О zbekiston Respublikasi Oliy va o rta maxsus ta lim Vazirligi. Namangan muhandislik-pedagogika instituti. Yu.P.Oppoqov OLIY ALGEBRA VA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "О zbekiston Respublikasi Oliy va o rta maxsus ta lim Vazirligi. Namangan muhandislik-pedagogika instituti. Yu.P.Oppoqov OLIY ALGEBRA VA"

Transcript

1 О zbekiston Respubliksi Oli v o rt msus t lim Vzirligi Nmngn muhndislikpedgogik instituti Oli mtemtik kfedrsi Yu.P.Oppoqov OLIY ALGEBRA VA ANALITIK GEOMETRIYA Nmngn

2 Oli mtemtik kfedrsi uslubi seminrid ko rib chiqilib, institut ilmimetodik kengshig tvsi qilingn. Mjlis boni,.6., Nmngn muhndislik pedgogik instituti ilmi metodik kengshi tomonidn tsdiqlngn v chop etish uchun tvsi etilgn. Mjlis boni, Ro t rqmi 4 Mullif: Yu.P. Oppoqov f.m.f.n, dotsent. Tqrizchilr: V.R.Xojiboev f.m. f.d. Oli mtemtik kfedrsi mudiri, NmMPI. X.S. Rsulov f.m. f.n. Algebr v o qitish metodiksi kfedrsi mudiri, NmDU.

3 So z boshi O zbek tilig dvlt tili mqomi berilishi munosbti biln oli o quv urtlrid o zbek tilidgi o quv dbiotlrining etishmovchiligi sezilib qoldi. Shu munosbt biln drslik v o quv qo llnmlri rtishg ehtioj pdo bo ldi. "T lim to g risid" gi qonunning v ngi dvlt t lim stndrtlrining qbul qilinishi drslik v o quv qo llnmlrig ngi tlblrni vujudg keltirdi. Oli lgebr v nlitik geometrig bgishlngn dbiotlr mvjud, lekin ulr orsid ksb t limi o nlishlrining mldgi dsturg moslb ozilgni etrli ems. Shu munosbt biln ushbu qo llnmni ozish fikri tug ildi. O quv qo lnm O zbekistоn Respubliksi оli v o rt msus t`lim vzirligining 8 il vgustdgi 6sоnli burug`i biln tsdiqlngn «Brch nоmtemtik bklvr o nlishlri uchun Оli mtemtik fnining o`quv dstur»i sоsid tuzilgn ksb t limi o nlishlrining mldgi ishci o quv dsturig mostlb ozildi. Ushbu o quv qo llnmsi so z boshi, kirish v bobdn ibort bo lib, bob oli lgebr, bob tekislikd nlitik geometri v bob fzod nlitik geometrilrni o z ichig oldi. Kirish qismid: Oli mtemtikg kirish, shrq mutfkkirlrining mtemtik rivojig qo shgn hisssi oritilgn. Oli lgebr bobid determinntlr nzrisi v ulr ordmid chiziqli tenglmlr sistemsini echish, mtritslr nzrisi v ulrni chiziqli tenglmlr sistemsini echishg tdbiqi, mtritsning rngi v tenglmlr sistemsini echishning Guss usuli, kompleks sonlr v ulr ustid mllr hmd rim msllrni echishd lozim bo lgni uchun uchinchi trtibli tenglm v uni echishning Kordno formulsi, vektorlr lgebrsi elementlri bon etilgn. Tekislikdgi nlitik geometri bobid dekrt koordintlri sistemsi hmd qutb koordintlri sistemsi, ulr orsidgi bog lnish, kordittlr sistemsini prllel ko chirish v burish, kesmning uzunligini topish, kesmni berilgn nisbtd bo lish, uchburchkning uzini uchlrining koordintlri orqli topish, to g ri chiziqning tenglmlri, ikkinchi trtibli egri chiziqlr v ulrning umumi tenglmsini knonik ko rinishg keltirish bon etilgn. Fzod nlitik geometri bobid fzod tekislik tenglmlri, fzod to g ri chiziq tenglmlri, fzod tesislik v to g ri chiziqning o zro jolshuvi, ikkinchi trtibli sirtlr bon etilgn. Tekislikd v fzod to g ri chiziqning tengnmlri vektorlr nzrisig soslnib bon qilingn. Hr bir mvzud uni musthkmlsh uchun, msllr echib ko rstilgn v mvzu kunid o zo zini tekshirish uchun svollr berilgn. Hr bir bob kunid bobg doir msllr jvoblri biln berilgn, msllr mvzulr bo ich chiziq biln jrtilgn hmd lrni tuzishd imkon qdr sodddn murkkbg prinsipig soslnilgn.

4 Mvzulrni mldgi ishchi o quv rejsig mostlshd, uni qisq bon etilishini, imkon drjsid uzvilikni sqlshg v mtemtik qtilikk zion etkzmslikk rkt qilingn. O quv qo llnmsini ozishd rus v o zbek tilidgi mvjud dbiotlrdn ijodi fodlnilgn v ulrning ro ti keltirilgn. Mullif qo lozmni diqqt biln ko rib chiqib, uni shilsh uzsidn fikrmuloz bildirgn Nmngn muhindislikpedgogik institutining Oli mtemtik v Nmngn dvlt universitetining Algebr v o qitish metodiksi kfedrlrining zolrig minntdorchilik bildirdi. O quv qo llnmsidn universitetlrning v oli tenik o quv urtlrining ksb t limi o nlishlrid fodlnish mumkin. Qo llnmning kmchiliklri v uni shilsh borsid bildirilgn fikrlrni mullif mmnunit biln qbul qildi v oldindn minntdorchilik bildirdi. 4

5 KIRISH. Oli mtemtikg kirish. Shrqning buuk mutfkkirlrining mtemtik rivojig qo shgn hisssi T lim to g risidgi qonunni qbul qilinishi, uqori mlkli mutssis torlshning ikki bosqichli tizimig o tilishi, tlblrg berildign bilimni nd izchil hmd imkon qdr keng qmrovli bo lishini tlb etdi. Oli o quv urtlrid mtemtikni o qitishdn mksd tlblrni mutssisligi v iqtisod bo ich nzri hmd mli msllrni echish uchun zrur bo lgn mtemtikvi pprt biln tnishtirish, tlblrd mtemtikdn o quv dbiotlrini mustqil o rgnish v undn fodln bilish mlksini hosil qilish, mntiqi fikrlshni o stirish v mtemtikvi mdnitni umumi svisini ko trish, mliotd uchrdign msllrni mtemtikvi tomondn tekshirish mlksini hosil qilish v ulrg muhndislik msllrini mtemtikvi tild ifodlb, hl etishni o rgtishdn ibort. Oli mtemtik fnini o rgnish biln tlb hisoblsh teniksi v uni dstur biln t minlsh, fizik, kimo, chizmchilik, mterillr qrshiligi, iqtisod, nzri menik v boshq fnlrd uchrdign msllrining mtemtik lgoritmini tuzish v uni echishni o rgndi. Qdimgi Shrq, ususn Mrkzi Osio mmlktlri mutfkkirlri mtemtik rivojig ulkn hiss qo shgnlr, ulrdn rimlrig to tlib o tmiz. AlXorzmi. (7885) Muhmmd ibn Muso AlXorzmi Xorzmd tug ilib, dini mktb v mdrsd t lim oldi. Bog dodd Bt AlXikmt ( Donishmndlr ui ) tshkil etib, o z dvrining ilg or olimlrini to plb, ulrg rhbrlik qildi. Xorzmi Xind hisobi nomli risolsid,...,9 dn ibort rqmlr sistemsini birinchi bor rb tilid bon etdi v undn Yevropg bu sistem o tdi. U AlJbr vlmuqobl srid birinchi bo lib chiziqli v kvdrt tenglmlrni jrtdi, hmd ulrni echish usulini bon etdi. Algebr so zi AlJbr so zining lotinch ozuvidn olingn. AlXorzmi birinchi bo lib zijmtemtik v stronomik jdvlning mullifidir. Beruni. (9748). Abu Ron Beruni Muhmmd ibn Ahmd o rt srning buuk komuschi olimidir. U o zining Geodezi srid Qiot shhrining geogrfik kengligini niqlgnini ozdi. Beruni Xindiston trii srid er shri meridini,895 km eknini ozdi. Bu es hozirgi hisobdn (,km) kichik, ni 5 m to qilgn olos. Uning Qonuni M sudi sri stronomig bg ishlngn bo lib, und trigonometri, sferik trigonometrig oid kshfiotlrini ozdi. J mi mtemtikg doir t, stronomig doir t, minerlogig, fizikg doir 8 t v okozo srlr mullifidir. Ulug bek (94449). Muhmmd Trg Ulug bek, Shoru Mirzo frzndi v Amir Temurning nbirsi bo lib, buuk olim v dvlt rbobidir. Ulug bekning sosi sri «Ziji Ko rgoni» deb tlib, und il hisobi, to rtt ongch niqlikdgi trigonometrik jdvl mvjud bo lib, bund sinus v kosinuslrning bir minut orliq biln frqlnuvchi qimtlri keltirilgn. Trigonometrik jdvllri t o nli on niqligid 5

6 hisoblngn v bu jdvllrd sinus v kosinusning qimtlri bir minut orliq biln tuzilgn. Zijd Ulug bek bir grdusni sinusini hisoblsh uchun lohid risol ozgn. Astronomig tlluqli ekvtor og ishi, osmon oritgichlri koordintsini niqlsh, erning itiori nuqtsining geogrfik kengligini niqlsh, ulduz v sorlr orsidgi msofni niqlsh msllri bon etilgn. Ulug bek O v Quosh tutilishlri klendrini v 8 ulduzning ro tini v ulrning jolshishini hisoblb chiqqn, 47 ildgi teng kunlilik nuqtsig nisbtn uzunligi kengligi berilgn. U 55 oshid ilmfn dushmnlri tomonidn qtl ettirilgn. Amd Frg oni. (86. Bog dodd vfot etgn) Abul Abbos ibn Muhmmd ibn Ksr Frg onibuuk stronom, mtemtik v geogrf bo lgn. Frg oni, Al Xorzmi v boshq olimlr biln Bog dodd Bt AlXikmt d ishlb izlnishlr olib borgn. Uning Astronomig kirish nomli srid o zigch bo lgn stronomlr ishlrini bon qilib, kmchiliklrini tuztib, 8 ildgi quosh tutilishini oldindn tib bergn. Frg onining Osmon hrktlri v stronomi fni to plmi hqid kitobi bo lib, u rb tilidgi stronomig tlluqli birinchi kitobdir. Und stronomik sboblr ssh v undn fodlnish, eng zrur sboblrdn biri bo lgn kuosh soti bon etilgn. Frg oni Asturlb ssh hqid srid sfer v uning turli holtdgi kesimlrining osslrini bon etgn. Umr Xom. (48). G iosiddin Abdulft Umr ibn Ibrohim Al Xom Noshipurd tug ilib, Buoro v Smrqnd shhrlrid t lim olgn. Umr Xom AlJbr v lmuqobl isbotlri hqid risol kitobid son tushunchsini hqiqi musbt songch kengtirdi, ni, kvdrt v kub tushunchlrini kiritdi v rim kub tenglm v ulrni echish usullrini bon etdi. Umr Xom Yevklid kitobining kirish qismidgi qiinchiliklrg shrlr kitobid Yevklidning mshhur V postultini teorem siftid bon etib, uni rivojlntirdi v geometri rivojig ktt hiss qo shdi. U o zining Ziji mlik shoi nomli srid tklif etilgn klendrd 8 ildn 8 tsi kbis ili bo lib, ilning dvomiligi 65 sutkg teng, bu klendrning tosi ilig 9 sekundni tshkil etdi. G iosiddin Koshi. (XVsr). Jmshid ibn M sud ibn Mmud G iosiddin Al Koshi o rt Osioning toqli mtemtik v stronomidir. Koshi Ulug bek stronomi mktbi qoshidgi mdrsd stronomi v mtemtik fnlridn drs bergn. U «Hisob kliti», «Aln hqid risol», «Vtr v sinus hqid risol» nomli srlr mullifidir. Uning mtemtikdgi ngiligi ndrjli ildiz chiqrish mli bo lgn. Al Koshi lng doir srid p,45965 ni hisoblgn v Sin orqli Sin ni topishni keltirgn. U +qp tenglmning ildizlrini itrtsi usilid (ketmket kinlshish) topishni bon qilgn. AlKoshi o zining «Arifmetik kliti» srid birinchi bo lib o nli ksr kshf etdi v ulr ustid mllrni bjrish qoidlrini ko rstib berdi v mnfi son tushunchsini kiritdi. Frobi (8795) Abu Nsr Mummd ibn Uzlug Tron, 6

