AB v CD tomolri dvom ettirsk, ulr K uqtd kesishdi EK ig uzuligii topig 57 Ifodi soddlshtirig: cosαcosαcosα cos α -- Berilg so 5 bil tugshi kerk: N =(0m+5) =00m +00m+5=00m(m+)+5 Demk 5 bil tugshi mumki S h, h, uddi shud qolg tomolr uchu hm S h b c bc o rili S=pr, ( S h S, b c h h h b c S b S c S b c S r p b p ) r S S = =(00k+) 7=700k+7 J: 07 c ( 8 ) =8m+, 7 8m+ =(7 ) m 7=(0) m 7=(00+) m 7= Solri umumi mrjg keltirlik: bu solrig hmmsii surti juft, mmo oirgi ksrig 006, 006,, 006 surti toq Demk bu mumki ems 5 0 <5, J: il usuld 7 Geometrik echilishi: B A OA=, OB=b, OC=c, AOC=0º, AOB=60º BOC=60º Kosiuslr teoremsig ko r: b AB =OA +OB - OA OBcos60º= +b -b BC =OB +OC - OB OCcos60º=b +c -bc C O AC =OC +AO - OC AOcos0º= +c +c c AB= b b, BC= b bc c, AC= c c Uchburchk tegsizligig ko r: AB+BC>AC : b b b bc c -- c c
13 8 + v 0 d fodlmiz: bcd=, b+cd, c+bd, d+bc, ( +b )+(c +d ) b + c d Yuqorid hosil qiliglri mos rvishd qo shsk: +b +c +d +b+bc+cd+d+c+bd +++=0 8 Ko riib turibdiki 0 < Teglmi mos rvishd ucht orliqd echmiz: ) 0<<0,5 : 0+0+= b) 0,5 < : 0++= c) <: 0++= J: Є [ ;) = belgilsh kiritlik: 0 v 0 00 (+)(00+)=00 +0+> (0+) = J: -so ktt (0 ) d fodlib topmiz: (0 ) (0 ) (0 ) 7 0( 0 ) ( ) 87 k k!=(k+)!-k! d fodlmiz:!+!+!+ +!=!-!+!-!+!-!+ +(+)!-!=(+)!- 88 ( )( ) d fodlmiz: k- 00lg<k, d fodlmiz: lg 0,0 Demk, k= J: oli < 0 bui 0-drjg ko trmiz: 0 0 < 00 ; <0 bui 7-drjg ko trmiz: <0 8, v <0 i hdlb ko ptirmiz: 00 < kelib chiqdi Tegsizliki isbotlg: b -b+ 0 5 Tegsizliki isbotlg: Alg tshqi chizilg to g ri burchkli trpetsiig uzi uig soslri ko ptmsig tegligii isbotlg 6 Ot bo g d olmlr keltirdi Bollr ud echt olm keltirgii so rshdi Ot smgii, lek tlb, tlb, 5 tlb, 7 tlb, tlb qo gd hr gl td olm ortib qolgii tdi Ot eg kmi bil echt olm keltirg bo lishi mumki 6 Trpetsiig soslrid biri ikkichisid ikki mrt ktt Trpetsiig o rt chizig i α tekislikk prllel v ud sm msofd o tdi Trpetsiig digollriig kesishish uqtsi es bu tekislikd 5 sm msofd otdi Trpetsiig soslrid α tekislikkch msoflri topig 6 t velosipedchi A v B puktlrd bir-birig qrb o lg chiqdi v B puktg 0 km qolgd uchrshdi Mzilg etib qtdi v A puktg 8 km qolgd uchrshdi A v B puktlr orsidgi msofi topig 6 ( -) ( ), Є N soig 80 g bo liishii isbotlg 65 To g ri burchkli uchburchkig gipoteuzg tushirilg bldligi g teg v gipoteuzg tushirilg medisi b gt eg bo ls, shu uchburchkig uzii topig 66 Teg oli uchburchkig o tomoi 0 g v sosi g teg Shu uchburchkk l ichki chizilg Shu uchburchkig o tomolrig v ug ichki chizilg lg uriuvchi lig rdiusii topig 67 O tkir burchkli uchburchki o rtlrid qolg tomolrig perpedikulrlr chiqrilg Shu perpdikulrlr jrtg oltiburchk uzi uchburchkig uziig rmig tegligii isbotlg 68 Rqmlri ko ptmsig bo lidig brch ikki oli solri topig -5-
14 6 8log +log 6 tegsizlikig echimlri cos hm echimlri bo ldig ig brch qimtlrii topig tegsizlikig 70 ABCD to rtburchkd ABC+ BCD=80 0 v AD=BC bo ls, A= C i isbotlg 7 Teglmi echig: + = ksr butu so bo ldig brch turl solri topig 7 Uchburchkig medilrid gi ucburchk hosil qilish mumkiligii isbotlg Shud uchburchkk misol keltirigki, uig ) bessktrislrid; b) bldliklrid uchburchk ssh mumki ems bo lsi 7 0! 006! soig 0 g qoldiqsiz bo liishii isbotlg 006! 75 Itiori,, z Є(0,) solr uchu (-) + ( -z) +z(-)< tegsizlik bjrilishii isbotlg 76 ABC to g ri burchkli uchburchk ichid O uqt olig φ v A=α bo ls, B=0 0 bo ls αiφ orqli ifodlg 77 Istlg, m Є N v, m uchu shud k (k Є N) mvjud bo lishii isbotlgki, ulr uchu quidgi teglik bjrilsi m k 78 ig qd eg kichik turl qimtid k ( [ ]-soig butu qismi) teglm butu echimg eg 7 Hr qd o tkir burchkli uchburchk uchu quidgi tegsizlik bjrilishii isbotlg: tg A+tg B+tg C 80 = si teglm iq t ildizg g )- toq bo lgd; ) -juft bo lgd uchu uqorid v quid bholshi ko rstig -6-7 = v = d quidgi tegsizliklri hosil qilmiz: < <, <, bud -/ α</ kelib chiqdi Edi α ig bu qimtlrid -itiori bo lgd tegsizlik bjrilishii ko rstmiz: k=[ ] bo lsi Bud, k <k+, k -k+/<<k +k+/ k -k+ k +k, -/ α</ bo lgi