Algebra si Geometrie Seminar 7

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Algebra si Geometrie Seminar 7"

Transcript

1 Algebra si Geometrie Seminar 7 Noiembrie 2017

2 ii

3 Succesul este capacitatea de a merge dintr-un esec in altul fara a-ti pierde entuziasmul Winston Churchill 7 Forme biliniare. Forme patratice Suprafete ca si grafice de functii Functiile f : R 2 R merita o atentie deosebita intrucat multe suprafete cunoscute pot fi descrise ca fiind grafice ale unor astfel de functii. Intr-un reper cartezian Oxyz se reprezinta punctele P (x, y, f(x, y)) si astfel obtinem suprafete date prin ecuatia explicita z = f(x, y). Mai jos prezentam cateva exemple: 1

4 In cele ce urmeaza vom prezenta doua probleme: aproximarea afina a unei astfel de functii si studiul punctelor de extrem local. Prima implica utilizarea unei aplicatii liniare pentru a aproxima local o functie f : R 2 R si a doua utilizarea unei forme patratice pentru a testa daca aceasta are sau nu puncte de minim sau maxim local. Aproximarea afina a suprafetelor: Sa consideram o suprafata data explicit sub forma z = f(x, y) unde f indeplineste anumite despre care nu vom discuta acum. Ecuatia planului tangent intr-un punct (a, b, f(a, b)) al acesteia este: z = f(a, b) + f x (a, b)(x a) + f y (a, b)(y b) unde f x (a, b) si f y (a, b) sunt derivatele partiale relativ la x, respectiv y, calculate in (a, b). De fapt se poate observa ca avem o aplicatie liniara definita ca: F (h 1, h 2 ) = f x (a, b) h 1 + f y (a, b) h 2 iar in apropierea punctului (a, b) are loc: f(x, y) f(a, b) + F (x a, y b) Aceasta aproximare poarta numele de aproximare afina a lui f in (a, b). Minime si maxime Pentru a stabili daca o functie f : R R de doua ori derivabila are un punct de minim local in x 0 era suficient sa aratam ca: i) f (x 0 ) = 0 ( x 0 este punct critic) ii) f (x 0 ) > 0 ( pentru f (x 0 ) < 0 este punct de maxim) 2

5 In cazul functiilor f : R 2 R testam daca (x 0, y 0 ) este punct de minim local in felul urmator. Prin definitie Hessiana in (x 0, y 0 ) este matricea: H (x0,y 0) = f xx(x 0, y 0 ) f xy (x 0, y 0 ) f yx (x 0, y 0 ) f yy (x 0, y 0 ) Daca: i) f x (x 0, y 0 ) = 0 si f y (x 0, y 0 ) = 0 (corespunde conditiei f (x 0 ) = 0 din cazul 1-dimensional) ii) pentru orice vector coloana v 0 avem v t H (a,b) v > 0 (expresia corespunde derivatei a doua) atunci f are un punct de minim local in punctul (x 0, y 0 ). Remarca: Din punct de vedere alegbric aplicatia F (v) = v t H (a,b) v poarta numele de forma patratica iar matricea H (a,b) se numeste matricea atasata formei patratice. Probleme de optimizare O companie produce produsele P 1,..., P n cu preturile unitare x 1, x 2,..., x n care trebuie determinate. Materia prima M 1, M 2,... M n care trebuie folosita este disponibila in cantitatile r 1, r 2,..., r n. Fie : r ij : cantitatea de materie prima M i necesara producerii unei unitati de produs P j, unde i = 1, m, j = 1, n y j : cantitatea de P j care trebuie produs si vandut intr-o perioada planificata, j = 1, n x 1 Consideram vectorii x =., y =. si r =. si matricea: x n y 1 y n r 11 r r 1,n R = r m1 r m2... r mn Spunem ca doi vectori n-dimensionali satisfac inegalitatea v w daca fiecare componenta a lui v este mai mica decat componenta corespunzatoare a lui w. Avand aceasta regula stabilita suntem nevoiti sa impunem urmatoarele restrictii: r 1 r n y 0 Ry r ( produce unitati din fiecare produs) (cantitatile materie prima necesare sa fie mai mici decat cele disponibile) 3