7 hozirgi Qozog iston Respubliksining Chimkent vilotining Aris shhrid tug ilgn. Dstlbki t limni o z urtid, keinchlik Shosh (Toshkent),Buoro v Smrqndd mdrsd t lim oldi. Keinchlik o sh ptdgi shrqning ilm fn mrkzi bo lgn Bog dodd ilmi folitini dvom ettirdi. Frobi o rt sr fnlrining turli solrig doir 6 g qin sr ozgn. U Ilmning kelib chiqishi v tsnifi nomli srid o rt srlrd mvjud bo lgn dn ortiq fnning t rifini berdi v ulrning hr birining tutgn o rni hqid gpirdi. Frobi mtemtikg buumlrning miqdor v fzovi nisbtlrini o rgnuvchi fn deb t rif berdi. Son hqidgi fn mvjud nrslrning bir qismini boshq bir qismig ko ptirish, bo lish, qo shish v irish, ildizning mvjud qismlrini topish v h.k. hqidgi fn deb t rifldi. Frobi «Tdbiqlr kitobi» d sosi trigonometrik chiziqlr, ulrni hosil qilish v shu chiziqlr biln bog liq trigonometrik jdvllrni tuzish qoidlrini berdi. U «Geometrik figurlrning tbii nozik sirlri v qli mohir usullri kitobi» d es turli geometrik figurlr doir, uchburchk, to rtburchk kvdrt, sferlrning ssh usullrini bon qilgn. Ibn Sino (987). Abu Ali ibn Sino Buoro viloti Vobkent tumni Lg lq qishlog id tvllud topgn. Ibn Sino o n shrligid lgebr, geometri v htto flsfni hm o rgndi, hmm ulduz turkumlrining qnd tlishini bilr v niq ko rstib ber olr edi. Ibn Sino meditsindgi ulkn tjribsi v flsf, lgebr, stronomi, kimo hmd fnning boshq sohlridgi beqios bilimini «Shifo kitobi», «Tib qonunlri», «Bilimlr kitobi»d bon etgn. Ibn Sino srlrining hmmsi 8 dn oshdi. U o zining «Shifo kitobi» ning rifmetikg doir qismid nturl sonlr v ulrning osslrini oritdi. Ibn Sino nturl sonlr ustid mllr bjrilishini 9 ordmid tekshirdi, ni u sonlrni to qqiz modulig ko r tqqosldi. O zo zini tekshirish uchun svollr.oli mtemtik fnini oli o quv urtlrid o rgnishdn mqsd nim?.shrqning buuk mutfkkirlridn kimlrni bilsiz v ulr mtemtik rivojig qnd hiss qo shgnlr? 7

8 I. Bob. OLIY ALGEBRA ELEMENTLARI. Ikkinchi v uchinchi trtibli determenntlr v ulrning osslri.. Ikkinchi trtibli determinnt. ifod ikkinchi trtibli determinnt, D irm es uning son qimti deildi. Determinntni tshkil qiluvchi sonlr uning elementlri deb tldi. Ikkinchi trtibli determinnt ikkit str v ikkit ustung eg. Birinchi indeks strining, ikkinchi indeks ustunining trtibini bildirdi., birinchi str,, ikkinchi str elementlri,, birinchi ustun,, ikkinchi ustun elementlri,, determinntning bosh digonli elementlri,, determinntning ordmchi digonli elementlri deb tldi. Demk, ikkinchi trtibli determinntning son qimti bosh digonl elementlri ko ptmsidn ordmchi diognli elementlri ko ptmsini irmsig teng ekn. misol. Quidgi determinntni hisoblng. 4 4( ) ( ) misol. 6 8 tenglm echilsin. 4 Echish. 6 8, 4, 4.. Uchinchi trtibli determinnt. T rif bo ich quidgich D belgilndign v son qimti D + + () 8

9 g teng bo lgn ifodg trtibli determinnt deb tildi. Uchinchi trtibli determinntlr uchun str, ustun, bosh v ordmchi digonl tushunchlri uqoridgi kbi kiritildi. () tenglikning o ng tomonid qsi ko ptmlr «+», qsilri ishor biln olinishini eslb qolish uchun quidgi uchburchk qoidsidn fodlnish quldir: (+) () * * * * * * * * * * * * 9 * * * * * * Uchinchi trtibli determinntni hisoblshning Srrius usulini hm keltirib o tmiz. ( + ) ( + ) ( + ) () () () Bu usuld uchinchi trtibli determinnt jdvli onig v ustunlr tkrori ozildi, sosi digonlg prllel ucht digonl elementlrni o zro ko ptirib, ulrni ig indisi olindi. ordmchi digonl v ung prllel ucht digonl elementlri ko ptirilib ulrning irmlri olindi. Ntijd () formul hosil bo ldi. misol. Quidgi determinntni hisoblng. 4 ( ) ( ) ( ) ( ) Determinntning osslri. Determintning osslri ulrning trtibig bog liq bo lmgni uchun, osslrni sosn uchinchi trtibli determinntlr uchun keltirmiz.. Determintning mos strlri v ustunlri o rinlri lmshtirilgnd uning qimti o zgrmdi: Bu ossning isboti () formulg sosn kelib chiqdi Agr determintning ikki str (ustun) elementlri o zro lmshtirils, uning qimti o zgrmdi, ishorsi es qrmqrshisig lmshdi.

10 Msln. Bu oss isboti bevosit hisoblshdn kelib chiqdi.. Agr determinnt ikkit bir il elementli strg (ustung) eg bo ls, u nolg teng. Isbot. Ikki prllel bir il elementli strlr (ustunlr) o zro lmshtirils, ossg sosn qimt o zgrishsiz qolib, ishor o zgrdi. Demk, D D, D oki D. 4misol. Quidgi determinntni hisoblng Determintning biror str (ustun) elementlrini itiori song ko ptirish determinntni shu song ko ptirishg teng kuchlidir. Bu ossning isboti hm bevosit hisoblshlrdn kelib chiqdi. Ntij. Biror str (ustun) elementlrdn umumi ko ptuvchini determinnt belgisidn tshqrig chiqrish mumkin. 5. Agr determinnt nollrdn ibort strg (ustung) eg bo ls, u nolg teng. Bu oss 4 ossdn d kelib chiqdi. 6. Agr determinntning ikkit str (ustun) elementlri o zro proporsionl bo ls, u nolg teng. Isbot. Proporsionl strdn (ustundn) umumi ko ptuvchini 4 ossg ko r determinnt tshqrisig chiqrsk, hosil bo lgn ikkit bir il strli (ustunli) determinnt ossg sosn nolg teng. 7. Agr determinntning biror strining (ustunining) hr bir elementi ikkit qo shiluvchining ig indisidn ibort bo ls, u hold bu determinnt (quidgi ko rinishdgi) ikkit determinntlr ig indi sidn ibort bo ldi. Msln: + b b + b + b + b b Bu ossni bevosit hisoblsh orqli isbotlndi.

11 8. Agr biror str (ustun) elementlrini istlgn l ¹, umumi ko ptuvchig ko ptirib boshq strning (ustunning) mos elementrlrg qo shils, determinnt qimti o zgrmdi. Msln: + l + l + l Bu ossg ishonch hosil qilish uchun 7 ossg sosn o ng tomoni ikki determinnt ig indisi ko rinishid ozib, 4 ossg sosn l ni determinntdn chiqrsk, ossg ko r ikkinchi determinnt nolg teng bo ldi, ni + l l + l + l + l l O zo zini tekshirish uchun svollr.ikkinchi v uchinchi trtibli determinntlr qnd hisoblndi?.uchinchi trtibli determinntni hisoblshning Srrius usulini tib bering..determinnt osslrini tib bering.. Yuqori trtibli determinntlr. Chiziqli tenglmlr sistemsini echishning Krmer usuli Avvlgi mvzud, trtibli determinntlr biln tnishdik, endi ntrtibli (n³4) determinntlr v ulrni hisoblshni o rgnmiz. Ishni osonlshtirish mqsdid ordmchi tushunchlr kiritmiz.. Algebrik to ldiruvchi v minorlr. Determinntning biror elementining minori deb, determinntning shu element turgn strini v ustunini o chirishdn qolgn elementlrdn hosil bo lgn determinntg tildi. Soddlik uchun quidgi uchinchi trtibli determinntni ollik. Determinnt element minori M, D elementining minori M, ( ik,,,) biln belgilndi. Msln, ik elementning minori es, ik M.

12 Determinnt elementining lgebrik to ldiruvchisi deb A ( ) ij tildi. Msln, elementining lgebrik to ldiruvchisi ( ) + A M bo ldi, elementining lgebrik to ldiruvchisi es ( ) + A M bo ldi. ij i + j M song Bu kiritilgn tushunchlr ordmid quidgi ossni isbotlsh mumkin (osslr trtibini sqlb qolmiz). 9. Determinntning biror qtoridgi brch elementlrni mos lgebrik to ldiruvchilri biln ko ptmsidn tshkil topgn ig indi shu determinntning qimtig teng. Isbot. Bu ossni birinchi str uchun keltirmiz. D determinntning birinchi str elementlrining lgebrik to ldiruvchilrini topmiz: A, A, A. Bundn Demk, ( ) ( ) ( ) D A + A + A D A + A + A () Xuddi shu kbi ihtiori str oki ustun elementlri orqli () formul kbi ntijni hosil qilish mumkin. () formul determinntning birinchi str elementlri orqli oilmsi deildi. misol. Determinnt hisoblnsin. D 4 5 Echish. Birinchi str elementlri orsid nol bo lgni uchun birinchi str elementlri bo ich oish qul, ni ij

13 D Determinntning biror qtoridgi bitt elementidn tshqri brch elementlri nolg teng bo lgnd, bu qtor bo ich oilmdn fodlnib, ntijni hisoblsh ishni nd osonlshtirdi. misol. D determinnt hisoblsin. Echish. 8ossdn fodlnmiz, ni birinchi ustunni o zgrishsiz qoldirib, ikkinchi ustung birinchi ustunni g ko ptirib qo shmiz, uchinchi ustung birinchi ustunni () g ko ptirib qo shmiz, ntijd D bo ldi. Birinchi str elementlri bo ich oilmdn fodlnsk, 9 9 D Yuqori trtibli determinntlr. To rtinchi trtibli determinntni qrmiz. Determinntlrning uqorid keltirilgn 9 osssini qo llb, ni biror str oki ustun elementlri bo ich oish usuli biln 4trtibli determinntni biror ustun oki str elementlri bo ich oilgnd hosil bo ldign determinntlr trtibli bo ldi. trtibli determinnt tushunchsi es bizg m lum. Shu jronni ketmket dvom ettirib ntrtibli determinnt tushunchsi kiritildi. Uning umumi ko rinishi quidgich:... n... n D () n n nn () ko rinishdgi ntrtibli determinntlr uchun uqorid tilgn brch osslr, jumldn, determinntning biror qtor elementlri bo ich oish formulsi hm o rinli bo ldi. Istlgn trtibli determinntni hisoblshd nn lgebrik to ldiruvchilr ordmid str oki ustun bo ich oish usulidn fodlnilnish nch qul. Misol. Determinnt hisoblnsin.