uchu, k -k+/<+α<k +k+/, Bud, [ ]=k kelib chiqdi 7 Tub soig kvdrti 75 + =( ) +( ) =( + )( )=( +)( - + )( ) +=050= 5 0 Ifod g bo lidi 76 (+b)(-b)= -b bo lgi uchu ifodi (-b) g ko ptirib bo lmiz: (-b)(+b)( +b )( +b ) ( 6 +b 6 )= 8 b 8 b 77 b=t bo lsi, c=-(+t) +b +c = + t - (+t) = (+t --t-t -t )= t (-)(+t)=bc 78 Ko rstm: ifodi (-) g ko ptirig J: 8-7 Ko rstm: ifodi g ko ptirib, tiji shug bo lib qo ig: J: b +c =(+b+c) -(b+c+bc) -(b+c+bc) (b+c+bc) -(b+c+bc) - (+b+c) =, +b +c +(- )= 0 8 Ko rstm: ifodi g ko ptirig J: A 8 Ko rstm: ifodi (-b) g ko ptirib tiji shug bo lig J: b A b b b b --
15 +( +)+=( ++)( ++), =( +6 + ) =( +) +6( +)+8= =( ++)( ++) ++ v ++ solri ++ g isbt o zro tub, shuig uchu ulrig ++ bil umumi boluvchisi o q ++ v ++ hm o zro tub, shuig uchu gr ksr qisqrdig bo ls, u ++ v ++ lrig umumi bo luvchisig qisqrdi Agr d ulrig umumi bo luvchisi bo lsi, demk u g bo lidi, msl d= bo lsi; + ig g bo liishi kelib chiqdi, mmo bu oto g ri Demk ksr hech qd d qisqruvchi bo lmdi 6 Tegsizlikig hr ikkl tomoi 6 g bo lmiz v ozmiz:, chp tomodgi f() fuksi kmuvchi Shuig 6 uchu f()=, f()<, > 70 k= d -itiori so bo lishi mumki; k> d es i k g qoldiqli bo lmiz: =kq+r, bu erd 0 r<k - r = r ( kq -) shuig uchu + soi k - g bo liishi uchu r + soi k - g bo liishi kerk Ammo, k> d r + k- +< k -, k= d es r + soi g bo lidi, r=, -itiori toq so Jvob: (s;) v (s-;) bu erd s-itiori turl so 7 Bud uchburchk mvjud bo lishi uchu eg ktt tomoi qolg ikkitsiig ig idisid kichik bo lishi kerk: Bu tegsizliki kvdrtg oshirib, soddlshtirib gi tegsizlik hosil qilmiz:, bui bir kvdrtg oshirsk to g ri tegsizlik hosil bo ldi, demk uchburchk mvjud Kosiuslr teoremsig ko r ktt burchkig kosiusii topmiz:, bu burchk siusi es: cos si S, uchburchk uzii topmiz: si 7 Belgilsh kiritmiz: =+π; Demk, uchburchk mvjud v S si si ( ) si si 0 bud >0, >0 d es si< -8- Jvoblr, echimlr, ko rstmlr Agr v teglm shrtii qotltirs, ulr =0z, =0t (bu erd z v t turl solr ) ko riishd bo ldi t 0 z teglmg keldi (z-0)(t-0)=00, z=0+d desk, t=0+ d bo ldi Teglm t butu echimg eg, log = deb belgillik, += oki, = go echim Demk, = logc b logc b d fodlmiz log log log log 50 =(0-) 50 =000A Bud 50 i 000 g bo lgd qoldiq qoldi Boshq tomod, 8 7 = = 0 = 0 0=50B+ =50C+ Berilg soi 000 g bo lgd =6 qoldiq qoldi J: 6 =(,,z ) v b =(,,) vektorlri ko rmiz: b 6 Shrtd, b 7 kelib chiqdi b b osil bo lmoqd, leki bu mumki ems Teglmlr sistemsi echimg eg ems 5 Koshi tegsizligid fodlmiz: si + tg si tg 0, orliqd f()=si+tg- 0 o rili, chuki, f'()=cos+ cos 0 cos cos 6 (,b) teglm echimi bo lsi b b, b b b b b b ( +b ) -(b) = ( +b ;b) hm teglm echimi (,) hm echim Teglm cheksiz ko p echimg eg 7 Birichi echim: hr qd (m ;0;m) butu solr echim bo l oldi Ikkichi echim: (,b,c) teglm echimi bo ls, (k 6,k b,k c) hm -7-00
16 echim bo ldi Msl: + = bo lgi uchu 6 + = 8 o rili (7,8,) hm echim 8 Teglmd quidgii topmiz: =0 oki (-) (-)=0 bud = v = bo ldi Grfik es to g ri chiziq v giperbold ibort + +z +t = + +z +t +(+-z-t)= + +z +t +-z-t= =(+) +(-z) +(-t) 0 Teglmi quidgich ozmiz: 8 teglmig chp qismi kmuvchi v o g qismi es o suvchi fuksi Demk teglm biit echimg eg, =- Hr bir qvs ichii 6 g ko ptirmiz v +=( -+)( ++)= =((-) +)((+) +) d fodlmiz ( )(6 )(8 ) ( )( )(5 )(7 )( ) ( )(8 )(0 ) ( )(5 )(7 )( )(0 ) 8 Koshi tebgsizligid topmiz: ( 6 z z z z z 66 z z 7 ) = (+ )+ (+ )+ ( )( ) = =(+ )(+ )+ + ( )( ) -=( ( )( ) ) - Istlg ifod oki - g teg Berilg tegsizliki >(+) ko riishd ozishimiz mumki -(+) = = (-)+ (-)+(-)+6(-)+7>0 5 Kosiuslr teoremsig ko r, bcosc= +b -c, bccosa=b +c -, ccosb= +c -b bu tegliklri qo shib v msl shrtid fodlib, +b =c i topmiz Bud ko ridiki uchburchk to g ri burchkli 6 Itirori uchburchk uchu tga+tgb+tgc-tga tgb tgc=0 o rili -8- irm (k+) -m -00=, >6 Demk ketm-ketlikig hech qd hdi rtsiol bo l olmdi 6 Tegsizlikig chp tomoii S bil belgilmiz, Koshi-Bukovski tegsizligig ko r, S((b+c)+b(c+d)+c(d+e)+d(e+f)+e(f+)+f(+b) (+b+c+d+e+f), oki S((+d)(b+e)+(b+e)(f+c)+(f+c)(+d)) (+b+c+d+e+f), Y