6 Presupunem o relatie de tipul: y = Qx + q intre preturi si vanzari, Q M m n (R), q M n 1 (R). Elementele matricei Q si ale vectorului q pot fi determinate statistic prin studiul comportamentului consumatorului. Inlocuind in relatiile de mai sus obtinem: Qx q RQx r Rq. Scopul este sa marim venitul brut dat de: v = x i y i = x t y = x t (Qx + q) = x t Qx + q t x i=1 Obtinem urmatorul model pentru a determina preturile optimale: daca: max x t Qx + q t x Qx q RQx r Rq x 0 Ilustram acest model prin urmatorul exemplu: O patiserie produce prajiturile: P 1 : chec P 2 : prajitura cu mere P 3 : prajitura cu lamaie Printre altele urmatoarele ingrediente sunt necesare si sunt disponibile in cantitati limitate: M 1 : faina M 2 : oua M 3 : unt M 4 : zahar In anii anteriori patiseria a vandut cele trei tipuri de prajituri la preturi diferite si a studiat relatia de dependenta a vanzarilor de preturi obtinand urmatoarea relatie: y x y 2 = x y 3 De retinut ca pentru y i si q i avem ca unitate de masura kg iar pentru x i avem RON/kg. Sa consideram prima linie a relatiei de mai sus: x 3 y 1 = 3x 1 + x

7 adica vanzarile inregistrate pentru prajitura P 1 nu depind doar de pretul unitar x 1 dar si de pretul unitar al prajiturii P 3. Daca, de exemplu, x 1 creste cu o unitate, in timp ce x 3 ramane neschimbat, atunci vanzarile y 1 ale prajiturii P 1 se reduc cu 3 kg. Acest fenomen se explica prin faptul ca anumiti clienti care obisnuiau sa cumpere prajitura cu lamaie se decid sa cumpere chec in schimb daca prima devine mai scumpa. In mod similar se pot explica si relatiile date de celelalte doua linii. Cantitatile lunare disponibile de ingrediente sunt (r 1, r 2, r 3, r 4 ) = (20, 15, 13, 18) exprimate in kg. Matricea consumurilor este: R = Aceasta matrice are urmatoarea interpretare: prima coloana a lui R reprezinta consumurile necesare prepararii checului: 0.4 kg faina, 0.15 kg oua, 0.25 kg unt si 0.1 kg zahar. Prin calcul se obtine: RQ =, r Rq = rezultand urmatorul model: cu restrictiile: max 3x 1 4x 2 1 5x x 1 x x x x 3 3x 1 x x x 1 + 5x x 1 1.2x x x 1 0.4x 2 0.6x x 1 1.2x x x 1 0.8x 2 0.4x 3 32 x 1, x 2, x 3 0 Folosind un software mathematic adecvat, de exemplu Matlab, obtinem urmatoarele preturi optime: x 1 = RON/kg (pretul checului ) x 2 = RON/kg x 3 = RON/kg (pretul prajiturii cu mere) (pretul prajiturii cu lamaie) rezultand un venit brut optim de RON pe luna. 5

8 Notiuni teoretice: se numeste forma biliniara o aplicatie φ : V V IR cu proprietatile: φ(αv + βw, u) = αφ(v, u) + βφ(w, u) φ(u, αv + βw) = αφ(u, v) + βφ(u, w) u, v, w V, α, β IR. o forma biliniar φ se numeste simetrica daca φ(v, w) = φ(w, v) o forma biliniara φ se numeste pozitiv definita daca: φ(v, v) 0, v V si φ(v, v) = 0 = v = 0 o aplicatie F : V IR se numeste forma patratica daca exista o forma biliniara simetrica φ astfel incat F (v) = φ(v, v), pentru orice v V. daca F este o forma patratica, atunci forma biliniara simetrica (polara) φ din care provine este: φ(v, w) = 1 [F (v + w) F (v) F (w)] 2 v, w V fie V un spatiu vectorial real si B = {e 1, e 2,..., e n } o baza a sa, consideram F : V IR o forma patratica si φ polara sa, atunci pentru orice vector de forma x = x i e i avem: i=1 ( n ) F ( x) = φ( x, x) = φ x i e i, x i e i = = i=1 a ii x 2 i + i=1 i=1 2a ij x i x j i<j i=1 j=1 a ij x i x j unde a ij = φ(e i, e j ) formeaza matricea asociata formei biliniare φ in baza B. daca A este matricea asociata lui φ in baza B = {e 1, e 2,..., e n } atunci putem scrie: φ(v, w) = [v] t B A [w] B. Schimbarea matricei asociate la o schimbare de baze: daca F are in baza B matricea asociata A atunci in baza B matricea asociata TBB t A T BB va avea 6

9 Studiem doua metode de reducere la forma canonica a unei forme patratice: Metoda lui Gauss Fie V un spatiu vectorial si F : V IR o forma patratica iar B = {e 1, e 2,..., e n } o baza in care: F ( x) = i=1 j=1 a ij x i x j matricea A = (a ij ) fiind nenula. Atunci exista o baza B = {e 1, e 2,..., e n} in V in care F se scrie sub forma: F (z 1, z 2,..., z n ) = λ 1 z λ 2 z λ n z n 2 numita forma redusa canonica. Cazul 1: a 11 0, analog a ii 0 (adica atunci cand exista patrate in expresia analitica a lui F ) primul pas consta in construirea unui patrat perfect folosind termenii ce contin coordonata x 1 scriind fortat: a 11 x a 12 x 1 x a 1n x 1 x n = 1 a 11 (a 2 11x a 11 x 1 (a a 1n )) = 1 a 11 (a 11 x a 12 x 2 + a 13 x a 1n ) 2 + θ(x 2, x 3,..., x n ) aceasta scriere conduce la transformarea de coordonate locale: y 1 = a 11 x 1 + a 12 x a 1n x 1n y 2 = x 2... y n = x n dupa transformare obtinem o forma F (y 1, y 2, y 3 ), se continua procedeul pana la obtinerea formei canonice Cazul 2: daca nu exista a ii 0 oricare are fi i = 1, n (adica atunci cand nu exista patrate in expresia analitica a lui F ) Se realizeaza transformarea: x 1 = y 1 + y 2 x 2 = y 1 y 2 x 3 = y 3... x n = y n si in urma acesteia se vor obtine patrate, apoi continuam conform cazului 1. Formula utila: inversa matricei: 1 a 11 a a 1n a 11 a12 a a1n a T = este: T =

10 Metoda valorilor proprii se determina matricea asociata formei patratice in baza canonica [F ] Bc. se determina apoi valorile proprii ale acesteia si subspatiile proprii corespunzatoare daca λ 1, λ 2,..., λ n sunt valorile proprii atunci forma redusa este: F (z 1, z 2,..., z n ) = λ 1 z λ 2 z λ n z 2 n pentru a determina o baza in care obtinem aceasta forma redusa va trebui sa reunim toate bazele subspatiilor proprii intr-o baza: B = B Sλ1 B Sλ2... B Sλn apoi aceasta baza B trebuie ortonormata prin procedeul Gram-Schmidt, vezi exemplul de mai jos: Probleme rezolvate Problema 1. Sa se reduca forma patratica de mai jos la o forma canonica, precizand si o baza in care are aceasta forma: F : R 3 R, F (x 1, x 2, x 3 ) = 2x 1 x 2 2x 2 x 3 +2x 1 x 3. Solutie: Vom folosi metoda valorilor proprii: din expresia analitica a acestei forme se obtine matricea [F ] Bc relativ la baza canonica: coeficientii patratelor se scriu pe diagonala principala coeficientii termenilor mixti se injumatatesc [F ] Bc = De exemplu deoarece avem termenul 2x 1 x 2 vom aseza pe pozitia (1, 2). Acelasi termen 2x 1 x 2 poate fi interpretat ca fiind 2x 2 x 1 deci si pe pozitia (2, 1) tot un 1 asezam. Termenul x 2 1 nu apare deci pe pozitia (1, 1) vom aseza un 0, etc. Matricea se poate completa doar deasupra diagonalei iar restul se obtine prin simetrie. Determinam acum valorile proprii si subspatiile proprii corespunzatoare. Ecuatia caracteristica este: λ 1 1 det([f ] Bc λi) = 1 λ 1 = λ 8

11 care se poate reduce la forma: (λ 1) 2 (λ + 2) = 0, de unde obtinem valoarea proprie λ 1 = 1 cu ordinul de multiplicitate m λ1 = 2 si valoarea proprie λ 2 = 2 cu ordinul de multiplicitate m λ2 = 1. Determinam subspatiul propriu S λ1 si suntem condusi la sistemul ([F ] Bc 1 I)v = 0, adica: x y = z 0 cu solutia: S λ1 = {(α + β, α, β) : α, β R} = {α(1, 1, 0) + β(1, 0, 1) : α, β R} Prin urmare acest susbpatiu vectorial are o baza formata cu vectorii: B Sλ1 = {(1, 1, 0), (1, 0, 1)} Determinam subspatiul S λ2, astfel avem de rezolvat ([F ] Bc +2I)v = 0, adica: x y = z 0 cu solutia S λ2 = {( α, α, α) : α R} a carei baza este B Sλ2 = {( 1, 1, 1)}. Pentru a gasi o baza in care F are forma redusa intai colectam toti vectorii bazelor gasite si formam baza: B = {(1, 1, 0), (1, 0, 1), ( 1, 1, 1)} Baza cautata va fi baza care se obtine dupa ce transformam aceasta baza intr-una care are toti vectorii de lungime 1 si perpendiculari (baza ortonormata) Procedam in felul urmator: vectorii proprii care corespund unor valori proprii distincte sunt deja perpendiculari, adica ( 1, 1, 1) (1, 0, 1) si ( 1, 1, 1) (1, 1, 0). Se verfica usor ca: si: ( 1, 1, 1), (1, 0, 1) := = 0 ( 1, 1, 1), (1, 1, 0) := = 0 vectorii proprii care corespund aceleasi valori proprii trebuie transformati in vectori ortogonali, prin procedul Gram-Schmidt: Notam e 1 = (1, 1, 0) si e 2 = (1, 0, 1) acestia vor fi transformati dupa formula: v 1 = e 1 = (1, 1, 0) 9

12 v 2 = e 2 < e 2, v 1 > < v 1, v 1 > v 1 = (1, 0, 1) = ( 1 2, 1 2, 1) Acesti vectori v 1, v 2 sunt ortogonali, mai ramane sa adaugam si v 3 = ( 1, 1, 1) care era deja ortogonal cu acestia si sa impartim toti vectorii la lungimea lor ( ) v 1 v 1 = (1, 1, 0) = 1 2,, v 2 v 2 = ( 1 2, 1 2, 0) 1 2 ( ) = v 3 v 3 = ( 1, 1, 1) ( ( 1) = 2 ( 6 6 6, 6, 3 3 3, 3, ) 6 3 ) 3 In acest moment vectorii obtinuti sunt ortogonali si de lungime 1. In concluzie, in baza: { ( ) ( ) ( ) } 1 B = 2,, 0, 2 6, 6,, 3 3, 3, 3 forma patratica F este : F (z 1, z 2, z 3 ) = 1 z z z Problema 2. Sa se reduca la forma canonica folosind metoda lui Gauss: F : R 3 R, F (x 1, x 2, x 3 ) = x 1 x 2 + x 1 x 3 + x 2 x 3 Soluţie: In expresia data nu apare niciun patrat, deci facem o transformare (schimbare de baze): x 1 = y 1 + y 2 x 2 = y 1 y 2 x 3 = y 3 Daca notam cu x vectorul care in baza canonica are coordonatele (x 1, x 2, x 3 ) atunci relatia de mai sus o interpretam ca o schimbare a coordonatelor la o schimbare a bazei: [ x] Bc = T BcB 1 [ x] B1 unde [ x] B1 = (y 1, y 2, y 3 ) si evident: T BcB 1 = In noua baza B 1 forma F are o expresie analitica: F (y 1, y 2, y 3 ) = (y 1 + y 2 )(y 1 y 2 ) + (y 1 + y 2 )y 3 + (y 1 y 2 )y 3 10