14 4 5 D 6 5 Echish. Determinntni hisoblsh uchun uni ikkinchi str elementlri bo ich oib chiqmiz. U hold D A+ A + A + A ( ) ( ) bo ldi. Demk, uqori trtibli determinntni hisoblsh, determinnt trtibini ketmket pstirish o li biln mlg oshirildi.. Chiziqli tenglmlr sistemsini Krmer qoidsi biln echish. Ikkit v nom lumli chiziqli tenglmdn ibort ushbu ì+ b í () î + b sistem ikki nom lumli chiziqli tenglmlr sistemsi deildi, bund,,, () sistemning koeffitsientlri, b, b ozod hdlrdir. D sosi determinnt, b b D, D. b b ordmchi determinntlr deb nomlndi. Agr D¹ bo ls, () tenglmlr sistemsining echimi quidgich topildi: D D, (4) D D Xuddi shuningdek, ucht, v nom lumli chiziqli tenglmlrdn ibort ì + + b í+ + b î + + b sistem uch nom lumli chiziqli tenglmlr sistemsi deildi. Δ 4 (5)

15 sosi determinnt, b b b D b, D b, D b, b b b ordmchi determintlr deb nomlndi, gr D¹ bo ls, (5) tenglmlr sistemsining echimi quidgich topildi: D D D,, (6) D D D (4) v (6) formullr () v (5) tenglmlr sistemsini echishning Krmer formulsi deildi. D¹ bo ls, sistem gon echimg eg bo ldi. D hmd D, D, D lrdn ech bo lmgnd bittsi noldn frkli bo ls sistemni echimi mvjud ems. D v D D D bo ls sistem cheksiz ko p echimg eg bo ldi. 4misol. ì+ í î 5 chiziqli tenglmlr sistemsi echilsin. Echish. Asosi v erdmchi determintlrni hisoblmiz. D 6 7 D 5 4, D 5 7, U hold, Krmer formulsig sosn, D 4 D 7,. D 7 D 7 Demk, sistemning echimi( ; ). 5misol. ì+ í î4+ sistemning eching Echish. D, D 6, D Demk, berilgn sistemning echimi mvjud ems. 6misol. Quidgi sistem echilsin ì+ í î4+ 6 5

16 Echish. Bu hold sosi v ordmchi determinntlr nolg teng: D, D, D æ t ö Demk, itiori ç t; è ø ko rinishdgi ( t Î R) sonlr juftligi sistemning echimi bo ldi, ni cheksiz ko p echim mjud. 7misol. ì + 4 í+ î + sistem echilsin. Echish. Asosi v ordmchi determinntlrni hisoblmiz: 4 4 D, D, D, 4 D U hold, Krmer formulsidn D D D,,. D D D Demk, ( ;;) sistemning echimi bo ldi. O zo zini tekshirish uchun svollr. Determinntning minori deb nimg tildi?. Determinntning lgebrik to ldiruvchilri t rifini ting v hisoblsh usulini ko rsting.. Tenglmlr sistemsi Krmer usulid qnd echildi? 4. Tenglmlr sistemsi qnd shrt bjrilgnd bir qimtli echimg eg, qnd shrt bjrilgnd echim mvjud ems, qnd shrt bjrilgnd cheksiz ko p echimg eg bo ldi. 6

17 Quidgi ko rinishdgi jdvl ( ) 4. Mtritslr v ulr ustid mllr. æ... n ö ç... ç n ç ç èm m... mn ø m n trtibli mtrits deildi. ik element uddi determinntdgi kbi i str, k ustung jolshgn bo ldi. B zn () ozuv, qisqlik uchun, ik, ( i, m, k, n) 7 () ko rinishd oki A ik ko rinishd hm belgilndi. Rvshnki, () mtrits m t str v n t ustundn ibort. Brch elementlri nolg teng bo lgn mtrits nol mtrits deildi. æ ö ç ç. ç ç è ø Xususi hold, m n bo lgnd, æ... n ö ç... ç n () ç ç èn n... nn ø ko rinishidgi mtrits kvdrt mtrits deildi.,,..., nn () mtritsning bosh digonl elementlri deildi. Agr () mtritsd bosh digonld turgn elementlrdn boshq brch elementlri nol bo ls, uni digonl mtrits deildi: æ... ö ç... ç () ç ç è... nn ø () mtritsd... nn bo ls, ni, æ... ö ç... E ç ç ç è... ø birlik mtrits deb tldi.

18 Kvdrt mtrits () ning elementlridn tshkil topgn determinnt A mtritsning det A oki A kbi belgilndi. Shu o rind esltib o tmiz: determinnti deildi v ( ) mtrits sonlrning trtibli jdvli, determinnt es elementlrning m lum kombintsisidn hosil qilingn birgin sondir.... Agr det( ) A n... n n n nn A bo ls, bu hold A mtrits os mtrits, ( ) 8 det A ¹ bo ls, A osms mtrits deildi. Kvdrt () mtritsning str elementlrini mos ustun elementlri biln lmshtirishdn hosil bo lgn æ... n ö ç... ç n ç ç èn n... nn ø T mtrits trnsponirlngn mtrits deildi v A kbi belgilndi. Determinntning T det A det A osssig sosn ( ) ( ) Ikkit æ... n ö æb b... b n ö ç... ç n b b... b n A ç, B ç, (4) ç ç ç ç... b b... b è n n nn ø è n n nn ø mtritslr berilgn bo lib, A mtritsning hr bir elementi B mtritsning mos elementig teng, ni ik bik bo ls, u hold A v B o zro teng mtritslr deildi v A B m n trtibli kbi ozildi. T rif bo ich ikkit (4) ko rinishdgi ( ) mtritslrning ig indisi v irmsi mos rvshid A± B kbi belgilnib, æ ± b ± b... n ± b n ö ç ± b ± b... n ± b n A± B ç, ç ç èn± bn n ± bn... nn ± bnn ø qoid bo ich hisoblndi, ni mos elementlri qo shildi oki irildi. Mtritslrni qo shish quidgi osslrg eg:. A+ A. A+ B B+ A A mtritsni ¹ song ko ptmsi deb, uning hr bir elementini song ko ptirishdn hosil bo lgn

19 æ... n ö ç... n A ç ç ç èn n... nn ø mtritsg tildi. Mtritsni song ko ptirish quidgi osslrg eg: b A b A. ( ) ( ) 4. ( ) A+ B A+ B 5. ( + b)a A+ ba misol. Agr 4 A ç ö, B ç è ø è ø, bo ls, A+ B, AB, A B mtritslr topilsin. Echish. A+ B æ 4 ö æ ö æ ö æ 6 ö ç + ç ç ç 4 è ø è ø è ø è ø A B æ 4 ö æ ö æ 4 ö æ ö ç ç ç ç è ø è ø è ø è ø A B æ 4 ö æ ö æ 4 8 ö æ 6 ö ç ç ç 4 ç 6 è ø è ø è ø è ø æ 4 86 ö æ 4 ö ç. 46 ç 5 è ø è ø Endi ikki mtrits ko ptmsi tushunchsini kiritlik. Bund ko ptirildign mtritslr birinchisining ustunlr soni ikkinchisining strlr sonig teng bo lishi tlb qilindi. ( m n) trtibli A mtritsning ( n k) trtibli B mtritsg ko ptmsi deb ( m k) trtibli shund C mtritsg tildiki, uning c ij elementi A mtrits i stri elementlrini B mtrits j ustinining mos elementlrig ko ptmlri ig indisig teng, ni c b + b + + b. (5) ij i j i j... ik kj mtritslr ko ptmsi C A B, ko rinishd belgilndi. misol. Mtritslr ko ptmsi topilsin. æ ö A ç, B æ ö ç ç è ø è ø 9

20 Echish. A B mvjud, chunki A mtrits ikkit ustundn B mtrits es ikkit strdn ibort. æ ö æ 4 ö æ ö æ ö A B ç ç ç 5 ç + + ç è ø ç + + ç è ø è ø è ø ko ptm mvjud ems, chunki B mtritsd t ustun, A mtritsd es t str mvjud. Agr A v B mtritslr bir il trtibli kvdrt mtritslr bo ls A B v B A ni hisoblsh mumkin. misol. æ 4 A ö æ, B ö ç 5 ç 6 è ø è ø, bo ls, A B v B A topilsin. Echish. A B æ ö æ4 ö æ 4 6ö æ 4ö ç 5 ç 6 ç ç 9 è ø è ø è + + ø è ø B A æ4 ö æ ö æ4 5 4 ö æ7 5ö ç 6 ç 5 ç ç 4 è ø è ø è + + ø è ø. Bu misoldn ko rindiki, umumn olgnd, A B ¹ B A. Mtritslrni ko ptirish quidgi osslrg eg:. ( A B) C A ( B C).( A+ B) C A C+ B C. ( l A) B l ( A B) 4. A E E A A 5. A A O zo zini tekshirish uchun svollr. Mtrits degnd nimni tushunsiz?. Mtritslrning qnd turlri mvjud?. Mtritslr ustid mllr bjrishd nimlrg e tibor berish kerk? 4. Mtritslrning qnd osslrini bilsiz?

21 5. Teskri mtrits, chiziqli tenglmlr sistemsini echishning mtrits usuli Ushbu kvdrt mtritsni qrlik: æ... n ö ç... n A ç ç ç èn n... nn ø Agr A B B A E bo ls, B mtrits A mtritsg teskri mtrits deb tldi. A mtritsg teskri mtritsni A kbi belgilsh qbul qilingn. A B kvdrt mtritsg teskri A mtritsni topish quidgich mlg oshirldi: D det A¹ bo lishi kerkligini esltib. det ( A ) hisoblndi. (Bu o rind ( ) o tmiz, ks hold teskri mtrits mvjud bo lmdi).. A mtrits determinntining hr bir, ( i, j,,,..., n) elementi lgebrik to ldiruvchisi A ni hisoblmiz v A mtritsni quidgich tuzmiz: ij A Ishonch hosil qilish uchun misol. det mtritsg teskri mtrits topilsin. Echish. ( A) ij æa A... An ö ç A A... A ç n. () ç ç èan An... Ann ø A A A A E A ni tekshirib ko rish etrli. æ ö A ç ç 4 è ø D ¹ 4 Demk, teskri mtrits mvjud. Mtrits determinntining brch elementlri lgebrik to ldiruvchilrini hisoblmiz:

22 A 4,, 7, 4 A 4 A A 4, A, A, 4 4 A, A 6, A, Topilgnlrni () g qo sk: æa A A ö æ 4 4 ö ç A A A A ç 6 D ç A A A ç 7 è ø è ø Tekshirish. æ 4 4 ö æ ö æ ö A A ç 6 ç ç ç 7 ç 4 ç è ø è ø è ø æ ö æ ö ç ç. ç ç è ø è ø A Demk, mtrits, A mtritsg teskri mtrits eknligi kelib chiqdi. Bizg quidgi uch no mlumli ucht tenglmlr sistemsi berilgn bo sin ì + + b í+ + b. () î + + b Tenglmlr sistemsi koeffitsientlri, ij, ( i, j,,),,, nom lumlr v bi, ( i,,) ozod hdlrdn æ ö æö æbö ç A, X ç, B ç b ç ç ç b è ø è ø è ø mtritslrni tuzmiz. Mtritslrni ko ptirish mlig sosn, () sistemni, quidgich ozish mumkin A X B. () Bu tenglmlr sistemsining mtritslr ko rinishid ozilishidir. Atlik A mtritsg teskri A mtrits mvjud bo lsin. () tenglikning hr ikki tomonini A g chpdn ko ptirib.

23 A A X A B ni hosil qilmiz. A A E v E X X eknini e tiborg olsk, X A B (4) hosil bo ldi. Bu () teglmlr sistemsini teskri mtrits ordmid echish formulsidir. misol. Krmer usuli biln echilgn 7misoldgi tenglmlr sistemsini teskri mtrits usulid echilsin. Echish. æ ö æö æbö A ç, X ç, B ç b, ç ç ç b è ø è ø è ø D det A ¹ ( ) A, A 5, A, A, A 5, A, A, A 5, A 7, () formulg sosn æ ö A, ç ç 7 è ø teskri mtrisni topmiz. Bundn (4) formulg binon æ ö æ 4 ö æ + ö æö æö X A B, ç ç, ç 5 5, ç ç ç 7 ç ç 4 ç ç è ø è ø è ø è ø è ø Jvob (; ; ) O zo zini tekshirish uchun svollr. Qnd mtrits berilgn mtritsning teskri mtritssi bo ldi?. Teskri mtritsni qnd topildi?. Chiziqli tenglmlr sistemsi mtrits ko rinishd qnd ozildi? 4. Chiziqli tenglmlr sistemsi mtrits usulid qnd echildi?