belgilsh kiritmiz, +d=p, b+e=q, f+c=r, S(pq+qr+pr) (p+q+r) Ammo (p+q+r) =p +q +r +(pq+pr+qr) (pq+pr+qr), shuig uchu S 6 +b+c=t deb belgilmiz v Koshi tegsizligid fodlmiz: b c b c t shuig uchu Bui hr bir hdg qo llsk, b c b c c b c b t t t b c 65 (si+si) +(coscos) =si +si +sisi+(-si )(-si )= =+sisi+si si =(+sisi) Berilg A ifodi Siφcosz+cosφsiz=si(φ+z) ko riishd ozish mumki v - A Bud tshqri, ==0, z= A=; ==, z=π A=- Demk - v ifodig eg kichik v eg ktt qimtlridir t 66 Berilg soi A bil v drjdgi ksr mrjii p bil belgillik, 8 8 p bud, 00 8 v Berulli tegsizligid fodlmiz: A p 8 00 p 8 p Shuigdek, e 0 A p Demk, [A]= 67 Berilg tegliki quidgich ozmiz: z oki, 0 (-z )=--z Agr -z 0, ikki oli uchu teglik bjrilmdi, shuig uchu =z, =+z, bud = kelib chiqdi Demk, =, =, z=; oki =, =8, z=6 68 Topmiz: =( +6 + )+ ++=( +) + -7-
17 56 d fodlsk, - d ko p qvtli ksr g teg = i echsk = kelib chiqdi 57 Agr += bo ls, f()+f()= Izlotg ig idi 00+f( )=00 gt eg 58,>0 uchu quidgi tegsizlik o rili: (+) = ++, Shuig uchu, ( b c d) ( c) ( b d) ( b c d) ( ) c b d ( d ) c( b c) b( b) d( c d) d bc c S b c d c d b ( b c)( d ) ( c d)( b) ( b c d) ( ) b b cd d ( b c d) Demk, S=, msl =b=c=d bo ls, b+c=d+, c+d=+b, =c, b=d, =d, b=c bo ldi 5 (d-bc) +(c+bd) =( +b )(c +d ), shuig uchu S= +b +c +d +c+bd ( b )( c d ) +(c+bd)= ( c bd) +(c+bd) Ammo, ( +) = ++ + =(+ ) + 60 Berilg teglikig hr birig i qo shmiz v ozmiz: z t z t z t z t Agr ksrlrig qimtlri 0 g teg z t z t t z bo lms osogi ko rish mumkiki, ==z=t v ifod g teg bo ldi; Agr ksrlr olg teg bo ls, Ifodig qimti - g teg bo ldi 6 Ildiz ostidgi birichi ko ptuvchii to rtichi ko ptuvchi bil v ikkichii uchichisi bil ko ptirmiz v +6 i k bil belgilsk, ildiz ostidgi ifod k +8k ko riishg keldi Ammo, k +6k+<k +8k<k +8k+6, [ ]=k+, shuig uchu k 8k = +6+=(+) -6 Edi hd 7 g bo liishi uchu (+) i 7 g bo lgd 6 qoldiq qolishi kerk, leki turl soig kvdrtii 7 g bo lgd 0,,, qoldiq qoldi Demk, hech qd d 7 g bo limdi 6 6-msld fodlsk, ildiz ichi k +8k g teg Shrtg ko r k +8k=m, (k+) -m =6 Ammo, k= +6 7, k+, eg kichik -6- tgb tgc (chuki tga- tga tgb tgc=-tg(b+c)(- tgb tgc)= (- tgb tgc) tgb tgc =-tgb-tgc ) tgb v tgc i tga orqli shtd ifodlmiz v topmiz: tga=, tgb=, tgc= tga tgb tgc Kei es, :b:c=sia:sib:sic= : 5 : : tg A : tg B tg C 7 v log bo lsi Ko riib turibdiki, β-irrtsiol, chuki q log bo lsi, p v q turl solr, q = p bu mumki p q log ems Boshq tomod, = 8 Topmiz: , <, + < Agr si Є Z bo ls, si=0 teglmg keldi v =πk (k Є Z) bo ldi Agr 0<si< bo ls hm [si]=0 bo ldi v vvlgi ko riishg keldi, mmo bu hold echim o q Agr -<si<0 bo ls, [si]=-, {si}=si+ Teglm si=-/ bo ldi v echim =(-) k+ 6 +πk (k Є Z) 0 [] v >0 uchu bo ldi, bud teglm musbt solrd [ ] echimg eg ems <0 bo lsi, [] v {} i v z bil belgillik Quidgii topmiz:, oki, +z+z =0, bud 5 z oki 5 z i z z topmiz Ammo, z < v shuig uchu ikkichi teglik o rili ems, demk 5 z 0<z< d 0 bud =- v =- 5 5 z v z 5 Teglmig ildizi = +z = 5 v =z + = 5 t= log bo lsi, =6 t bo ldi Teglmi t + t =6 t ko riishd oki t t v bud t=, =6 kelib chiqdi J: =6 -- p
18 Topmiz: -8si50º=+8cos80º-8cos80º-8cos0º= =+8si0º-6cos60ºcos0º=+8si0º-8cos0º=+8si0º+8(-cos0º)= =+8si0º+6si 0º=(+si0º) demk, =, b=, c=0 Berilg tegsizlikig chp tomoidgi 8,6,, solri 0 bil 8 0 lmshtirlik: =( --) -(+) berilg teglm quidgi ko riishg keldi: ( ( ) )( ( ) ( )) 0 Chp tomodgi ifodd ikkichi qvsig diskirmiti (- ) +(- )=0-8 bu mfi; teglm ikkit echimg eg:, i bil belgillik Chp tomodgi fuksi g isbt o suvchi fuksi, demk u bittd ortiq echimg eg bo lmdi, koriib turibdiki = +b +c uig rchimi bo ldi Teglm b ildizg eg, c 6 Agr =00k+6 bo ls, soi 6 bil tugdi Bud tshqri 0 soi 76 bil, 76 ig itiori drjsi 76 bil, 76 6 soi 6 bil tugdishuig uchu: = 00k+6 =( 0 ) 5k 6=(00m+76) 6 ifod 6 bil tugdi, + ifod ikkit ol bil tugdi v 00 g bo lidi J: cheksiz ko p 7 Ifodi k bil belgilmiz: k ( k ) ( ) k k+ i ismotlmiz k kk, k k k k Shuig uchu gr bo ls, -, Demk, <, isbotldi k k k ( ) oto g ri tegsizlik 8 