13 = y 2 1 y y 1 y 3 Acum construim patrate grupand toti termenii care contin y 1 F (y 1, y 2, y 3 ) = y y 1 y 3 y 2 2 = (y 1 + y 3 ) 2 y 2 3 y 2 2 Facem transformarea: si obtinem forma redusa: = (y 1 + y 2 ) 2 y2 2 y3 3 z 1 = y 1 + y 3 z 2 = y 2 z 3 = y 3 F (z 1, z 2, z 3 ) = z 2 1 z 2 2 z 2 3. Ultima transformare se poate interpreta ca fiind o relatie de tipul: pentru: [ x] B2 = T B2B 1 [ x] B T B2B 1 = Baza in care forma patratica F are forma redusa de mai sus este B 2 si pentru aflarea acesteia este suficient sa aflam matricea T BcB 2, care se afla din: T BcB 2 = T BcB 1 T B1B 2 = T BcB 1 T 1 B 2B 1 = In concluzie baza cautata este: B 2 = {(1, 1, 0), (1, 1, 0), ( 1, 1, 1)}. Problema 3. Stabiliti daca urmatoarele forme patratice sunt pozitiv sau negativ definite: F (x 1, x 2, x 3 ) = Solutie: 11

14 Probleme propuse Problema 1. Sa se determine matricea in baza B a formei biliniare F : a) F : IR 2 IR 2 IR, F ((x 1, x 2 ), (y 1, y 2 )) = x 1 y 1 2x 1 y 2 2x 2 y 1 in baza B = {(1, 1), (1, 2)}. b) F : IR 3 IR 3 IR, F ((x 1, x 2, x 3 ), (y 1, y 2, y 3 )) = x 1 y 1 x 2 y 1 +2x 2 y 2 x 3 y 3 in B = {( 1, 1, 1), (3, 1, 0), (2, 0, 0)}. Problema 2. Forma patratica Φ : IR 2 IR este definita prin expresia: Φ(a, b) = a 2 + b 2. Sa se determine expresia analitica a polarei sale. Problema 3. Fie F : IR 3 IR o forma patratica care in baza canonica a lui IR 3 are expresia: a) F (x 1, x 2, x 3 ) = 5x x x 2 3 4x 1 x 2 4x 1 x 3. b) F (x 1, x 2, x 3 ) = 2x x 2 2 x x 1 x 2 8x 1 x 3 + 2x 2 x 3 Sa se reduca la forma canonica folosind metoda Gauss. Problema 4. Fie F : IR 3 IR o forma patratica care in baza canonica a lui IR 3 are expresia F (x 1, x 2, x 3 ) = x 1 x 2 + x 1 x 3 + x 2 x 3. Sa se reduca la forma canonica folosind metoda Gauss. Problema 5. Sa se reduca la o forma canonica forma patratica F : IR 3 IR ce are in baza B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} matricea: A = Problema 6. Stabiliti daca urmatoarele forme biliniare sunt pozitiv sau negativ definite: Problema 7. Sa se reduca la o forma canonica folosind metoda valorilor proprii: F : R 3 R, F (x 1, x 2, x 3 ) = x x 2 2 5x x 1 x 3 + 4x 2 x 3. 12