24 6. Mtritsning rngi. Chiziqli tenglmlr sistemsini echishning Guss usuli Biror ( m n) trtibli A mn strini v itiori k t ustunini olib ( ) mtrits berilgn bo lsin. A mtritsning itiori k t ( k min m, n ), ( k k) trtibli kvdrt mtrits tuzmiz. Bu kvdrt mtritsning determinnti A mtritsning k trtibli minori deildi. misol. Quidgi 45trtibli æ 4 ö ç 4 ç ç ç è ø mtritsni qrlik. Ushbu ,, 4,, determinntlr qrlotgn mtritsning mos rvishd ikkinchi, uchinchi hmd to rtinchi trtibli minorlridir. A mtrits ordmid hosil qilish mumkin bo lgn brch minorlr orsid noldn frqli bo lgn eng uqori trtibli minorni topish muhimdir. k min mn, ( ) Shuni t kidlsh kerkki, gr A mtritsning brch k trtibli ( ) minorlri nolg teng bo ls, undn uqori trtibli bo lgn brch minorlri hm nolg teng bo ldi. T rif. A mtritsning noldn frqli minorlrining eng uqori trtibi uning rngi deildi v rnga kbi belgilndi. misol. æ ö A ç ç è ø mtritsning rngini toning. Echish.,, 4

25 Demk, A mtritsning noldn frqli minorlrining eng ktt trtibi g teng ekn. Bundn rnga. T rif bo ich mtritsning rngi deb olindi. Mtritslrning rngini topish ko p hollrd murkkb bo ldi. Chunki und bir qnch turli trtibdgi determinntlrni hisoblshg to'g ri keldi. Quidgi elementr lmshtirishlr ntijsid mtritsning rngi o zgrmdi: ) ikki qtor elementlrini o zro lmshtirish. ) biror qtorni o zgrms song ko ptirish. ) biror qtorg boshq qtorni o zgrms song ko ptirib qo shish. Bu tsdiqlr determinntlrning osslridn kelib chiqdi. m n,,,...,, s min mn, ( ) Agr ( ) trtibli A mtritsning ( ) elementlrining hr biri noldn frqli bo lib, qolgn brch elementlri nolg teng bo ls, u hold A digonl ko rinishdgi mtrits deildi. Rvshnki, bund digonl ko rinishdgi mtritsning rngi s g teng bo ldi. Ann shu v uqorid tilgn elementr lmshtirishlrdn fodlnib, mtritsni rngini topishning ikkinchi usulini bon qilmiz. Bizg quidgi A mtrits berilgn bo lsin: æ... n ö ç... n A ç ç ç èm m... mn ø V uning rngini topish tlb etilsin. Bu mtritsning rngini uqorid tilgn elementr lmshtirishlr ordmid digonl ko rinishli mtritsg keltirib topmiz. A mtritsning hech bo lmgnd bitt elementi noldn frqli bo lsin. Bu elementning strlri v ustunlrini o zro lmshtirish ordmid birinchi str birinchi ustung chiqrmiz v birinchi str elementlrini shu elementg bo lib, ushbu æ... n ö ç... ç n () ç ç è m m... mn ø mtritsni hosil qilmiz. () mtritsning birinchi ustunini g ko ptirib, ikkinchi ustung qo shsk, so ng g ko ptirib uchunchi ustung qo shsk v h. k. Birinchi ustunni n g ko ptirib nustung qo shsk, ntijd hosil bo lgn mtritsning birinchi strdgi elementi, qolgn elemetlri es nollr bo lib qoldi. Xuddi shung o shsh () mtritsning birinchi ustundgi dn boshq elementlri nolg lntirildi. Ntijd ss 5

26 æ... ö ç... n A ç ç ç è m... mn ø mtritsg eg bo lmiz. Bundn rnga rnga kelib chiqdi. A mtritsg uqoridgi elementr lmshtirishlrni bir nech mrt qo llsh ntijsid u digonl ko rinshidgi mtritsg keldi. Bu digonl ko rinishli mtritsning rngi berilgn A mtritsning rngi bo ldi. n t no mlumli m t tenglmlr sistemsini qrmiz ì nn b nn b í ()... î m + m mnn bm Agr chiziqli tenglmlr sistemsi echimg eg bo ls, u birglikd, gr echimg eg bo lms, u birglikd ems deildi. Quidgi elementr lmshtirishlr ntijsid tenglmlr sistemsi o zig teng kuchli sistemg lmshdi: ) Istlgn ikki tenglmni o rinlrini lmshtirils; ) Tenglmlrdn istlgn birini ikkl tomonini noldn frqli song ko ptirils; ) Tenglmlrdn birini istlgn hqiqi song ko ptirib, boshq tenglmg qo shils. Agr n> m bo ls, n m t bir il nom lumli hdlrni tengliklrning o ng tomonig olib o tib, o ng tomonidgi nom lumlrg itiori qimtlrni qbul qildi deb, tenglmlr sistemsini n m holg keltirib olish mumkin. Shuni e tiborg olib, () sistemni n m holi uchun echmiz. Guss usulining mohiti nom lumlrni ikkinchi tenglmdn boshlb, ketmket o qotib oirgi teglmd bitt no mlum qolgunch dvom ettirildi v oirgi tenglmdn uqorig qrb nom lumlrni ketmket topib, echim hosil qilindi. qdm. () sistemd birinchi tenglmning hr ikki tomonini g bo lib, teng kuchlik ushbu sistemni hosil qilmiz: ì n b n í nn b ()... în + n nnn bn Birinchi tenglmni g ko ptirib ikkinchi tenglmdn, g ko ptirib uchinchi tenglmdn v okzo n g ko ptirib, ntenglmdn irmiz. Ntijd n berilgn sistemg teng kuchli ushbu ngi sistemni hosil qilmiz: 6

27 ì nn b nn b í (4)... î n nnn b n Bu sistemd quidgich belgilshlr kiritilgn: k k b b k, ik ik i, b, b i bi i, i, k,,..., n. Agr (4) sistemd biror tenglm chp tomonidgi brch koeffitsentlr nolg teng, o ng tomoni es noldn frqli bo ls, ni n b k (5) ko rinishdgi tenglm hosil bo ls, sistem birglikd ems bo ldi v ishni shu erd to tlildi. Agr (5) ko rinishdgi tenglm hosil bo lms keingi qdmg o tildi. qdm. Ikkinchi tenglmni koefitsentg bo lmiz, hosil bo lgn sistemning ikkinchi tenglmsini ketmket,..., n g ko ptirib uchinchi, to rtinchi v hokzo tenglmlrdn irmiz. Biz bu jronni oirgi tenglmd n nom lum qolgunch dvom ettirsk, dstlbki sistemg teng kuchli ì nn b... nn b + + í... (6) n + nnn b n î n b n ko rinishdgi sistemg eg bo lmiz. n b nqimtini (n) tenglmg qo ib n ni topmiz v hokzo, bu ishni topilgung qdr dvom ettirmiz. misol. Quidgi tenglmlr sistemsi echilsin. ì+ í+ î + 5 Echish. Birinchi tenglmning brch hdlrini g bo lib, ì+,5,5,5 í+ î + 5 sistemni hosil qilmiz. Birinchi tenglmni g ko ptirib ikkinchi tenglmdn, so ngr uchinchi tenglmdn birinchi tenglmni irmiz: 7

28 ì+,5,5,5 í,5,5,5 î,5 +,5 4,5 Ikkinchi tenglmni.5 g bo lib,so ngr uni.5 g ko ptirib, uni uchinchi tenglmdn irmiz. Ntijd ì+,5,5,5 í î hosil bo ldi. Bundn ketmket, +,,5,5 +,5 lrni topmiz. Shund qilib, berilgn sistemning echimi,, dn ibort ekn. misol. ì í î sistem echilsin. Echish.Bu sistemd ucht tenglm besht nomlum bo lgnligi uchun, 4 v 5 lrni o ng tomong olib o tmiz. ì í+ 45 î Misol uchun, 4, 5 qimtlrni qo sk ì í+ î sistem hosil bo ldi. eknini e tiborg olsk, ì+ 4 í î+ sistemg eg bo lmiz. Birinchi tenglmni g ko ptirib, undn ikkinchi tenglmni irsk ì+ 4 í î7 hosil bo ldi. Bundn,,

29 Bu sistemd 4 v 5 nomlumlrg boshq qimtlr berib, ngi echim hosil qilish mumkin eknini, boshqch tgnd n> m bo lgnd echim gon bo lm cheksiz ko p bo lishini esltib o tmiz. Tenglmlr sistemsini birglikd bo lishbo lmsligini, uni echmsdn turib niqlsh usuli biln tnishmiz. () tenglmlr sistemsini koefitsientlridn tuzilgn n m m n+ trtibli kengtirilgn A trtibli hmd ( ) æ... n ö æ... n b ö ç... ç ç... b, ç ç ç ç b n n A ç è m m mn ø è m m m mø mtritslrni tuzib olmiz. Teorem. (KronekerKpelli teoremsi) () tenglmlr sistemsi birglikd bo lishi uchun A v A mtritslrning rnglri teng bo lishi, ni rnga rnga bo lish zrur v etrli. Keltirilgn teoremdn quidgi uloslr kelib chiqdi:. Agr rnga > rnga bo ls, () sistem echimg eg bo lmdi.. Agr rnga rnga k bo ls, () sistem echimg eg bo lib, ) k < n bo lgnd, tenglm cheksiz ko p echimg eg bo ldi; b) k n bo ls, sistem gon echimg eg bo ldi. misol. ì7+ í î4+ 9 tenglmlr sistemsi echilsin. Echish. Bu erd n, m, ni m> n. æ7 ö æ7 ö A ç, A ç, ç 4 9 ç 4 9 è ø è ø rnga chunki 7 7 7¹, 4 9 bo lishini e tiborg olsk rnga, demk bu sistemning echimi mvjud. Berilgn sistemning birinchi ikki tenglmsini birglikd echsk 9

30 5,, kelib chiqdi. Bu sonlr uchinchi tenglmni hm qnotlntirdi. 7 7 æ 5 ö ç + 9. è 7 ø 7 æ 5 ö Demk, ç ; sistemning echimi bo ldi. è 7 7 ø O zo zini tekshirish uchun svollr. Mtritsning rngi deb nimg tildi?. Mtritsning rngi qnd hisoblndi?. Qnd elementr lmshtirishlr ntijsid mtrisning rngi o zgrmdi? 4. KronekerKpelli teoremsini ting. 5. Tenglmlr sistemsi Guss usuli biln qnd echildi? 7. n t nom lumli chiziqli teglmlr sistemsi. ì nn b nn b í ()... în+ n nnn bn () tenglmlr sistemsi n t nom lumli chiziqli tenglmr sistemsi deildi. () tenglmlr sistemsini echishning Krmer v mtritslr usullrini ko rmiz. Nom lumlr oldidgi koeffitsientlrdn sosi determinntni... n... D n... n n nn v uch nom lumli chiziqli tenglmlr sistemsidgig o shsh ordmchi D, D,..., D n determinntlrni tuzmiz. Ulr uqori trtibli determinntlrni isoblsh usuli biln isoblndi. Bu erd hm gr D¹ bo ls, Krmer formulsig sosn D D Dn,, n. D D D echimni hosil qilmiz. Bu echim gon echim buldi. Agr () sistemning koeffitsientlri v nom lumlridn A, B v X mtritslr

31 æ... n ö æb ö æ ö ç... ç n b ç A ç, B ç, X ç ç ç... ç... ç ç ç... b è n n nnø è nø è nø ko rinishid tuzils () sistemsini AX B hold ozish mumkin. Agr D¹ bo ls, A g teskri A mtrits mvjud bo ldi v berilgn sitemni mtritslr ko rinishidgi echimi X A B bo ldi. Agr D bo lib, D, D,..., D n lrdn qlli birortsi noldn frqli bo ls, () sistem echimg eg bo lmdi. Agr D bo lib, D D... D n bo ls, () sistem cheksiz ko p echimg eg bo ldi. misol. ì í î tenglmlr sistemsi echilsin. Echish. Sistemni Krmer usulid echmiz D Xudi shu usul biln hisoblshni dvom ettirib, quidgilrni topmiz: D 8, D 8, D 7, D 4 7. Demk, sistem gon echimg eg, chunki D¹. Bu echim es D 8 D 8 D 7 D4 7, 4,, 4. D 7 D 7 D 7 D 7 (;4;;) bo ldi. () tenglmlr sistemsini b b... b n bo lgn holini ko rmiz. ì nn nn í ()... în+ n nnn () tenglmlr sistemsini bir jinsli, chiziqli tenglmlr sistemsi deildi.