Belgilsh kiritmiz, = -, topmiz: + = v shuig uchu 0 = 0 = 5 = ( = oki =0) Demk 0 = bo lishi uchu = oki = bo lishi kerk z=66 oki, +=66-0z 5+8+0z= 5+8=-0z bud topmiz: =6-70z =-+0z v shrt bo ich +5+80z=(6-70z)+5(0z-)+80z=7 J: sot 5 miut ketdi 5 Birichi qo shiluvchii bil belgillik, teglik quidgi ko riishg keldi: 0 bud = 5 + kelib chiqdi ( 5 +) =7 5 +8=( 5 +) Demk, = 5 Qddir -omerd kei modul bo ich d kichik bo ldi v ifod 0 v ig orlig id bo ldi, demk uig butu qismi 0 g teg []-[] bo lgi uchu (0 </ v / < d ko rish mumki) Ifodig hr bir hdii quidgich oz olmiz: Bud [ ] 8 8 [ ], etrli drjd ktt bo ls ifod >0 d 0 g teg; <0 d - g teg Demk berilg ig idi >0 d [] g; <0 d []- g teg 55 Biz v turl solri shud topmizki, = + bo ldi Buig uchu soi ikkit +i v -i kompleks solrig ko ptmsi shklid ozishimiz kerk = =(+i) 7 (+i) 6 (-i) 7 (-i) 6, (+i) 7 =(+i) 6 (+i)=(i) (+i)=8-8i (+i) 6 =(+i) =7+08i--6i=-7+i (+i) 7 (+i) 6 =8(-i)(-7+i)=8(-7+6i) Bud =58 v =88 kelib chiqdi Demk, =0,58 +,88-5-
19 7 b h ) b ( v fuksisii topmiz: c d k ) d c ( ksr-chiziqli fuksilrig murkkb ( c bd) ( d bc) h( k( )) ( d bc) ( c bd), v uig koeffitsietlri +bi v c+di kompleks solrig ko ptmsi kbi topildi Berilg fuksi f ( ), z i cos i Shuig uchu g() fuksi z 007 =cos +isi 6 si shuig uchu g()= - 8 (z +t ) (z+t) tegsizlikd fodlib topmiz: (+++) ( ) =+, bud isbotlishi kerk bo lg tegsizlik kelib chiqdi Teglikd + = , + + = topmiz: shuig uchu juft d: ; toq d: 6 + = + - ; + = { } ketm-ketlikig brch hdlri butu 50 Itiori uchburchkd S= h = bcsiα, b c bccos Bud, bcsi bcsi Edi b +c bc d fodlsk, h b h b c bc cos c bccos bc( cos ) bc si bc si bud kelib chiqdiki, bcsi bc si bc cos, teglik es b=c d bjrildi 5 O tkir burchkli uchburchk uchu tgα+tgβ+tgγ=tgαtgβtgγ o rili O rt rifmetik v o rt geometric muosbtg ko r, tg tg tg ( tg tg tg ), mmo tg tg tg tgα+tgβ+tgγ tg tg tg tg tg tg tg tg tg ( tg tg tg ) shuig uchu tgαtgβtgγ tg tg tg oki tg tg tg tg tg tg, so ggi tegsizlikd fodlib topmiz: 5,, z mos rvishd piod, velosipedd v mototsikld urish tezligi (km/mi) bo lsi Shrtg ko r sistem tuzmiz: -- Agr v b lr toq so bo ls, c= + +b b+ juft v d ktt bo ldi; Agr b= bo ls, c= + +8 v =k- d c ikki so kublri ig idisi bo ldi v u tub bo lmdi;=k+ d c soi g bo lidi; = d tekshirmiz, c=8-tub so, demk fqt = v b= d; = v b= d 0 Belgilsh kiritmiz, = v z=, bud quidgi teglmlr sistemsii topmiz: +=, z +=, +z= Bud z=- i topmiz v -teglmg qo miz, + -=0, Є {0,,-} Teglm ucht,,0 ildizlrg eg Agr v teglm shrtii qotltirs, -teglm Koshi tegsizligig teg kuchli,, bud 6 Tekshirishlr shui ko rstdiki, ikkichi teglmd 8( ) ( ) bud, ( ) oki 6 Shuig uchu = 6, Koshi tegsizligig ko r == bo ldi Qiichiliksiz isbotlsh mumkiki, >0, b>0 d +b b(+b), shud qilib tegsizlikig chp qismidgi birichi ifod d b( b c) kichik oki teg, shud qilib tegsizlikig butu chp qismi quidgi ig idid kichik: tegsizlik isbotldi b c b bc c bc ( + )(z +t )=(z+t) +(t-z), berilg teglmi quidgich ozishimiz mumki: (t-z) =(z+t) mmo bu teglm turl solrd echimg eg ems, chuki butu soig kvdrti ems Belgilsh kiritmiz, v topmiz: = -, 0, kei es, ++, (+ ) = Bud 0 bo lgi uchu </ d echim o q; / d es Teglm </ d echimg eg ems, / d es =- --
20 5 Agr birichi ifoddgi so ggi 6 i bil lmshtirsk, tekshirishlr shui ko rstdiki, ifod g teg; ikkichi ifoddgi so ggi 6 i 8 bil lmshtirsk u g teg bo ldi, demk ig idi 5 d kichik ek Boshq tomod berilg ifod 6 6 d ktt, v tekshirmiz, 6 >, 6 >,6 shuig uchu ifod,+,6= d ktt Demk ifodig butu qismi g teg ek 6 Frz qillik, =k+ bo lsi, k+ + k = k =( k ) J: cheksiz ko p 7 Shug teg kuchli tegsizliki isbotllik,! ( )! (!) + >((+)!) (!) + >(!) (+)!