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Seminar Algebra. det(a λi 3 ) = 0

Seminar Algebra. det(a λi 3 ) = 0 Rezolvari ale unor probleme propuse "Matematica const în a dovedi ceea ce este evident în cel mai puµin evident mod." George Polya P/Seminar Valori si vectori proprii : Solutie: ( ) a) A = Valorile proprii:

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă

Spatii liniare. Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară. Mulţime infinită liniar independentă Noţiunea de spaţiu liniar 1 Noţiunea de spaţiu liniar Exemple Subspaţiu liniar Acoperire (înfăşurătoare) liniară 2 Mulţime infinită liniar independentă 3 Schimbarea coordonatelor unui vector la o schimbare

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă.

CURS 11: ALGEBRĂ Spaţii liniare euclidiene. Produs scalar real. Spaţiu euclidian. Produs scalar complex. Spaţiu unitar. Noţiunea de normă. Sala: 2103 Decembrie 2014 Conf. univ. dr.: Dragoş-Pătru Covei CURS 11: ALGEBRĂ Specializarea: C.E., I.E., S.P.E. Nota: Acest curs nu a fost supus unui proces riguros de recenzare pentru a fi oficial publicat.

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

1.4 Schimbarea bazei unui spaţiu vectorial

1.4 Schimbarea bazei unui spaţiu vectorial Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)).

Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism. (Y = f(x)). Teoremă. (Y = f(x)). Orice izometrie f : (X, d 1 ) (Y, d 2 ) este un homeomorfism Demonstraţie. f este continuă pe X: x 0 X, S Y (f(x 0 ), ε), S X (x 0, ε) aşa ca f(s X (x 0, ε)) = S Y (f(x 0 ), ε) : y

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

CURS 5 Spaţii liniare. Spaţiul liniar R n

CURS 5 Spaţii liniare. Spaţiul liniar R n CURS 5 Spaţii liniare. Spaţiul liniar R n A. Arusoaie arusoaie.andreea@gmail.com andreea.arusoaie@info.uaic.ro Facultatea de Informatică, Universitatea Alexandru Ioan Cuza din Iaşi 30 Octombrie 2017 Structura

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

Puncte de extrem pentru funcţii reale de mai multe variabile reale.

Puncte de extrem pentru funcţii reale de mai multe variabile reale. Puncte de extrem pentru funcţii reale de mai multe variabile reale. Definiţie. Fie f : A R n R. i) Un punct a A se numeşte punct de extrem local pentru f dacă diferenţa f(x) f păstrează semn constant pe

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15

Cursul Măsuri reale. D.Rusu, Teoria măsurii şi integrala Lebesgue 15 MĂSURI RELE Cursul 13 15 Măsuri reale Fie (,, µ) un spaţiu cu măsură completă şi f : R o funcţie -măsurabilă. Cum am văzut în Teorema 11.29, dacă f are integrală pe, atunci funcţia de mulţime ν : R, ν()

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIE. Dorel Fetcu

ELEMENTE DE GEOMETRIE. Dorel Fetcu ELEMENTE DE GEOMETRIE ANALITICĂ ŞI DIFERENŢIALĂ Dorel Fetcu Acest curs este un fragment din manualul D. Fetcu, Elemente de algebră liniară, geometrie analitică şi geometrie diferenţială, Casa Editorială

Διαβάστε περισσότερα

APLICAŢII ALE CALCULULUI DIFERENŢIAL. Material pentru uzul studenţilor de la FACULTATEA DE

APLICAŢII ALE CALCULULUI DIFERENŢIAL. Material pentru uzul studenţilor de la FACULTATEA DE 1 APLICAŢII ALE CALCULULUI DIFERENŢIAL Material pentru uzul studenţilor de la FACULTATEA DE MECANICĂ 2 Contents 1 Aplicaţii ale calculului diferenţial 5 1.1 Extreme ale funcţiilor reale de mai multe variabile

Διαβάστε περισσότερα

2.3 Geometria analitică liniarăînspaţiu

2.3 Geometria analitică liniarăînspaţiu 2.3 Geometria analitică liniarăînspaţiu Pentru început sădefinim câteva noţiuni de bază în geometria analitică. Definitia 2.3.1 Se numeşte reper în spaţiu o mulţime formată dintr-un punct O (numit originea

Διαβάστε περισσότερα

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,...

1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,... 1. Sisteme de ecuaţii liniare Definiţia 1.1. Fie K un corp comutativ. 1) Prin sistem de m ecuaţii liniare cu n necunoscute X 1,..., X n şi coeficienţi în K se înţelege un ansamblu de egalităţi formale

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică.

CURS VII-IX. Capitolul IV: Funcţii derivabile. Derivate şi diferenţiale. 1 Derivata unei funcţii. Interpretarea geometrică. Lect dr Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr Lucian MATICIUC CURS VII-IX Capitolul IV: Funcţii derivabile Derivate şi diferenţiale 1

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE

Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ GEOMETRIE Gheorghe PROCOPIUC PROBLEME DE ALGEBRĂ LINIARĂ ŞI GEOMETRIE IAŞI, 005 CUPRINS 1 MATRICE ŞI SISTEME ALGEBRICE LINIARE 5 1.1 Matrice şi determinanţi.......................... 5 1. Sisteme de ecuaţii algebrice

Διαβάστε περισσότερα

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi

Lucian Maticiuc CURS I II. 1 Matrice şi determinanţi. Sisteme de ecuaţii liniare. 1.1 Matrice şi determinanţi Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr Lucian MATICIUC http://mathettituiasiro/maticiuc/ CURS I II Matrice şi determinanţi Sisteme de ecuaţii

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

Algebră liniară CAPITOLUL 3

Algebră liniară CAPITOLUL 3 Algebră liniară CAPITOLUL 3 TRANSFORĂRI LINIARE 3.. Definiţia transformării liniare Definiţia 3... Fie V şi W două spaţii vectoriale peste un corp comutativ K. O funcţie u: V W se numeşte transformare

Διαβάστε περισσότερα

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A =

Cursul de recuperare Algebra. v n. daca in schimb exista coecienti λ 1, λ 2,..., λ n nu toti nuli care satisfac relatia (1), de exemplu λ i 0 = A = Matrice, determinanti Un punct de vedere liniar independent "A judeca matematic nu înseamn a gândi losoc, a judeca losoc nu înseamn a liber, a gândi liber nu înseamn a losof " Blaise Pascal Liniar independenta:

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Lectia III Produsul scalar a doi vectori liberi

Lectia III Produsul scalar a doi vectori liberi Produsul scalar: denitie, proprietati Schimbari de repere ortonormate in plan Aplicatii Lectia III Produsul scalar a doi vectori liberi Oana Constantinescu Oana Constantinescu Lectia III Produsul scalar:

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale

Activitatea A5. Introducerea unor module specifice de pregătire a studenţilor în vederea asigurării de şanse egale Investeşte în oameni! FONDUL SOCIAL EUROPEAN Programul Operaţional Sectorial pentru Dezvoltarea Resurselor Umane 2007 2013 Axa prioritară nr. 1 Educaţiaşiformareaprofesionalăînsprijinulcreşteriieconomiceşidezvoltăriisocietăţiibazatepecunoaştere

Διαβάστε περισσότερα

Capitolul 9. Geometrie analitică. 9.1 Repere

Capitolul 9. Geometrie analitică. 9.1 Repere Capitolul 9 Geometrie analitică 9.1 Repere Vom considera spaţiile liniare (X, +,, R)în careelementelespaţiului X sunt vectorii de pe odreaptă, V 1, dintr-un plan, V sau din spaţiu, V 3 (adică X V 1 sau

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Tranzistoare bipolare şi cu efect de câmp

Tranzistoare bipolare şi cu efect de câmp apitolul 3 apitolul 3 26. Pentru circuitul de polarizare din fig. 26 se cunosc: = 5, = 5, = 2KΩ, = 5KΩ, iar pentru tranzistor se cunosc următorii parametrii: β = 200, 0 = 0, μa, = 0,6. a) ă se determine

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

INTERPOLARE. y i L i (x). L(x) = i=0

INTERPOLARE. y i L i (x). L(x) = i=0 INTERPOLARE Se dau punctele P 0, P 1,..., P n in plan sau in spatiu, numite noduri si avand vectorii de pozitie r 0, r 1,..., r n. Problemă. Să se găsească o curbă (dintr-o anumită familie) care să treacă

Διαβάστε περισσότερα

ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR Interpolare cu ajutorul funcţiilor polinomiale

ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR Interpolare cu ajutorul funcţiilor polinomiale 3 ELEMENTE DE GEOMETRIA COMPUTAŢIONALĂ A CURBELOR 31 Interpolare cu ajutorul funcţiilor polinomiale Prin interpolare se înţelege următoarea problemă: se dau n + 1 puncte P 0, P 1,, P n în plan sau în spaţiu

Διαβάστε περισσότερα

Lectia IV Produsul vectorial a doi vectori liberi

Lectia IV Produsul vectorial a doi vectori liberi Orientarea spatiului E 3 Denitia produsului vectorial. Proprietati Rezolvari de ecuatii vectoriale Schimbari de baze ortonormate in spatiu Aplicatii Lectia IV Produsul vectorial a doi vectori liberi Oana

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

TEMA 7: INTEGRALE NEDEFINITE. Obiective:

TEMA 7: INTEGRALE NEDEFINITE. Obiective: TEMA 7: INTEGRALE NEDEFINITE 61 TEMA 7: INTEGRALE NEDEFINITE Obiective: Definirea principalelor proprietăţi matematice ale integralelor nedefinite Analiza principalelor proprietăţi matematice ale ecuaţiilor

Διαβάστε περισσότερα

a carei ecuatie matriceala este data in raport cu R.

a carei ecuatie matriceala este data in raport cu R. POZITIA RELATIVA A UNEI DREPTE FATA DE O HIPERCUADRICA AFINA REALA. TANGENTE SI ASIMPTOTE. OANA CONSTANTINESCU Pentru studiul pozitiei relative a unei drepte fata de o hipercuadrica, remarcam ca nu mai

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Sisteme de ecuaţii diferenţiale

Sisteme de ecuaţii diferenţiale Curs 5 Sisteme de ecuaţii diferenţiale 5. Sisteme normale Definiţie 5.. Se numeşte sistem normal sistemul de ecuaţii diferenţiale de ordinul întâi dx dt = f (t, x, x 2,..., x n ) dx 2 dt = f 2(t, x, x

Διαβάστε περισσότερα

3.4. Minimizarea funcţiilor booleene

3.4. Minimizarea funcţiilor booleene 56 3.4. Minimizarea funcţiilor booleene Minimizarea constă în obţinerea formei celei mai simple de exprimare a funcţiilor booleene în scopul reducerii numărului de circuite şi a numărului de intrări ale

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }.

OANA CONSTANTINESCU. ( a carei ecuatie matriceala este data in raport cu un reper cartezian R = {O; ē 1,, ē n }. ELEMENTE DE SIMETRIE ALE UNEI HIPERCUADRICE IN SPATII AFINE EUCLIDIENE OANA CONSTANTINESCU 1. Centru de simetrie pentru o hipercuadrica afina Pentru inceput cadrul de lucru este un spatiu an real de dimensiune

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice...

2.9 Forme biafine Forme pătratice afine. Aducerea la forma canonică Centre de simetrie Varietăţi pătratice... Geometrie Afină Contents 1 Spaţii vectoriale 3 1.1 Spaţii vectoriale peste un corp K........................ 3 1.2 Exemple de spaţii vectoriale........................... 4 1.3 Dependenţă liniară de vectori..........................

Διαβάστε περισσότερα