32 Osonlik biln ishonch hosil qilish mumkinki,... n () sistemningning echimlri bo ldi v bu echimni trivil echim deb tldi. Agr () bir jinsli sistemnig sosi determinnti D noldn frqli bo ls, bu sistem fqt trivil echimg eg bo ldi. Chunki bu hold D D... D n v Krmer formulsig sosn... n bo ldi. Demk, () sistemning notrivil ni noldn frqli echimi mvjud bo lishi uchun D bo lishi zrur ekn. misol. ì + í î tenglmlr sistemsi echilsin. Echish. trivil echim ekni rvshn. D bundn ko rindiki, sistemning notrivil echimi bo lishi mumkin. Xqiqtn hm t (t itiori qiqi son) sistemning notrivil echimi bo ldi. O zo zini tekshirish uchun svollr. Tenglmlr sistemsini echishning qnd usullrini bilsiz?. Tenglmlr sistemsi qchon gon echimg eg bo ldi?. Tenglmlr sistemsi qchon cheksiz ko p echimg eg bo ldi? 4. Tenglmlr sistemsi qchon echimg eg bo lmdi? 5. Bir jinsli tenglmlr sistemsi qchon noldn frqli echimg eg?

33 8. Kompleks sonlr v ulr ustid mllr 4+ 5 tenglmni qiqi sonlr to plmid echimi mvjud emsligi æ p ö bizg m lum, chunki D ç q 4 5 <. Lekin i g teng bo lgn è ø mvum birlik tushunchsini kiritish biln bu mummo hl bo ldi v echim, ± i g teng bo ldi. Asosi t riflr. t rif: z kompleks son deb z + i () ko rinishidgi ifodg tildi, bund v qiqi sonlr: i es i oki i tenglik biln niqlnuvchi mvhum birlik, v ni z kompleks sonning hqiqi v mvhum qismlri deildi v quidgich belgilndi: Re z, Im z. () ko rinish kompleks sonning lgebrik ko rinishi deildi. Xususi hold, gr bo ls, u hold z + i i soni sof mvhum son, gr bo ls, u hold z +, ni hqiqi son hosil bo ldi. Shund qilib, hqiqi v mvhum sonlr z kompleks sonning hususi hollridir. t rif. Agr ikkit z + i v z + i kompleks sonlrining hqiqi qismlri hqiqi qismig, mvhum qismlri mvhum qismig mos rvishd teng bo ls, bu kompleks sonlr o zro teng, ni z z bo ldi, boshqch tgnd Re z Re z, Im z Im z, ni fqt v bo ls, z z tenglik o rinli bo ldi. t rif. z + i kompleks sonning hqiqi v mvhum qismi nolg teng bo lsgin, u nolg teng bo ldi, ni gr v bo lsgin z v ksinch. 4t rif. Mvhum qismlri fqt ishorlri biln frq qiluvchi ikkit z + i v z i kompleks sonlr qo shm kompleks sonlr deildi. Kompleks sonlr ustid rifmetik mllr, huddi ko phdlr ustidgi mllr kbi bjrildi, ulrni ko rib chiqmiz. Bizg z + i v z + i berilgn bo lsin : Kompleks sonlrni ig indisi z + z i () ( ) ( ) Kompleks sonlrni irmsi z z + i () ( ) ( ) Kompleks sonlrni ko ptmsi z z + i + i + + i (4) ( )( ) ( ) ( )

34 Qo shm kompleks sonlrni ko ptmsi es zz + i i + ( )( ) Kompleks sonlrni bo lish + i ( + i )( i ) + + i + i + i i + + ( )( ) Kompleks sondn ildiz chiqrish (5) + i æ ö ± ç + i sign ç è ø (6) formul biln hisoblndi,,, (6) formuldgi sign ì+ > î,, ko rinishd olindi. misol z + i, v z i kompleks sonlrning ig indisi v irmsini toping. Echish: z+ z ( + i) + ( i ) ( + ) + ( ) i 4i z z ( + i) ( i ) ( ) + ( + ) i + i misol. z i, z + i kompleks sonlrni ko ptiring v bo ling Echish: z z ( i)( + i) + i i i i, ( i)( i) ( )( ) z i i i+ i + z + i + i i i 4 4 misol. z + iv z i qo shm kompleks sonlrni ko ptiring Echish: z z (+ )( i ) i misol. i ni hisoblng Echish: 4 i i, i, i i, i eknidn i i ( i ) i i i 5misol. 5+ 8i ildizdn chiqring. Echish: (6) formulg sosn, bund 8 >, bundn sign 8 i æ ö 5+ 8i ± ç + i ± 4+ i ç è ø 6misol. 8 6i ildizdn chiqring. 4 ( )

35 Echish: (6) formulg sosn, bund 6 <, bundn sign( 6) æ ö 8 6i ± i ± ( i) ç è ø Hr bir + i kompleks sonni O tekislikd v koordintli A ( ; ) nuqt shklid tsvirlsh mumkin v ksinch, tekislikning hr bir nuqtsig bittdn kompleks sonni mos qo ish mumkin. Kompleks sonlr tsvirlndign tekislik Z kompleks o zgruvchining tekisligi deildi. Kompleks tekislikd Z sonni tsvirlovchi nuqtni Z nuqt deb tmiz. O o qid otuvchi nuqtlrig hqiqi sonlr mos keldi (bund ), O o qid otuvchi nuqtlri sof mvum sonlrni tsvirldi (bund ). Shu sbbli OX o q hqiqi o q, OY o q mvum o q deildi. A ( ; ) nuqtni koordintlri boshi biln birlshtirib, OA vektorni hosil qilmiz, bu z + i kompleks sonning geometrik tsviri deildi. Kompleks sonning trigonometrik shkli. uuur A nuqtning OA vektor biln OX o q orsidgi burchk j Z kompleks sonning rgumenti deildi v rg Z kbi belgilndi. Argument bir qimtli niqlnm, blki p k qo shiluvchi qdr niqlikd niqlndi, bund k butun son. Argumentning hmm qimtlri orsidn j p tengsizliklrni qnotlntiruvchi bittsini tnlmiz. Bu qimt bosh qimt deldi v bund belgilndi j rg Z. Ushbu ì r cos j í î r sin j tengliklrni hisobg olib, Z kompleks sonni bund ifodlsh mumkin. z + i r(cos j + i sin j ) (7) bund r + z kompleks sonning moduli deildi, ì rctg, gr >, >, bo ls, j rg z íp + rctg, gr <, bo ls, p + rctg, gr >, <, bo ls, î ozuvning bu shkli kompleks sonning trigonometrik shkli deildi. 5

36 7misol. z + i v Z i qo shm kompleks sonlr, (shkl) shuningdek z + i v Z i qrmqrshi sonlr (shkl) tsvirlngn Chizmdn z r + v z r + ekni, ni z z v rg z rg z ekni kelib chiqdi. у z у Z j j х шакл z Z шакл Qo shm kompleks sonlr bir il modulg eg v bsolut qimtlri bo ich teng rgumentlrg eg bo lib, hqiqi o qq simmetrik bo lgn nuqtlr biln tsvirlndi ( shkl). Chizmdn Z Z, rg Z p + rg Z ekni kelib chiqdi. Qrmqrshi kompleks sonlr koordintlr boshig nisbtn simmetrik nuqtlr biln tsvirlndi. (shkl). 8misol. z i kompleks sonni trigonometrik shkld ifodlng. p Echish: z i,,, bo lgni uchun r, j, p p z i ( cos + isin ) Trigonometrik ko rinishdgi kompleks sonlrni ko ptirish. z v z kompleks sonlr trigonometrik shkld berilgn bo lsin: z r(cosj+ isin j) v z r(cosj + isin j) Shu sonlrni ko ptmsini hisoblmiz. zz r(cosj+ isin j) r(cosj + isin j) rr ( (cosjcosj sinjsin j) + i(cosjsinj + sinjcos j) ) rr ( cos( j+ j) + isin ( j+ j) ) shund qilib zz rr ( cos( j+ j) + isin ( j+ j) ) (8) ni, ikkit kompleks son ko ptirilgnd ulrning modullri ko ptirildi, rgumentlri es qo shildi. 6

37 Qo shm kompleks sonlrni ko ptmsi es ulrning moduli kvdrtig teng bo lgn hqiqi son hosil bo ldi. Trigonometrik ko rinishdgi kompleks sonlrni bo lish. Agr kompleks sonlr z r(cosj+ isin j) v z r(cosj + isin j) trigonometrik shkld berilgn bo ls, u hold z r(cosj+ isin j) r(cosj+ isin j)(cosj isin j) z r (cosj + isin j ) r (cos j + sin j ) r ( j j ) isin ( j j ) ( ) (cos cos sin sin ) i sin cos cos sin é j j + j j + j j j j r ë ùû r cos é + r ë ùû Shund qilib: z r écos( j j) + isin ( jj) z r ë ùû (9) ni kompleks sonlrni bo lishd bo linuvchining moduli bo luvchining modulig bo lindi, rgumentlri es rildi. Trigonometrik ko rinishdgi kompleks sonlrni drjg ko trish. Kompleks sonlrni drjg ko trish mlidn drjg ko trish qoidsi kelib chiqdi. z r(cosj + isinj) uchun nturl n d n n z r (cosnj + isin nj) () ekni kelib chiqdi. Bu formul Muvrning drjg ko trish formulsi deildi. Bu formul kompleks sonni nturl drjg ko trish uchun modulni shu drjg ko trish, rgumentni es drj ko rstkichig ko ptirish kerkligini ko rstdi. Muvr formulsid r deb olib quidgini hosil qilmiz: n (cos j + i sin j ) cos n j + i sin n j Bu formul sin nj v cos nj lrni sin j v cos j lrning drjlri orqli ifodlsh imkonini berdi. Msln: n d (cosj + i sinj) cosj + isinj g eg bo lmiz, bundn cos j+ icos j sinj + i cosj sin j + i sin j cosj + isin j (cos j cosj sin j) + i (cos jsin j sin j) cosj + isin j ikki kompleks sonning teng bo lish shrtidn fodlnib topmiz: cosj cos j cosj sin sin j sin j cos j sin j j Trigonometrik ko rinishdgi kompleks sonlrdn ildiz chiqrish. Bu ml drjg ko trish mlig teskri mldir kompleks sonning ndrjli ildizi n z deb shund w kompleks song tildiki, bu sonning ndrjsi ildiz ostidgi song tengdir, ni gr w n z bo ls w n z Agr z r(cos j + i sin j ) v w r(cosq + isin q ) bo ls, u hold 7