>(+) Ammo so ggi tegsizlik oto g ri ekligi ko riib turibdi, demk berilg tegsizlik oto g ri 8 Osogi topish mumkiki 0,, solri teglmig echimidir Agr uig to rtichi ildizi hm bo ls, Roll teoremsig ko r, =( +)(-)-6 fuksi osilsi t uqtd, ikkichi osilsi es t uqtd olg ldi Ammo, '=-( +)+(-) l, ''=- l- l+(-) l = ((-)l -l) bitt kritik uqtg eg Belgilsh kiritmiz, si α= v cos α=b v tegsizliki quidgich ozmiz: ( k +b k )(+b) ( k+ +b k+ ) v soddlshtirmiz, k b+b k k+ +b k+, oki, ( k -b k )(-b) 0 So ggi tegsizlik to g riligi ko riib turibdi, teglik es =b d bjrildi 0 z delik; gr bo lgd, +z+z z z, bud kelib chiqdi Agr = bo ls, tegsizlik z<z++z ko riishd bo ldi v itiori v zd bjrildi; Agr = bo ls, z ko riishd bo ldi z, <, i = oki g teg = d z d tegsizlik bjrildi; = d z 6 z=,,5 bo ldi Jvob: z desk (,,b) bu erd v b- itiori solr; (,,) ; (,,), (,,), (,,5) -- ig oldidgi koeffitsieti bil v ozod hdi b bil belgillik: ; b Bud =0 kelib chiqdi J: =0 0 Belgilsh kiritmiz, = +7+, teglmi quidgich ozmiz:, bud - = -, = kelib chiqdi Ammo bu mumki ems, -=0 bo lib qoldi, teglm echimg eg ems Ko riib turibdiki v musbt Belgilsh kiritmiz, =t v bud =t kelib chiqdi Ikkichi teglm t +t +t= oki (t-)(t +0t+)=0 ko riishg keldi Bud, t= v =8, =7 kelib chiqdi J: (8,7) Bollr < < < t qo ziqori terg v >0 bo lsi Bu erd 5 5: gr 5 <5 oki 5 5 bo ls,,,, 0, bud es Shuig uchu 6 6, 7 7, 8 8,, , v >0 bo ldi Demk birichi 5 t bol 0 td km qo ziqori terishg 5 Teglmig hr ikkl tomoig si i ko ptirmiz v topmiz: cossi+si=si si6-si+si=si si6=si, v k (,k Є Z) 5 7 Biz si g ko ptirgd =πm chet ildizi hosil qildik, shuig uchu v k+ solri 5 g v 7 g bo limsligi kerk, demk, 5m, k 7d+ 6 m +m b +m c = ( +b +c ) Berilg tegsizlik quidgig teg kuchli: ( +b +c )(h +h b +h c ) 7S oki, ( +b +c )(h +h b +h c ) 6S Boshq tomod b c bo lsi, h h b h c bo ldi Chebishev tegsizligid topmiz: ( +b +c )(h +h b +h c ) ( h +b h b +c h c )=6S Teglik shrti es =b=c d bjrildi
О zbekiston Respublikasi Oliy va o rta maxsus ta lim Vazirligi. Namangan muhandislik-pedagogika instituti. Yu.P.Oppoqov OLIY ALGEBRA VA
О zbekiston Respubliksi Oli v o rt msus t lim Vzirligi Nmngn muhndislikpedgogik instituti Oli mtemtik kfedrsi Yu.P.Oppoqov OLIY ALGEBRA VA ANALITIK GEOMETRIYA Nmngn Oli mtemtik kfedrsi uslubi seminrid
B.Haydarov, E.Sariqov, A.Qo chqorov
.Hydrov, E.Sriqov,.Qo chqorov GEMETRIY 9 zbekiston Respubliksi Xlq t limi vzirligi umumiy o rt t lim mktblrining 9-sinfi uchun drslik siftid tsdiqlgn «zbekiston milliy ensiklopediysi» vlt ilmiy nshriyoti
Fizika-matematika fakul`teti. Geometriya fanidan
O`zekiston Respuliksi Xlq t`limi vzirligi Ajinioz nomidgi Nukus dvlt pedgogik instituti Fizik-mtemtik fkul`teti Mtemtik o`qitish metodiksi kfedrsi Geometri fnidn Tuzuvchi: f.-m.f.n. G. Qpnzrov Nukus 5.
O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI SAMARQAND IQTISODIYOT VA SERVIS INSTITUTI. Begmatov A. MATEMATIKA KAFEDRASI
O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI SAMARQAND IQTISODIYOT VA SERVIS INSTITUTI Begmtov A. OLIY MATEMATIKA KAFEDRASI Fuksiyig dieresili v dieresil hisoig sosiy teoremlri mliy mshg
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
BITIRUV MALAKAVIY ISHI
O ZBEKISTON RESPUBLIKSI OLIY V O RT MXSUS T LIM VZIRLIGI QRSHI DVLT UNIVERSITETI MTEMTIK NLIZ V LGEBR KFEDRSI Nzrov Frru Shurtovichig 546000 mtmti t lim yo lishi bo yich blvr drsii olish uchu CHIZIQLI
TENGSIZLIKLAR-II. ISBOTLASHNING ZAMONAVIY USULLARI
O ZBEKISTON RESPUBLIKASI XALQ TA LIMI VAZIRLIGI Sh. Ismailov, O. Ibrogimov TENGSIZLIKLAR-II. ISBOTLASHNING ZAMONAVIY USULLARI Toshket- 008 Sh. Ismailov, O. Ibrogimov. Tegsizliklar-II. Isbotlashig zamoaviy
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
SH. A. ALIMOV, O. R. XOLMUHAMEDOV, M. A. MIRZAAHMEDOV. Umumiy o rta ta lim maktablarining 7- sinfi uchun darslik
SH A ALIMOV, O R XOLMUHAMEDOV, M A MIRZAAHMEDOV Umumiy o rt t lim mktlrining 7- sinfi uchun drslik Qyt ishlngn v to ldirilgn 5- nshri O zekiston Respuliksi Xlq t limi vzirligi tsdiqlgn O QITUVCHI NASHRIYOT-MATBAA
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
HONDA. Έτος κατασκευής
Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
*+,'-'./%#0,1"/#'2"!"./+3(,'4+*5#( *9.!/%#+7(,'#%*!.2 :;!"#/5".+!"#$() $!"#%"&'#$() 50&(#5"./%#0,1"/#'2"+*5#(35&* &*,'2-<:):0&3%!.2=#(,1,.%!.
# #$%&'#$( *+,'-'./%#0,1/#'2./+3(,'4+*5#(355. 678*9./%#+7(,'#%*.2 :; #/5.+#$( *+,'-'./%#0,1/#'2./+3(,'4+*5#(355. 678*9./%#+7(,'#%*.2 #$% $ #%&'#$( 50&(#5./%#0,1/#'2+*5#(35&* &*,'2-
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.
FUNKSIONAL ANALIZ (o quv qo llanma)
O zbekisto Respublikasi Oliy va o rta maxsus ta lim vazirligi Ayupov Sh.A., Berdiqulov M.A., Turg ubayev R.M. FUNKSIONAL ANALIZ (o quv qo llama) 54000 - Matematika va iformatika 54000 - Matematika Toshket-007
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
!! "#$%& ! " # $ &%"+,(-. (# / 0 1%23%(2443
"#$& " # $ & ' &( &)* &"# &"+,(-. (# / 0 123(2443 2443 56 1 7 & '()(()(*+( ),)(-.(/)((,),24420 8.94: -; :53&:54::549 '()((0)(#'(1)(' ( )(-.(/)((,),24460..94: < * 94&5=>6 '()( 2( )(3(1)((0)('.( )4)((,)
Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.
(, ) =,, = : = = ( ) = = = ( ) = = = ( ) ( ) = = ( ) = = = = (, ) =, = = =,,...,, N, (... ) ( + ) =,, ( + ) (... ) =,. ( ) = ( ) = (, ) = = { } = { } = ( ) = \ = { = } = { = }. \ = \ \ \ \ \ = = = = R
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ
»»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()
())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*
! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+
funksiyaning birinchi tartibli xususiy hosilasidan
A RUZA 8 URAKKA UNKSIYANING HOSILASI. TO`LA DIЕRЕNTSIAL TUSHUNCHASI. EKSTRЕULARI. TAQRIIY HISOLASH. DASTURIY PAKETLAR YORDAIDA HISOLASH. aqsad: Talabalarga ko po zgaruvchl uksalarg deresal, ekstremumlar
Batigoal_mathscope.org ñược tính theo công thức
SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa
!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-
!!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8
http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
J! "#$ %"& ( ) ) ) " *+, -./0-, *- /! /!+12, ,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/<3/ +15;+ 5/<3=9 -!.1!-9 +17/> ) ) &
J! "#$ %"& J ' ( ) ) ) " *+, -./0-, L *- /! /!+12,3-4 % +15,. 6 /72-, 0,,3-8 / ',913-51:-*/;+ 5/01 ',913-51:--
!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-
!"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333
IKROM RAHMONOV. O zbekiston Respublikasi Xalq ta limi vazirligi umumiy o rta ta lim maktablari uchun darslik sifatida tavsiya etgan
IKM MNV ekiston espuliksi Xlq t limi virligi umumi o rt t lim mktlri uchun rslik sifti tvsi etgn To lirilgn v qt ishlngn 2-nshri QITUVI NSIYT-MT IJDIY UYI TSKENT 2014 U K 744-512.164(075) KK 30.11721 30
! " #! $ %! & & $ &%!
!" #! $ %!&&$&%! ! ' ( ')&!&*( & )+,-&.,//0 1 23+ -4&5,//0 )6+ )&!&*( '(7-&8 )&!&9!':(7,&8 )&!&2!'1;
o quv yili matematikadan 9-sinf imtihon biletlari yechimlari 1-bilet = 0,75 1,2+0,9. = 73; Javob: <CAB= 730
. (,,87),+0,9 40: 50. + x+ X, 8±0 ; x 6 8 0 6 05-06-o quv yili matematikadan 9-sinf imtihon biletlari yechimlari -bilet 0,75,+0,9 90 0,9+0,9 90 0; ; (x-) +(x+),5(x-)(x+); x 4x-4+4x+43x -3; 3x -8x-30; (-8)
ΚΑΤΕΡΓΑΣΙΕΣ ΚΟίΙΗΣ ΟΛΟΝΤΩΣΕΩΝ
ΤΕΧ.ΝΟΛΟΓ ΙΚΟ ΕΚΙΙΛΙΛΚΥ ΤΙΚΟ ΙΛΡΥ.ΜΑ ΚΑΒΑ.\ΑΣ ΣΧΟΑΗ ΤΕΧ.ΝΟΑΟΠΚίίΝ ΕΦΑΡΜΟΓΩΝ ΤΟΜΕΑ ΚΑΤΑΣΚΕΥΩΝ - ΕΤΚΑΤΑΣΤΑΣΕίίΝ - ΠΑΡΑΓΩΓΗΣ ΚΑΤΕΡΓΑΣΙΕΣ ΚΟίΙΗΣ ΟΛΟΝΤΩΣΕΩΝ Πάπαρης Αγγελος Διπλωματική Εργασία Επιβ>χπων Καθηγητής:
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Ολοκληρώματα ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mil: info@iliskos.gr www.iliskos.gr Fl] = f]! D G] = F]
. visual basic. int sum(int a, int b){ return a+b;} : : :
: : : : (),, : (),( )-,() - :,, -,( ) -1.... visual basic int sum(int a, int b){ return a+b; float f=2.5; main(){ float A[10]; A[f]=15; int x=sum(int(f), 10, A[2]);. -2.... -3.foolowpos(3) * ( a b c) (
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667
!"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )
!! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!
ITU-R P (2012/02)
ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU
/&25*+* 24.&6,2(2**02)' 24
!! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$
"#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3
!!"#$"%&'()%*$& !! )!+($,-./,0. !! )!"% $&)#$+($1$ !!2)%$34#$$)$ !!+(&%#(%$5$( #$%
!!"#$"%&'()%*$&!! )!+($,-./,0.!"#!! )!"% $&)#$+($1$!!2)%$34#$$)$!!+(&%#(%$5$( #$% & !"# $ $ % # &#$ '()*+, -,./ $* 0" 10#')230##445$&% ##* % 0# ' 4#, ) 0# $, 0# 6 7% % # #* # 8#10&29,:# )) )# )#
SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia
SWOT 1 Analysis and Planning for Cross-border Co-operation in Central European Countries ISIGInstitute of International Sociology Gorizia ! " # $ % ' ( )!$*! " "! "+ +, $,,-,,.-./,, -.0",#,, 12$,,- %
O`ZBEKISTON RESPUBLIKASI OLIY VA O`RTA MAXSUS TA`LIM VAZIRLIGI O`RTA MAXSUS KASB-HUNAR TA`LIM MARKAZI
O`ZBEKISTON RESPUBLIKASI OLIY VA O`RTA MAXSUS TA`LIM VAZIRLIGI O`RTA MAXSUS KASB-HUNAR TA`LIM MARKAZI SAMARQAND VILOYAT HOKIMLIGI O`RTA MAXSUS KASB-HUNAR TA`LIM BOSHQARMASI Alisher Navoiy omidagi Samarqad
3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,
E.E., Παρ. I, Αρ. 271, 16.12. 607 Ν. 7.2/ περί Συμπληρματικύ Πρϋπλγισμύ Νόμς (Αρ. 5) τυ 19 εκδίδεται με δημσίευση στην επίσημη εφημερίδα της Κυπριακής Δημκρατίας σύμφνα με τ Άρθρ 52 τυ Συντάγματς- - Αριθμός
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
WXEY Z Z [\ ] ^] Y _A` Z aebec(y ] ] [Ẍ d _A\e] fe[xe[ga\ [[_Ad
% &! (')*+,$-!., -$!#$ /1032547686)479;:-
!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!
# $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;
..,..,.. ! " # $ % #! & %
..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,
Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.
Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH
Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 222/5
18.8.2012 Επίσημη Εφημερίδα της Ευρωπαϊκής Ένωσης L 222/5 ΕΚΤΕΛΕΣΤΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) αριθ. 751/2012 ΤΗΣ ΕΠΙΤΡΟΠΗΣ της 16ης Αυγούστου 2012 για τη διόρθωση του κανονισμού (ΕΚ) αριθ. 1235/2008 για τον καθορισμό
ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ. Χεμερινό εξάμηνο ΗΜΕΡΟΛΟΓΙΟ
ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ Χεμερινό εξάμηνο 2006-07 ΗΜΕΡΟΛΟΓΙΟ 1 ΔΕΥΤΕΡΑ, 9-10-06, 11-13. ΓΩΝΙΕΣ ΚΑΙ ΚΥΚΛΟΙ. Θεώρημα 1. Το άθροισμα των γωνιών τριγώνου είναι ίσο με 180 o. Θεώρημα 2. Κάθε εξωτερική γωνία τριγώνου
ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ
taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά
PDF hosted at the Radboud Repository of the Radboud University Nijmegen
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές
ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές 1 Κλειστότητα Συναρτησιακών Eξαρτήσεων: Πώς συμβολίζεται: F + Τι σημαίνει : Το ΣΥΝΟΛΟ των Σ.Ε. που μπορούν να παραχθούν από ένα σύνολο εξαρτήσεων
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*
!"! # $ %"" & ' (! " # $% & %) '' # $ # # '# " %( *++* #'' # $,-"*++* )' )'' # $ (./ 0 ( 1'(+* *++* * ) *+',-.- * / 0 1 - *+- '!*/ 2 0 -+3!'-!*&-'-4' "/ 5 2, %0334)%3/533%43.15.%4 %%3 6!" #" $" % & &'"
! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *&
! "# $"%%&$$'($)*#'*#&+$ ""$&#! "#, &,$-.$! "$-/+#0-, *# $-*/+,/+%!(#*#&1!/+# ##$+!%2&$*2$ 3 4 #' $+#!#!%0 -/+ *& '*$$%!#*#&-!5!&,-/+#$!&- &"/ "$,&/#!6$7,&78 "$% &$&'#-/+#!5*% 3 +!$ 9 &$*,2"%& #$- 3 '*$%#
! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.
! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $
[ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com
Adda47 No. APP for Banking & SSC Preparation Website:store.adda47.com Email:ebooks@adda47.com S. Ans.(d) Given, x + x = 5 3x x + 5x = 3x x [(x + x ) 5] 3 (x + ) 5 = 3 0 5 = 3 5 x S. Ans.(c) (a + a ) =
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
ALFA ROMEO. Έτος κατασκευής
145 1.4 i.e. AR33501 66 90 10/94-01/01 0802-1626M 237,40 1.4 i.e. 16V AR33503 76 103 12/96-01/01 0802-1627M 237,40 1.6 i.e. AR33201 76 103 10/94-01/01 0802-1628M 237,40 1.6 i.e. 16V AR67601 88 120 12/96-01/01
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 6165-617784 - Fax: 64105 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou Venizelou)
! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"
! "#" "" $ "%& ' %$(%&!"#$ % &'(!!")!*!&+,! %$( -.$'!" /01&$23& &4+ $$ /$ & & / ( #(&4&4!"#$ %40 &'(!"!!&+ 5,! %$( - &$ $$$".$'!" 4(02&$ 4 067 4 $$*&(089 - (0:;
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D;
Limit d fucńii Aliz mtmtică, cls XI- Limit d fucńii NotŃii: f :D R, D R, α - puct d cumulr lui D DfiiŃii l iti DfiiŃi f ( = l, l R, dcă ptru oric vciătt V lui l istă o vciătt α U lui α stfl îcât D U, α,
الهندسة ( )( ) مذكرة رقم 14 :ملخص لدرس:الجداءالسلمي مع تمارين وأمثلةمحلولة اھافواراتاة ارس : ( ) ( ) I. #"ر! :#"! 1 :ااءا&%$: v
الهندسة مذكرة رقم :ملخص لدرس:الجداءالسلمي مع تمارين أمثلةمحللة اھافاراتاة ارس : EFiEG EF EG ( FEG) 6 EF EG ( FEG) 6 FEG 6 ( FEG ) 6 I. #"ر! :#"! :ااءا&%$: u u : اى.( ) H ا ادي C ا u ا#اءا! ھا#د ا! ا(ي
È http://en.wikipedia.org/wiki/icosidodecahedron
À Ô ÐÓ ÖÓÒØ ØÓÙÔ Ö ÕÓÑ ÒÓÙ Ò Ø Ô ØÓÙ Ô Ñ Ð Ø ØÓÙhttp://www.mathematica.grº Å Ø ØÖÓÔ LATEX ÛØ Ò Ã Ð Ò Ø ÃÓØÖôÒ Ä ÙØ Ö ÈÖÛØÓÔ Ô Õ ÐÐ ËÙÒ ÔÓÙÓ ËÕ Ñ Ø Å Õ Ð Æ ÒÒÓ ÉÖ ØÓÌ Ë Ð ¹ ÅÔÓÖ Ò Ò Ô Ö Õ Ò Ò Ñ Ð Ö º ÌÓß
Vn 1: NHC LI MT S KIN TH C LP 10
Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 2012
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ 0 ΘΕΜΑ Α Α. Θεωρία σχολικού βιβλίου σελ. 53 (Απόδειξη) Α. Θεωρία σχολικού βιβλίου σελ. 9 (Ορισμός) Α3. Θεωρία σχολικού βιβλίου
Progress in surface and subsurface water studies at plot and small basin scale
INTERNATIONAL HYDROLOGICAL PROGRAMME Progress in surface and subsurface water studies at plot and small basin scale 10 th Conference of the Euromediterranean Network of Experimental and Representative
Bài 5. Cho chóp S.ABCD có đáy là hình bình
THPT BÀI TẬP HÌNH HỌC KHÔNG GIAN 11 Trang 1 1 TÌM GIAO TUYẾN CỦA HAI MẶT PHẲNG Bài 1. Cho hình chóp S.ABCD có đáy là tứ giác có các cặp cạnh đối không song song. Tìm giao tuyến của: a) (SAC) và (SBD) b)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.
Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 07/04/2016 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
Λύση Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι διάφορη του μηδενός =
7. Άσκηση 1 2 1 Εστω ο πίνακας A = 1 3 2. Να δειχθεί ότι ο πίνακας είναι αντιστρέψιμοςκαιστησυνέχειαναυπολογιστείοαντίστροφος. 1 0 1 Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι
ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3
I co f - bu. EH T ft Wj. ta -p -Ρ - a &.So f I P ω s Q. ( *! C5 κ u > u.., TJ C φ Γί~ eg «62 gs ftffg «5.s LS ό b a. L κ5 =5 5 W.2 '! "c? io -Ρ ( Β Φ Ι < ϊ bcp «δ ι pq ΛΛ g Ό & > I " CD β U (Ν φ ra., r
x y z d e f g h k = 0 a b c d e f g h k
Σύνοψη Κεφαλαίου 3: Προβολική Γεωμετρία Προοπτική. Εάν π και π 2 είναι δύο επίπεδα που δεν περνάνε από την αρχή O στο R 3, λέμε οτι τα σημεία P στο π και Q στο π 2 βρίσκονται σε προοπτική από το O εάν
Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &
Supplementary Information 1.
Supplementary Information 1. Fig. S1. Correlations between litter-derived-c and N (percent of initial input) and Al-/Fe- (hydr)oxides dissolved by ammonium oxalate (AO); a) 0 10 cm; b) 10 20 cm; c) 20
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017
Φροντιστήριο #4 Λυμένες Ασκήσεις σε Σχέσεις 30/03/2017 Άσκηση Φ4.1: Θεωρείστε τις ακόλουθες σχέσεις επί του συνόλου Α={1, 2, 3} 1. R={(1, 1), (1, 2), (1, 3), (3, 3)} 2. S={(1, 1), (1, 2), (2, 1), (2, 2),
'( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( +
! " # $ %&&' '( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( + %( ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((('& %('(,,
Διευθύνοντα Μέλη του mathematica.gr
Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mthemtic.gr. Η επιλογή και η φροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mthemtic.gr. Μετατροπές
!!" # "!! $$ %$ ' : () *"++,- ; 4 $ < % % / $ $ % /
!!" # "!! $$ %$ & ' () *"++,- $ %. $ $ % $/ $ $ / # $ 2 3 / / & / / / 45 ( % $ / $ 6 / / 3 / / 3 / 7 /7 7 ' 8"7 87 9" ' : () *"++,- ; 4 $ < % % / $ $ % / & = $ = $ $ 4 #$ 5/ > = $ 5 5 // $!!".. 5 5 $ =
OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)
PVWW!"#$ PVWW!"#$%&'()*+!"#$% 12!"#$%&'()*!!"#$%&'(!"#$!"#$%&'()*+!"#$%!!"#!$%&'()*+!"#$%!"!"#$%&'!"#$%&'!"#!"#$%!" SE!"!"#$%&'!"#!"#$%&'!"#$%&'!"#$!"#$!"#$%&'!"#$%&'!"#$%&!"#$%&'!"!"#$%&!"#$%&!"!"#$%!"#$%!"#$%&'(!"#$%&'!!"#!"#!"#$%&!"#$%&'(
cz+d d (ac + cd )z + bc + dd c z + d
T (z) = az + b cz + d ; a, b, c, d C, ad bc 0 ( ) a b M T (z) = (z) az + b c d cz + d (T T )(z) = T (T (z) (T T )(z) = az+b a + cz+d b c az+b + = (aa + cb )z + a b + b d a z + b cz+d d (ac + cd )z + bc
β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R)
Α Δ Ι Α - Φ 8 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 20 Δεκεμβρίου
[ ] [ ] ( ) 1 1 ( 1. ( x) Q2bi
NSW BOS Mhics Esio Soluios 8 F dowlod d pi fo wwwiuco Do o phoocopy opyigh 8 iuco Q L u 5 d ( ) c u u 5 Q Qc ( ) ( ) d 5 u d c d d l c d [ ] [ ] ( ) d l ( ) l l Qd L u fo > ( ) u d Wh u ; wh u d d ( u