38 r(cos j + i sin j ) r(cos q + i sin q n ) Muvr formulsig sosn r cosj + isinj r n cosnq + isin nq ( ) ( ) n bundn r r, nq j + kp, r v q ni topmiz. n j+ pk r z, q n bund k istlgn butun son, n z ning rifmetik ildizi. Demk n j+ pk j + pk n r(cosj+ isin j) rcos( + isin ) () n n k,,,... n lrni qbul qildi. Bu formul Muvrning ildiz chiqrish formulsi deildi. 9misol z i, z, z i sonlrni trigonometrik shkld ifodlng. Echish: p ) r +, sin j, cos j, j p p, 6 6 æ ö bulrni e tiborg olsk z ç cos p + isin p è 6 6. ø r, cos j, sin j, j p, ) eknidn z ( p + i p) cos sin. ) r, cos j, sinj, j p, eknidn æ ö z ç cos p + isin p è ø misol z i, z + i trigonometrik shklg keltiring v ulrni ko ptiring Echish: r, cos j, sin j, j p p p, z i (cos p + isin p ), p p p r, cos j, sin j, j, z + i (cos + isin ) æ p p ö z z 4ç cos + isin è 6 6 ø misol. z + i kompleks sonini z + i kompleks sonig lgebrik v trigonometrik shkllrd bo ling. Echish: 8

39 ( )( ) ( )( ) z + i + i i 4i ) i z + i + i i 4+ 4 p p (cos + isin ) z 7 ) 4 4 p 7p p p p p (cos( ) + isin( )) (cos isin ). z 7p 7p ) (cos + isin 4 4 misol. ( + i) ni hisoblng. p p Echish: z + i (cos + isin ) 4 4 p p 5 p p z ( + i) ( ) (cos + i sin ) (cos + i sin ) p 5p (cos + i sin ) ( + i) i misol. ning hmm qimtlrini toping. Echish: z + i cos + isin pk pk cos + isin cos + isin bund k,, k w cos + isin k k p p w cos + isin + 4p 4p w cos + isin i i O zo zini tekshirish uchun svollr. Kompleks sonning t rifini ting.. i soni qnd son?. Kompleks sonning trigonometrik shklini ozing. 4. Kompleks sonlr ustid qnd mllr bjrildi? 5. Muvr formullrini ozing. 9. Uchinchi trtibli tenglmni echishning Krdno formulsi. Algebrning sosi teoremsi..uchinchi trtibli + + b + c () tenglmning echimini topmiz. () tenglmd + lmshtirish bjrmiz, ntijd b + ( + b + c+ ) ( ) ( ) 9

40 tenglmni hosil qilmiz. Bu tenglmd tnlsk oldidgi koeffitsient g lndi, ni lmshtirish bjrsk, + p+ q () tenglmni hosil qilmiz. Bu uchinchi drjli tenglmning norml shkli deb tldi, bu erd p b, q b + c. 7 () ning echimini u+ J () ko rinishd izlmiz. () ni () g qo ib u J p u J q u + J + q + uj+ p u+ J (4) ( ) ( ) oki ( ) ( )( ) tenglmni hosil qilmiz. Agr uj+ p oki p uj (5) deb tlb qilsk, ì u + u q í p u u î 7 hosil bo ldi. Bundn es u v J Biet teoremsig sosn p z + qz 7 Kvdrt tenglmning ildizlri bo ldi. Bu tenglmni echib quidgilrni topmiz: oki q q p z, ± +, 4 7 q q p q q p u z + + v J z Bundn () formulg sosn: q q p q q p u+ J (6) (6) tenglik Krdno formulsi deb tldi. Bu tenglik ikkit ildizning ig indisidn ibort bo lib, hr bir ildiz ucht qimtg eg; u ning hr bir qimtini J ning hr bir qimti biln olsk, u+ J uchun hmmsi bo lib to qqizt qimtini hosil qilmiz. Ammo () tenglm fqt ucht ildizg eg; shu sbbli, uqoridgi to qqizt qimtdn uchtsini, ni u+ J ig indining (5) shrtni qnotlntiruvchi qimtlrini olishimiz kerk. Shu mqsdd vvl q q p 4 7 u + + 4

41 ildizning ucht qimtini topmiz. Buning uchun, m lumki, u ning bitt, msln u ildizini ning uchinchi drjli cos + i sin, p p cos + isin + i e, 4p 4p cos + isin i e ildizlrig ko ptirish lozim. Ntijd u ning uchinchi drjli ildizlri u, u eu, u e u bo ldi. Endi J ni tegishli qimtlrini (5) shrtdn topmiz: p p p æ p ö J, J e ç ej, u u eu è u ø p p æ p ö J e ç ej, u e u è uø bundn e eknligidn fodlndik. SHund qilib, u ning hr bir qimtini J ning mos qimtig qo shsk, uchun quidgi ucht qimt kelib chiqdi: u+ J, eu+ e u, e u+ ej. Agr bu tengliklrg e v e ning qimtlrini qo sk, () norml tenglmning ildizlri quidgig teng bo ldi: u u i u u i u U hold () tenglmning ildizlri i i eknini e tiborg olsk: u+ J, ( u+ J) + i ( uj), + J, ( + J ) + ( J ), ( + J ) ( J ). (7) ( u+ J) i ( uj). misol tenglmni eching. Echish. Bu tenglmd, b 5, c bo lgni uchun 9 5 p 5, q +. Endi u , 7 7 gr u desk, J hosil bo ldi. Demk (7) g sosn:, ( ) + i ( + ), i ( ) i ( + ) i, (8) g sosn berilgn tenglmning echimi:, i, i 4 (8)

42 misol tenglmni eching. Echish. Bu tenglmd, b 6, c 9 bo lgni uchun p 6, q 9. U hold u + +, J 8, 4 7 bundn, + i, i,, + i, i, izlngn echim bo ldi.. Bizg ndrjli ko phd berilgn bo lsin n n n Pn( ) n + n (9) Bu erd n ³ butun son, ¹,,,..., n lr ko phdning koeffitsientlri. Pn ( ) ko phdning ildizi deb o zgruvchining shu ko phdni nolg lntirdign qimtlrig tildi, ni P ( ) bo ls, u hold ko phdning ildizidir. Pn ( ) ko phdni g bo lishdn chiqdign qoldiqni bo lish jronini bjrm turib topish imkonini berdign muhim teoremni keltirmiz. Bezu teoremsi. Pn ( ) ko phdni ikkihdg bo lishdn chiqdign qoldiq Pn ( ) ko phdning dgi qimtig teng. Pn ( ) ko phdni ikkihdg bo lib, quidgini hosil qilmiz: Pn( ) ( ) Qn ( ) + R, Qn ( ) bo linm, R qoldiq. misol. P( ) ko phdni: ), ) + i ikkihdlrg bo lishdn chiqdign qoldiqni toping. Echish. ) P( ) , R, ) P( i) 8( i) + 4( i) + 8i + 4i i, R + 8i. Bezu teoremsining ntijsi. Agr Pn ( ) ko phdning ildizi bo ls, ni Pn ( ) bo ls, u hold Pn ( ) ko phd g qoldiqsiz bo lindi, ni Pn( ) ( ) Qn ( ) tenglik o rinli bo ldi. Algebrning sosi teoremsi. Hr qnd ndrjli ko phd kmid bitt ildizg eg. Teoremni isbotsiz qbul qilmiz. Bu teoremni ntijsi siftid quidgi teoremini keltirmiz: n n n Teorem. ndrjli hr qnd P ( ) n n n ko phd ko rinishidgi n t chiziqli ko ptuvchig jrldi, ni P ( ) ( )( )... n ( n). Xullos: ndrjli ko phd n tdn ortiq ildizg eg bo l 4

43 olmdi. O zo zini tekshirish uchun svollr. Uchinchi trtibli tenglmni echishning Krdno formulsini ozing.. ndrjli ko phdning umumi ko rinishini ozing.. Algebrning sosi teoremsini ting. 4. ndrjli ko phdni necht chiziqli ko ptuvchig jrtish mumkin.. Vektor. Vektorlr ustid mllr. Ikki vektorning sklr ko ptmsi. Vektorlr. Fizik, menik, tenik v mtemtikd sosn ikki il kttliklr biln ish ko rildi. Ulrdn biri o zining son qimti biln to l rkterlnib, sklr miqdorlr oki sklrlr deb tldi. Ikkinchi tur kttliklrni to l hrkterlsh uchun ulrning son qimtlrigin etrli bo lm, blki o nlishi hm berilgn bo lishi kerk. O zining son qimti biln birg o nlishi m lum bo lgnd to l rkterlndign kttliklr vektor midorlr oki vektorlr deb tldi. T rif. Yo nlishg eg bo lgn kesm vektor deb tldi. Vektorlr boshlnish v tugsh nuqtlri orqli AB, BC K kbi oki а, в, с ko rinishid belgilndi. Vektorning son qimti uning moduli oki uzunligi uuur шакл deildi v AB biln belgilndi. Ikki а v b vektorlr bir to g ri chiziqd oki prlel to g ri chiziqd ots kolliner vektorlr deb tldi. b Bitt tekislikd oki prllel tekisliklrd otgn а v b vektorlr komplnr vektorlr deb tldi. а v b kolliner, bir il o nlishli, uzunliklr teng vektorlr bo ls o zro teng vektorlr bo ldi. shkld o zro teng vektorlr tsvirlngn. Bundn vektorlrni o zini o zig prllel ko chirish mumkinligi kelib chiqdi. Vektorlr ustid mllr.. Vektorlrni qo shish. а v b с vektorlr berilgn bo lsin. Bu vektorlrni boshini biror A nuqtg ko chirmiz. Ikki а v b vektorlrni ig indisi deb tmonlri а С ь а v b vektorlrdn ibort prlellogrmning A 4shkl uchidn chiqqn AE diognlig teng с vektorg A tildi (prllelogrm qoidsi). с а + в (4shkl). Vektorlrni irish. Prllelogrmning ikkinchi diognli BC g teng d Е В 4

44 А 5shkl С d b В Е.Vektorni song ko ptirish. а vektorni k (k const) sonig ko ptmsi deb, uzunligi k g teng bo lgn с vektorg tildi. c k. Agr k > bo ls, с vektor unlishi а vektor unlishi biln bir il, ks hold es с vektor unlishig qrmqrshi bo ldi. Agr k bo ls, c k bo ldi. 4.Vektorlrning proektsisi. To g ri burchkli koordintlr sistemsid boshi dn chiqqn OM vektor berilgn bo lsin. (6shkl). Bu vektorning OX, OY, OZ o qlridgi proektsilrini topish uchun, Z OM vektor oiridn YOZ tekisligig М prllel tekislik o tkzib, bu tekislikni OX o qi biln kesishgn nuqtsini M, XOY М tekisligig prllel tekislik o tkzib bu tekislikni OY o qi biln kesishgn nuqtsini M, OXY tekisligig prlel М tekislik o tkzib, bu tekislikning OZ nuqtsini M deb belgilmiz. X OM vektorning OX, OY, OZ koordint О М 6шакл o qlridgi proektsilri mos rvishd OM, OM, OM g teng bo ldi. Bu proektsilrning hr biri OM vektorning o qlrdgi komponentlridir. Chizmdn ko rinib turibdiki, OM vektor OM, OM, OM vektorlrning ig indisig teng. uuuur uuuur uuuur uuuur OM OM + OM + OM () Vektorlrni () ko rinishd tsvirlsh vektorning komponentlrg oki tshkil etuvchilri orqli ifodlsh deb tldi. Ko pinch koordint o qlrig mos keluvchi sosi birlik vektorlrni tnlb olish qul bo ldi. OX, OY, OZ o qlridgi birlik vektorlrni mos rvishd i, jk, lr biln belgillik. Bulr ko pinch ortogonl vektorlr deb hm tildi. Y 44

Fizika-matematika fakul`teti. Geometriya fanidan

Fizika-matematika fakul`teti. Geometriya fanidan O`zekiston Respuliksi Xlq t`limi vzirligi Ajinioz nomidgi Nukus dvlt pedgogik instituti Fizik-mtemtik fkul`teti Mtemtik o`qitish metodiksi kfedrsi Geometri fnidn Tuzuvchi: f.-m.f.n. G. Qpnzrov Nukus 5.

Διαβάστε περισσότερα

B.Haydarov, E.Sariqov, A.Qo chqorov

B.Haydarov, E.Sariqov, A.Qo chqorov .Hydrov, E.Sriqov,.Qo chqorov GEMETRIY 9 zbekiston Respubliksi Xlq t limi vzirligi umumiy o rt t lim mktblrining 9-sinfi uchun drslik siftid tsdiqlgn «zbekiston milliy ensiklopediysi» vlt ilmiy nshriyoti

Διαβάστε περισσότερα

SH. A. ALIMOV, O. R. XOLMUHAMEDOV, M. A. MIRZAAHMEDOV. Umumiy o rta ta lim maktablarining 7- sinfi uchun darslik

SH. A. ALIMOV, O. R. XOLMUHAMEDOV, M. A. MIRZAAHMEDOV. Umumiy o rta ta lim maktablarining 7- sinfi uchun darslik SH A ALIMOV, O R XOLMUHAMEDOV, M A MIRZAAHMEDOV Umumiy o rt t lim mktlrining 7- sinfi uchun drslik Qyt ishlngn v to ldirilgn 5- nshri O zekiston Respuliksi Xlq t limi vzirligi tsdiqlgn O QITUVCHI NASHRIYOT-MATBAA

Διαβάστε περισσότερα

19 ning oxirgi uchta raqamini toping. 5. 0<x< 2

19 ning oxirgi uchta raqamini toping. 5. 0<x< 2 FOYDALANILGAN ADABIYOTLAR O QUVCHILARNI MATEMATIK OLIMPIADALARGA TAYYORLASH MA Mirzhmedov МАТЕМАТИКА В ШКОЛЕ v КВАНТ (Rossi shrlri) jurllriig turli illrdgi solri Teglm butu solrd echt echimg eg: Teglmi

Διαβάστε περισσότερα

IKROM RAHMONOV. O zbekiston Respublikasi Xalq ta limi vazirligi umumiy o rta ta lim maktablari uchun darslik sifatida tavsiya etgan

IKROM RAHMONOV. O zbekiston Respublikasi Xalq ta limi vazirligi umumiy o rta ta lim maktablari uchun darslik sifatida tavsiya etgan IKM MNV ekiston espuliksi Xlq t limi virligi umumi o rt t lim mktlri uchun rslik sifti tvsi etgn To lirilgn v qt ishlngn 2-nshri QITUVI NSIYT-MT IJDIY UYI TSKENT 2014 U K 744-512.164(075) KK 30.11721 30

Διαβάστε περισσότερα

BITIRUV MALAKAVIY ISHI

BITIRUV MALAKAVIY ISHI O ZBEKISTON RESPUBLIKSI OLIY V O RT MXSUS T LIM VZIRLIGI QRSHI DVLT UNIVERSITETI MTEMTIK NLIZ V LGEBR KFEDRSI Nzrov Frru Shurtovichig 546000 mtmti t lim yo lishi bo yich blvr drsii olish uchu CHIZIQLI

Διαβάστε περισσότερα

O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI SAMARQAND IQTISODIYOT VA SERVIS INSTITUTI. Begmatov A. MATEMATIKA KAFEDRASI

O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI SAMARQAND IQTISODIYOT VA SERVIS INSTITUTI. Begmatov A. MATEMATIKA KAFEDRASI O ZBEKISTON RESPUBLIKASI OLIY VA O RTA MAXSUS TA LIM VAZIRLIGI SAMARQAND IQTISODIYOT VA SERVIS INSTITUTI Begmtov A. OLIY MATEMATIKA KAFEDRASI Fuksiyig dieresili v dieresil hisoig sosiy teoremlri mliy mshg

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*

())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* ! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+

Διαβάστε περισσότερα

o quv yili matematikadan 9-sinf imtihon biletlari yechimlari 1-bilet = 0,75 1,2+0,9. = 73; Javob: <CAB= 730

o quv yili matematikadan 9-sinf imtihon biletlari yechimlari 1-bilet = 0,75 1,2+0,9. = 73; Javob: <CAB= 730 . (,,87),+0,9 40: 50. + x+ X, 8±0 ; x 6 8 0 6 05-06-o quv yili matematikadan 9-sinf imtihon biletlari yechimlari -bilet 0,75,+0,9 90 0,9+0,9 90 0; ; (x-) +(x+),5(x-)(x+); x 4x-4+4x+43x -3; 3x -8x-30; (-8)

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

FOYDALANILGAN ADABIYOTLAR raqamlarining ba zilari orasiga + va - ishoralarini shunday qo yingki, natijada 100 hosil bo lsin.

FOYDALANILGAN ADABIYOTLAR raqamlarining ba zilari orasiga + va - ishoralarini shunday qo yingki, natijada 100 hosil bo lsin. FOYDALANILGAN ADABIYOTLAR. MATEMATIKA sinf uchun darslik. J. Ikromov. Toshkent 998.. MATEMATIKA sinf uchun darslik. M.A.Mirzaahmedov. Toshkent 00. MATEMATIKA 6 sinf uchun o quv qo llanma. J.Ikromov. Toshkent

Διαβάστε περισσότερα

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris

Διαβάστε περισσότερα

ALGEBRA VA MAÒEMAÒIK ANALIZ ASOSLARI

ALGEBRA VA MAÒEMAÒIK ANALIZ ASOSLARI O ZBEKISÒON RESPUBLIKASI OLIY VA O RÒA MAXSUS ÒA LIM VAZIRLIGI O RÒA MAXSUS, KASB-HUNAR ÒA LIMI MARKAZI A. U. Abduhamidov, H. A. Nasimov, U. M. Nosirov, J. H. Husanov ALGEBRA VA MAÒEMAÒIK ANALIZ ASOSLARI

Διαβάστε περισσότερα

! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < < K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..

Διαβάστε περισσότερα

(... )..!, ".. (! ) # - $ % % $ & % 2007

(... )..!, .. (! ) # - $ % % $ & % 2007 (! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-

Διαβάστε περισσότερα

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

!#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667 !"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000

Διαβάστε περισσότερα

!"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%' " (&! #!$"/001

!#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. )!#)! ##%'  (&! #!$/001 !"#! $%&'$% %(' ') '#*#(& ( #'##+,-'!$%(' & ('##$%(' &#' & ('##$%('. ') '#*#(& )!#)! ##%' " (&! #!$"/001 ')!' &'# 2' '#)!( 3(&/004&' 5#(& /006 # '#)! 7!+8 8 8 #'%# ( #'## +,-'!$%(' & ('##$%('9&#' & ('##$%('9')

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

March 14, ( ) March 14, / 52

March 14, ( ) March 14, / 52 March 14, 2008 ( ) March 14, 2008 1 / 52 ( ) March 14, 2008 2 / 52 1 2 3 4 5 ( ) March 14, 2008 3 / 52 I 1 m, n, F m n a ij, i = 1,, m; j = 1,, n m n F m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a

ĐỀ SỐ 1. ĐỀ SỐ 2 Bài 1 : (3 điểm) Thu gọn các biểu thức sau : Trần Thanh Phong ĐỀ THI HỌC KÌ 1 MÔN TOÁN LỚP O a a 2a Trần Thanh Phong 0908 456 ĐỀ THI HỌC KÌ MÔN TOÁN LỚP 9 ----0O0----- Bài :Thưc hiên phép tính (,5 đ) a) 75 08 b) 8 4 5 6 ĐỀ SỐ 5 c) 5 Bài : (,5 đ) a a a A = a a a : (a > 0 và a ) a a a a a) Rút gọn A b)

Διαβάστε περισσότερα

Erkki Mäkinen ja Timo Poranen Algoritmit

Erkki Mäkinen ja Timo Poranen Algoritmit rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009

Διαβάστε περισσότερα

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs

Διαβάστε περισσότερα

Im{z} 3π 4 π 4. Re{z}

Im{z} 3π 4 π 4. Re{z} ! #"!$%& '(!*),+- /. '( 0 213. $ 1546!.17! & 8 + 8 9:17!; < = >+ 8?A@CBEDF HG

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison

Διαβάστε περισσότερα

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο. 728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.

Διαβάστε περισσότερα

/&25*+* 24.&6,2(2**02)' 24

/&25*+* 24.&6,2(2**02)' 24 !! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. æ η γραφική της παράσταση να διέρχεται από το σημείο Mç

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. æ η γραφική της παράσταση να διέρχεται από το σημείο Mç Να βρεθούν τα α και β Î R, ώστε η συνάρτηση ì 4 ημ - + = í - î α + β < ³ να είναι συνεχής και æ η γραφική της παράσταση να διέρχεται από το σημείο Mç è,- ö ø Να βρείτε τα α, β, γ Î R, ώστε να είναι συνεχής

Διαβάστε περισσότερα

) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,

Διαβάστε περισσότερα

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio

Διαβάστε περισσότερα

ITU-R P (2012/02)

ITU-R P (2012/02) ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU

Διαβάστε περισσότερα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Z L L L N b d g 5 *  # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1  5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3  # Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H

Διαβάστε περισσότερα

v w = v = pr w v = v cos(v,w) = v w

v w = v = pr w v = v cos(v,w) = v w Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ

Διαβάστε περισσότερα

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -

Διαβάστε περισσότερα

Sog liqni saqlash vazirligi Toshkent Farmatsevtika Instituti Muxandislik grafikasi fanidan ma ruzalar matni

Sog liqni saqlash vazirligi Toshkent Farmatsevtika Instituti Muxandislik grafikasi fanidan ma ruzalar matni Sog liqni saqlash vazirligi Toshkent Farmatsevtika Instituti Muxandislik grafikasi fanidan ma ruzalar matni Tasdiqlayman O quv ishlari bo yicha prorektor prof. X.S Zanutdinov 2014 y Toshkent-2014 1 Ushbu

Διαβάστε περισσότερα

1951 {0, 1} N = N \ {0} n m M n, m N F x i = (x i 1,..., xi m) x j = (x 1 j,..., xn j ) i j M M i j x i j m n M M M M T f : F m F f(m) f M (f(x 1 1,..., x1 m),..., f(x n 1,..., xn m)) T R F M R M R x

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

PDF hosted at the Radboud Repository of the Radboud University Nijmegen PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/52779

Διαβάστε περισσότερα

Stereometriya asoslari. 8. Aksiomatik nazariya. Stereometriya aksiomalari. Ularning planimetriya aksiomalari bilan aloqasi. Fazodagi aksiomalar

Stereometriya asoslari. 8. Aksiomatik nazariya. Stereometriya aksiomalari. Ularning planimetriya aksiomalari bilan aloqasi. Fazodagi aksiomalar Stereometriya asoslari. 8. Aksiomatik nazariya. Stereometriya aksiomalari. Ularning planimetriya aksiomalari bilan aloqasi. Fazodagi aksiomalar Stereometriya, ya'ni fazodagi geometriyani o'rganishni biz

Διαβάστε περισσότερα

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! "c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I " CD β U3

ο3 3 gs ftffg «5.s LS ό b a. L Μ κ5 =5 5 to w *! .., TJ ο C5 κ .2 '! c? to C φ io -Ρ (Μ 3 Β Φ Ι <^ ϊ bcp Γί~ eg «to ιο pq ΛΛ g Ό & > I  CD β U3 I co f - bu. EH T ft Wj. ta -p -Ρ - a &.So f I P ω s Q. ( *! C5 κ u > u.., TJ C φ Γί~ eg «62 gs ftffg «5.s LS ό b a. L κ5 =5 5 W.2 '! "c? io -Ρ ( Β Φ Ι < ϊ bcp «δ ι pq ΛΛ g Ό & > I " CD β U (Ν φ ra., r

Διαβάστε περισσότερα

funksiyaning birinchi tartibli xususiy hosilasidan

funksiyaning birinchi tartibli xususiy hosilasidan A RUZA 8 URAKKA UNKSIYANING HOSILASI. TO`LA DIЕRЕNTSIAL TUSHUNCHASI. EKSTRЕULARI. TAQRIIY HISOLASH. DASTURIY PAKETLAR YORDAIDA HISOLASH. aqsad: Talabalarga ko po zgaruvchl uksalarg deresal, ekstremumlar

Διαβάστε περισσότερα

ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ. 2 f (x) =, να βρεθεί ο k Î R, ώστε να. . β) Να βρείτε το. , αν για κάθε x Î U(, á) όρια lim fx ( ) και lim gx ( ).

ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ. 2 f (x) =, να βρεθεί ο k Î R, ώστε να. . β) Να βρείτε το. , αν για κάθε x Î U(, á) όρια lim fx ( ) και lim gx ( ). ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΒΑΣΙΚΕΣ ΑΣΚΗΣΕΙΣ Αν για την συνάρτηση f ισχύει ( ) το f () Έστω η συνάρτηση υπάρχει το f () 7 ( k ) f = 4 για κάθε Î R να βρεθεί 7 49 f () = να βρεθεί ο k Î R ώστε να 7 Έστω η συνάρτηση f(

Διαβάστε περισσότερα

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ

ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ? Εύρεση εφαπτόμενης της γνωστό σημείο (, ( )) με την βοήθεια του ορισμού: Εάν το σημείο αλλαγής τύπου η σημείο μηδενισμού της ύπαρξης ποσότητας, εξετάζω αν η είναι παραγωγισιμη

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)

Διαβάστε περισσότερα

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s

Διαβάστε περισσότερα

! "#$ %$ & ' ( )*" +, -../

! #$ %$ & ' ( )* +, -../ !"#$%$& ' ( )*"+, -../ *)"123$45"4%$!"%!", 62" #$7" $!6$ $$!$8592*!" $1:" #$8 *);"*)3)"4%$6$*% #3!)*%$!$*"#$%""3#"$ 3$#3"%! ) :!)"%""

Διαβάστε περισσότερα

Vn 1: NHC LI MT S KIN TH C LP 10

Vn 1: NHC LI MT S KIN TH C LP 10 Vn : NHC LI MT S KIN TH C LP 0 Mc ích ca vn này là nhc li mt s kin thc ã hc lp 0, nhng có liên quan trc tip n vn s hc trng lp. Vì thi gian không nhiu (khng tit) nên chúng ta s không nhc li lý thuyt mà

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH

Διαβάστε περισσότερα

k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)

Διαβάστε περισσότερα

ẋ = f(x) n 1 f i (i = 1, 2,..., n) x i (i = 1, 2,..., n) x(0) = x o x(t) t > 0 t < 0 x(t) x o U I xo I xo : α xo < t < β xo α xo β xo x(t) t β t α + x f(x) = 0 x x x x V 1 x x o V 1 x(t) t > 0 x o V 1

Διαβάστε περισσότερα

DC BOOKS. H-ml-c-n-s-b- -p-d-n- -v A-d-n-b-p-w-a-p-¼-v

DC BOOKS. H-ml-c-n-s-b- -p-d-n- -v A-d-n-b-p-w-a-p-¼-v BÀ. tdmj³ Xn-cp-h-\- -]p-cw kz-tz-in. 2004 ap-xâ [-\-Im-cy ]-{X-{]-hÀ- -\cw-k v. XpS- w Zo-]n-I- Zn-\- -{X- nâ. C-t mä am-xr-`q-an Zn-\- -{X- n-sâ {]-Xnhmc _n-kn\-kv t]pm-b "[-\-Im-cy-' n-sâbpw ssz-\w-zn-\

Διαβάστε περισσότερα

P r s r r t. tr t. r P

P r s r r t. tr t. r P P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΑΣΚΗΣΕΙΣ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ν ν æ α + i ö æ i - α ö Να βρείτε όλες τις τιμές της παράστασης Α = ç, νî Ν αi + ç αi è - ø è + ø και α Î R Να αναλύσετε το μιγαδικό = 5 + i σε άθροισμα δύο μιγαδικών,, των οποίων οι εικόνες βρίσκονται

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

01 A. b = 2 b = n b = n + 1

01 A. b = 2 b = n b = n + 1 P P 1èt s Ð P Ôst ì t è t Ð Ð t èr è ❼ ❼s t t s s Ð s Ð sô t r s Ð t s Ô ❼r rì ì èq Ð ì r t t èr Ôt r t r trðt rìq r r❼2t r rqðs 1èt s t r t ì s s ❼ ì s èq Ð r❼2t st r t ì st Ôt r ì st trðt ì P t r tè

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

Mesh Parameterization: Theory and Practice

Mesh Parameterization: Theory and Practice Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

MÉTHODES ET EXERCICES

MÉTHODES ET EXERCICES J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com

Διαβάστε περισσότερα

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( ((( ? / / / o/ / / / o/ / / / 1 1 1., D 1 1 1 D 1, E F 1 D 1. = a, D = b, 1 = c. a, b, c : #$ #$ #$ 1) 1 ; : 1)!" ) D 1 ; ) F ; = D, )!" D 1 = D + DD 1, % ) F = D + DD 1 + D 1 F, % 4) EF. 1 = 1, 1 = a + b

Διαβάστε περισσότερα

(G) = 4 1 (G) = 3 (G) = 6 6 W G G C = {K 2,i i = 1, 2,...} (C[, 2]) (C[, 2]) {u 1, u 2, u 3 } {u 2, u 3, u 4 } {u 3, u 4, u 5 } {u 3, u 4, u 6 } G u v G (G) = 2 O 1 O 2, O 3, O 4, O 5, O 6, O 7 O 8, O

Διαβάστε περισσότερα

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( ) Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ4) Περίοδος 8-9 ΕΡΓΑΣΙΑ η Θέμα (μονάδες ) i. Δείξτε ότι ( a b) c a ( b c ) + b( a c ). a b c+ c a b+ b c a ii. Δείξτε την ταυτότητα Jacobi : ( ) ( ) ( ) Απάντηση i.

Διαβάστε περισσότερα

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c GENIKA MAJHMATIKA ΓΙΩΡΓΙΟΣ ΚΑΡΑΒΑΣΙΛΗΣ TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c 26 Μαΐου 2011 Συνάρτηση f ονομάζεται κάθε σχέση από ένα σύνολο A (πεδίο ορισμού) σε σύνολο B με την οποία

Διαβάστε περισσότερα

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu

Διαβάστε περισσότερα

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada

Διαβάστε περισσότερα

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil.

Formulario Básico ( ) ( ) ( ) ( ) ( 1) ( 1) ( 2) ( 2) λ = 1 + t t. θ = t ε t. Mecánica de Medios Continuos. Grado en Ingeniería Civil. Mecánica e Meios Continos. Gao en Ingenieía Ciil. Fomlaio Básico Tema. Descipción el moimiento χ (,) t χ (,) t (,) t χ (,) t t t Tema. Defomación s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk

Διαβάστε περισσότερα

..,..,.. ! " # $ % #! & %

..,..,.. !  # $ % #! & % ..,..,.. - -, - 2008 378.146(075.8) -481.28 73 69 69.. - : /..,..,... : - -, 2008. 204. ISBN 5-98298-269-5. - -,, -.,,, -., -. - «- -»,. 378.146(075.8) -481.28 73 -,..,.. ISBN 5-98298-269-5..,..,.., 2008,

Διαβάστε περισσότερα

*+,'-'./%#0,1"/#'2"!"./+3(,'4+*5#( *9.!/%#+7(,'#%*!.2 :;!"#/5".+!"#$() $!"#%"&'#$() 50&(#5"./%#0,1"/#'2"+*5#(35&* &*,'2-<:):0&3%!.2=#(,1,.%!.

*+,'-'./%#0,1/#'2!./+3(,'4+*5#( *9.!/%#+7(,'#%*!.2 :;!#/5.+!#$() $!#%&'#$() 50&(#5./%#0,1/#'2+*5#(35&* &*,'2-<:):0&3%!.2=#(,1,.%!. # #$%&'#$( *+,'-'./%#0,1/#'2./+3(,'4+*5#(355. 678*9./%#+7(,'#%*.2 :; #/5.+#$( *+,'-'./%#0,1/#'2./+3(,'4+*5#(355. 678*9./%#+7(,'#%*.2 #$% $ #%&'#$( 50&(#5./%#0,1/#'2+*5#(35&* &*,'2-

Διαβάστε περισσότερα

ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement)

ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement) Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement) Συµπίεση εικόνας (image compression) Αποκατάσταση εικόνας (Image restoration) ηµήτριος. ιαµαντίδης

Διαβάστε περισσότερα

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω

Διαβάστε περισσότερα

a,b a f a = , , r = = r = T

a,b a f a = , , r = = r = T !" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E

Διαβάστε περισσότερα

Φ3: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ

Φ3: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ Φ: ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α ΘΕΩΡΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΩΣΤΟΛΑΘΟΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΘΕΜΑ Β ΑΣΚΗΣΕΙΣ ΘΕΜΑ Γ ΑΣΚΗΣΕΙΣ ΘΕΜΑ Δ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.

Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải. Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH

Διαβάστε περισσότερα

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371,

3607 Ν. 7.28/88. E.E., Παρ. I, Αρ. 2371, E.E., Παρ. I, Αρ. 271, 16.12. 607 Ν. 7.2/ περί Συμπληρματικύ Πρϋπλγισμύ Νόμς (Αρ. 5) τυ 19 εκδίδεται με δημσίευση στην επίσημη εφημερίδα της Κυπριακής Δημκρατίας σύμφνα με τ Άρθρ 52 τυ Συντάγματς- - Αριθμός

Διαβάστε περισσότερα

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU:

Ch : HÀM S LIÊN TC. Ch bám sát (lp 11 ban CB) Biên son: THANH HÂN A/ MC TIÊU: Ch : HÀM S LIÊN TC Ch bám sát (lp ban CB) Biên son: THANH HÂN - - - - - - - - A/ MC TIÊU: - Cung cp cho hc sinh mt s dng bài tp th ng gp có liên quan n s liên tc cu hàm s và phng pháp gii các dng bài ó

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Couplage dans les applications interactives de grande taille

Couplage dans les applications interactives de grande taille Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

l dmin dmin p k δ i = m p (p l ) p l µ p BCH µ WB t (q+) l l i m h(x) A B C = A B k SNR rec. db k SNR rec. db SNR rec. db p = p = p = SNR rec. db p = k = q = t k σ p(k;{a i} n i= ) n σ p(n;{a i} n i= )

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

Batigoal_mathscope.org ñược tính theo công thức

Batigoal_mathscope.org ñược tính theo công thức SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa

Διαβάστε περισσότερα

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ Αναγνώριση συστημάτων με δεδομένη συνεχή και κρουστική συμπεριφορά

Διαβάστε περισσότερα

..., ISBN: :.!". # -. $, %, 1983 &"$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') "!$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $!

..., ISBN: :.!. # -. $, %, 1983 &$ $ $. $, %, 1988 $ $. ## -. $, ', 1989 (( ). '. ') !$!. $, %, 1991 $ 1. * $. $,.. +, 2001 $ 2. $. $,, 1992 # $! !! " 007 : ISBN: # $! % :!" # - $ % 983 &"$ $ $ $ % 988 $ $ ## - $ ' 989 (( ) ' ') "!$! $ % 99 $ * $ $ + 00 $ $ $ 99!! " 007 -!" % $ 006 ---- $ 87 $ (( %( %(! $!$!" -!" $ $ %( * ( *!$ "!"!* "$!$ (!$! "

Διαβάστε περισσότερα

Minion Pro Condensed A B C D E F G H I J K L M N O P Q R S T U

Minion Pro Condensed A B C D E F G H I J K L M N O P Q R S T U Minion Pro Condensed Latin capitals A B C D E F G H I J K L M N O P Q R S T U V W X Y Z & Æ Ł Ø Œ Þ Ð Á Â Ä À Å Ã Ç É Ê Ë È Í Î Ï Ì İ Ñ Ó Ô Ö Ò Õ Š Ú Û Ü Ù Ý Ÿ Ž Ă Ā Ą Ć Č Ď Đ Ě Ė Ē Ę Ğ Ģ Ī Į Ķ Ĺ Ľ Ļ Ń

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα