6. Bendrama iai dydºiai ir realieji skai iai 71. Kokius dydºius graiku antikos matematikai vadino bendrama iais?

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6. Bendrama iai dydºiai ir realieji skai iai 71. Kokius dydºius graiku antikos matematikai vadino bendrama iais?"

Transcript

1 Matematikos istorijos egzamino klausimai 2014 Klausimo verte 2/3 balo. Pavyzdºiui, jei per semestr sukaupete 3 balus, tai j usu egzamino uºduotyje bus 7 3/2 10 klausimu. 1. Skai iai ir skai iavimai 1. Kaip egiptie iai daugindami naudojosi dvigubinimo metodu? 2. Kokias trupmenas naudojo senoves egiptie iai ir kaip jas ra²e? 3. Paai²kinkite goduji algoritm paprastajai trupmenai i²reik²ti egiptieti²komis. 4. Irodykite, kad yra be galo daug b udu paprast j trupmen i²reik²ti egiptieti²komis. 5. Koki sistem skai iams ir trupmenoms ra²yti naudojo ²umerai ir babilonie iai? 6. Uºra²ykite skai iu 87 kaip ra²e babilonie iai. 7. Kaip skai ius ra²e senoves graikai? 8. Kaip senoves kinie iai skai iavimams naudojosi skai iavimo lenta ir kaip ra²e skai ius? 9. Kaip skai ius ra²e majai? 10. Uºra²ykite skai iu 91 kaip ra²e majai. 11. Paai²kinkite, kaip J. Napier sudare logaritmu lenteles. 2. Euklido geometrija 12. Pateikite egiptie iu, babilonie iu geometrijos teiginiu pavyzdºiu. 13. Kokias geometrijos ºinias, remiantis ²altiniais, galima priskirti Taliui? 14. Paai²kinkite, kaip pitagorie iai savo tyrimuose siejo skai ius ir geometrines formas. 15. Kada buvo para²yti Euklido Elementai? Kokia ²io veikalo reik²me matematikos raidai? 16. Kokius teiginius Euklidas vadino aksiomomis, kokius postulatais? 17. Kaip Euklidas apibreºe lygiagre ias tieses? 18. Suformuluokite penkt ji Euklido postulat. 19. Irodykite, kad kampai prie lygia²onio trikampio pagrindo yra lyg us. 20. Kaip Elementuose braiºomas duotajam daugiakampiui lygiaplotis lygiagretainis? 21. Kaip Elementuose irodinejama Pitagoro teorema? 22. Pateikite graiki²k (geometrin ) sumos kvadrato formules interpretacij. 23. Suformuluokite atkarpos dalijimo aukso pj uvio santykiu uºdavini. 24. Parodykite breºiniu, kaip sprendºiamas atkarpos dalijimo aukso pj uvio santykiu uºdavinys. 1

2 25. Parodykite, kaip gaunama lygtis, kurios sprendinys - aukso pj uvio skai ius. Kam lygus ²is skai ius? 26. Paai²kinkite, kaip braiºomas kvadratas, lygiaplotis duotajam sta iakampiui. 27. Kaip i apskritim ibreºti taisykling ji ²e²iakampi? 28. Parodykite breºiniu kaip braiºomas specialus lygia²onis trikampis (kampai prie pagrindo dvigubai didesni uº vir² unes kamp ) Kaip braiºomas taisyklingasis penkiakampis? 31. Paai²kinkite, kaip nubraiºyti taisykling ji penkiolikakampi. 32. Penktoje Elementu knygoje destoma dydºiu santykiu teorija. Kodel jos prisireike? 33. Kam graiku matematikai naudojo i²semimo metod. Kokia jo esme? 34. Kokius briaunainius graikai vadino taisyklingaisiais. Kiek ju yra? 3. Trys klasikines Graikijos matematikos uºdaviniai 35. Kaip padvigubinti kvadrat Sokrato metodu? 36. Suformuluokite kubo padvigubinimo uºdavini. Kaip Hipokratas kubo padvigubinimo uºdavini pakeite atkarpu iterpimo uºdaviniu. 37. Irodykite, kad kubo padvigubinimo uºdavinys, ir Hipokrato uºdavinys apie atkarpu iterpim yra ekvivalent us. 38. Kokia kreive vadinama Nikomedo konchoide? 39. Kokia kreive vadinama Dioklo cisoide? 40. Kaip kubo padvigubinimo uºdavini galima i²spr sti pasinaudojus Dioklo cisoide? 41. Suformuluokite kampo trisekcijos uºdavini ir paai²kinkite, kaip ji galima i²spr sti atkarpos iterpimo metodu (neusis). 42. Suformuluokite kampo trisekcijos uºdavini ir paai²kinkite, kaip ji atkarpos iterpimo metodu i²sprende Archimedas. 43. Paai²kinkite, kaip kampo trisekcijos uºdavini galima i²spr sti naudojant direktris. 44. Paai²kinkite, kaip kampo trisekcijos uºdavini galima i²spr sti naudojant Archimedo spiral. 45. Paai²kinkite, kaip Hipokratas i²sprende menuliuku kvadrat uros uºdavini. 46. Suformuluokite skritulio kvadrat uros uºdavini. 47. Kaip skritulio kvadrat uros uºdavinys gali b uti i²spr stas naudojant direktris? 48. Koki apytiksl skai iaus π reik²m naudojo Archimedas? Paai²kinkite Archimedo metod apytikslems π reik²mems gauti. 49. Kokius metodus apytikslems skai iaus π reik²mems rasti naudojo naujuju laiku europie iai? 2

3 50. Kas ir kada irode, kad skai ius π yra iracionalusis, transcendentinis. K rei²kia teiginys, kad π yra transcendentinis skai ius? 4. Plotai ir t uriai graiku geometrijoje 51. Kokiais teiginiais remesi graiku daugiakampiu plotu teorija? 52. Irodykite, kad lygiagretainiai, kuriu pagrindai ir auk²tines yra vienodo ilgio, yra lygiaplo iai. 53. Suformuluokite teigini apie lygiadalius (t.y. sudarytus i² baigtinio skai iaus vienodu daliu) ir lygiaplo ius daugiakampius. Kas ²i teigini irode? 54. Irodykite, kad du trikampiai su vienodais pagrindais ir auk²tinemis yra lygiadaliai. 55. Suformuluokite Bolyai-Gerwieno teorem. 56. Kaip galima elementariai irodyti, kad dvieju prizmiu su vienodais pagrindais ir auk²tinemis t uriai yra lyg us? 57. Suformuluokite 3 Hilberto problem apie piramides t uri? Kas j i²sprende, koks atsakymas? 58. Kaip piramidºiu su vienodais pagrindais ir auk²tinemis t uriu lygyb i²semimo metodu irodinejo graikai? 5. Diferencialinio ir integralinio skai iavimo raida 59. Paai²kinkite, kaip Archimedas pasinaudojo sverto taisykle skai iuodamas parabolinio trikampio plot. 60. Suformuluokite Kavalierio princip plotams bei t uriams lyginti. 61. Kaip naudojantis Kavalierio principu galima apskai iuoti cikloides arkos plot? 62. Kokiais samprotavimais skai iuodamas plotus ir t urius naudojosi Kepleris? Pateikite pavyzdi. 63. Paai²kinkite, kaip naudodamasis nedalomosiomis Tori elis surado neapreºto k uno t uri. 64. Kokius uºdavinius nagrinejant buvo sukurtas diferencialinis ir integralinis skai iavimas? 65. Paai²kinkite Fermat ekstremumu radimo metod. 66. Paai²kinkite pavyzdºiu Fermat liestines radimo metod. 67. Paai²kinkite Robervalio kinematini kreives liestines radimo metod. 68. Nubraiºykite breºini ir paai²kinkite Barrow teorem apie g uros ploto ir funkcijos liestines ry²i. 69. Keliais sakiniais apib udinkite Newtono sukurto diferencialinio-integralinio skai iavimo ypatybes. 70. Keliais sakiniais apib udinkite Leibnizo sukurto diferencialinio-integralinio skai iavimo ypatybes. 6. Bendrama iai dydºiai ir realieji skai iai 71. Kokius dydºius graiku antikos matematikai vadino bendrama iais? 3

4 72. Kodel nebendrama iu atkarpu atradimas nesiderino su pitagorie iu pasauleºi ura? 73. Kaip Euklido bendro didºiausio daliklio radimo algoritm galima taikyti irodymui, kad du dydºiai (atkarpos) yra bendrama iai (nebendrama iai)? 74. Euklido metodu irodykite, kad taisyklingojo penkiakampio istriºaine ir kra²tine nera bendramates. 75. Irodykite, kad kvadrato kra²tine ir istriºaine yra nebendramates. 76. Kokius dydºius graiku antikos matematiku poºi uriu galima lyginti, kokius ne? 77. Kokie dydºiu santykiai vadinami lygiais pagal Eudokso apibreºim? 78. Kaip Theonas bande pagristi, kad kvadrato istriºaines ir kra²tines santykis gl udi skai iuose? 79. Koki poºi uri i santykiu lygyb suformulavo Omaras Chajamas? 80. Kada europie iai pradejo naudoti de²imtaines trupmenas? Kas apie jas para²e svarbu veikal? 81. Kada buvo sukurtos loginiu poºi uriu grieºtos realiuju skai iu konstrukcijos? Kas jas suk ure? 82. Apib udinkite Dedekindo realiu ju skai iu konstrukcij naudojant racionaliuju skai iu pj uvius. 7. Pirminiu skai iu tyrimo istorija 83. Kokie skai iai vadinami tobulaisiais? Kokie draugi²kaisiais? 84. Koks teiginys apie tobuluosius skai ius irodytas Euklido Pradmenyse? 85. K apie tobuluosius skai ius teige Nikomachas Aritmetikos ivade (apie 100 m. po Kr.)? 86. Kokie skai iai vadinami nepritekliaus, pervir²io skai iais? 87. Kaip pirminiai skai iai apibreºiami Euklido Elementuose? 88. Pateikite Euklido irodym, kad nera didºiausiojo pirminio skai iaus. 89. Koks algoritmas vadinamas Eratosteno re iu? 90. Koki funkcijos π(x) neapreºto didejimo irodym suk ure Euleris? Kodel jis svarbus tolimesnei pirminiu skai iu tyrimo raidai? 91. Koki funkcijos π(x) kitimo desni empiri²kai nustate Leºandras? 92. Koki funkcijos π(x) aproksimacij pasi ule Gausas? 93. Suformuluokite ƒeby²ovo nelygyb funkcijai π(x). 94. Suformuluokite Bertrando postulat, kuris irodomas pasinaudojus ƒeby²ovo nelygybe. 95. Koki nauj poºi uri i funkcijos π(x) tyrinejim savo darbuose suformulavo B. Rymanas? 96. Suformuluokite dzeta funkcijos nuliu problem. Kodel ji svarbi pirminiu skai iu tyrimo uºdaviniams? 4

5 97. Kas irode asimptotini funkcijos π(x) kitimo desni? Suformuluokite ji. 98. Kokie skai iai vadinami Fermat pirminiais? Kokie - Merseno pirminiais? 99. Kokios aritmetines funkcijos vadinamos adityviomis? Kodel funkcija ω(n) yra adityvi? 100. Kokie uºdaviniai tyrinejami tikimybineje skai iu teorijoje? 8. Paskutinioji Fermat teorema 101. Suformuluokite bent vien uºdavini i² Diofanto Aritmetikos ir paai²kinkite, kaip Diofantas ji sprende Apib udinkite bendrais bruoºais Fermat begalinio nusileidimo metod Suformuluokite Fermat paskutini j teorem Kaip uºra²omi visi primityvieji lygties x 2 + y 2 = z 2 sprendiniai (primityvieji Pitagoro skai iu trejetai)? 105. Koki itak Fermat lygties x n + y n = z n tyrimui padare Gauso veikalas Disquisitiones Arithmeticae? 106. Koks Sophie Germain ina²as ie²kant paskutiniosios Fermat teoremos irodymo? 107. Paai²kinkite, kuo remesi Lame Fermat teoremos irodymas ir kur gl udejo klaida Kuo tyrinejant Fermat lygti x n + y n = z n nusipelne E. Kummeris? 109. Kaip Pitagoro trejetu formules galima gauti i² geometriniu samprotavimu? Kokiais metodais Fermat lygtis x n +y n = z n tyrineta antrojoje XX a. puseje? 9. Matematine begaliniu aibiu teorija 110. Suformuluokite Zenono dichotomijos bei streles paradoksus Koki paºi ur apie begalyb matematikoje suformulavo Aristotelis? 112. K apie begalinius dydºius matematikoje mane Galilejus? 113. Trumpai apib udinkite Bolzano aibiu lyginimo idej naudojant elementu atitikti Irodykite, kad racionaliu ju ir nat uriniu skai iu aibes ekvivalen ios Irodykite, kad vienetinio intervalo skai iu ir nat uriniu skai iu aibes nera ekvivalen ios Irodykite, kad vienetinio kvadrato ir vienetinio intervalo ta²ku aibes ekvivalen ios Kokias problemas tyrinedamas Kantoras suformulavo kontinumo hipotez? K ji teigia? 118. Kaip apibreºiami kardinaliniu skai iu veiksmai? 119. Kaip buvo susietos aibiu lyginimo pagal galias ir visi²ko sutvarkymo problemos? 120. Su kokiais prie²taravimais buvo susidurta pletojant aibiu teorij? 121. Kas k ure aibiu teorijos aksiomatik ir kodel jos prisireike? 5

6 122. K teigia i²rinkimo aksioma? 123. K teigia Banacho-Tarskio paradoksas? 124. Koki i²vad apie aksiomu sistemos neprie²taringumo irodymus suformulavo Giodelis? 125. Koki teigini apie kontinumo hipotez irode P. Cohenas? 10. Euklido penktojo postulato istorija 126. Suformuluokite penkt ji Euklido postulat taip, kaip jis suformuluotas Euklido El ementuose Paai²kinkite, kaip 5- ji postulat bande irodyti graiku matematikas Proklas ir nurodykite jo klaid Koki ry²i tarp pana²iuju trikampiu ir penktojo postulato nustate anglu matematikas J. Walis? 129. Apib udinkite Sakerio ina² sprendºiant penktojo postulato problem Kokie XIX a. matematikai yra naujo poºi urio i penktojo postulato problem autoriai? 131. Kokia aksioma penkt ji postulat pakeite N. Loba evskis? 132. Paai²kinkite Loba evskio aksiom breºiniu interpretuodami skrituli be kra²to kaip plok²tum Paminekite kelet i²vadu i² Loba evskio aksiomos Suformuluokite kelet teiginiu, ekvivalen iu penktajam Euklido postulatui. 11. Tikimybiu teorijos raida 135. Suformuluokite nutraukto lo²imo banko padalijimo uºdavini Apib udinkite J. Graunto tyrimus ir ju reik²m Paai²kinkite, kaip banko padalijimo uºdavini i²sprende B. Paskalis Kaip Huigensas suformulavo lo²imo vertes s vok, kodel j galima laikyti atsitiktinio dydºio vidurkio prototipu? 139. Kaip didºiuju skai iu desni formulavo J. Bernulis? Apib udinkite ²io desnio reik²m Apib udinkite de Muavro, Laplaso ir Puasono ina² i tikimybiu teorijos raid Kaip buvo atrastas Brauno judesys? Kas paai²kino jo kilm, kas suk ure matematin teorij? 142. Apib udinkite Pearsono, Gosseto, Fi²erio indeli pletojant statistikos metodus Kas suk ure tikimybiu teorijos aksiomatik? Apib udinkite jos bruoºus. 6

2007 m. rudens semestro matematikos istorijos kurso egzamino klausimai. matematika. paprastajai trupmenai išreikšti egiptietiškomis. 6. I.

2007 m. rudens semestro matematikos istorijos kurso egzamino klausimai. matematika. paprastajai trupmenai išreikšti egiptietiškomis. 6. I. 2007 m rudens semestro matematikos istorijos kurso egzamino klausimai 1 tema Skaičiai ir skaičiavimai 1 Iš kokiu šaltiniu mes žinome apie egiptiečiu matematika 2 Kaip trupmenas rašė senovės egiptiečiai

Διαβάστε περισσότερα

Matematika 1 4 dalis

Matematika 1 4 dalis Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios

Διαβάστε περισσότερα

1 TIES ES IR PLOK TUMOS

1 TIES ES IR PLOK TUMOS G E O M E T R I J A Gediminas STEPANAUSKAS 1 TIES ES IR PLOK TUMOS 11 Plok²tumos ir ties es plok²tumoje normalin es lygtys 111 Vektorin e forma Plok²tumos α padetis koordina iu sistemos Oxyz atºvilgiu

Διαβάστε περισσότερα

TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010

TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010 TIKIMYBIU TEORIJA HAMLETAS MARK AITIS MYKOLO ROMERIO UNIVERSITETAS 2010 Tikimybiu teorija nagrin eja atsitiktinius ivykius ir tu ivykiu tikimybes ivykio pasirodymo galimyb es mat, i²reik²t skai iumi p,

Διαβάστε περισσότερα

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis PATVIRTINTA Ncionlinio egzminų centro direktorius 0 m. birželio d. įskymu Nr. (..)-V-7 0 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pgrindinė sesij I dlis Užd. Nr. 4 7

Διαβάστε περισσότερα

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲ J Ų MATEMATIKŲ MOKYKLA tema. APSKRITIMŲ GEOMETRIJA (00 0) Teorinę medžiagą parengė bei antrąją užduotį sudarė Vilniaus pedagoginio universiteto docentas Edmundas Mazėtis. Apskritimas tai

Διαβάστε περισσότερα

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS

Vilniaus universitetas. Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilniaus universitetas Edmundas Gaigalas A L G E B R O S UŽDUOTYS IR REKOMENDACIJOS Vilnius 1992 T U R I N Y S 1. Vektorinė erdvė............................................. 3 2. Matricos rangas.............................................

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

Vilius Stakenas. Tikimybiu mokslo pagrindai

Vilius Stakenas. Tikimybiu mokslo pagrindai Vilius Stakenas Tikimybiu mokslo pagrindai Vilnius 2010 Turinys 1 Kaip tai atsirado?......................... 7 1.1. Dvi ²akos......................... 7 1.2. Italai............................ 9 1.3.

Διαβάστε περισσότερα

MONTE KARLO METODAS. Gediminas Stepanauskas IVADAS Sistemos Modeliai Modeliavimas ir Monte-Karlo metodas...

MONTE KARLO METODAS. Gediminas Stepanauskas IVADAS Sistemos Modeliai Modeliavimas ir Monte-Karlo metodas... MONTE KARLO METODAS Gediminas Stepanauskas 2008 Turinys 1 IVADAS 4 1.1 Sistemos.............................. 4 1.2 Modeliai.............................. 5 1.3 Modeliavimas ir Monte-Karlo metodas.............

Διαβάστε περισσότερα

Vilniaus universitetas Matematikos ir informatikos fakultetas. Algirdas Ma iulis. Duomenu tyrimas. Paskaitu konspektas

Vilniaus universitetas Matematikos ir informatikos fakultetas. Algirdas Ma iulis. Duomenu tyrimas. Paskaitu konspektas Vilniaus universitetas Matematikos ir informatikos fakultetas Algirdas Ma iulis Duomenu tyrimas Paskaitu konspektas 2011 Turinys Ivadas 5 1 Pagrindines tikimybiu teorijos ir informacijos teorijos s vokos

Διαβάστε περισσότερα

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI

I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI ATSAKYMAI 008 M. FIZIKOS VALSTYBINIO BRANDOS EGZAMINO VERTINIMO INSTRUKCIJA Pagrindinė sesija Kiekvieno I dalies klausimo teisingas atsakymas vertinamas tašku. I dalis KLAUSIMŲ SU PASIRENKAMUOJU ATSAKYMU TEISINGI

Διαβάστε περισσότερα

Dviejų kintamųjų funkcijos dalinės išvestinės

Dviejų kintamųjų funkcijos dalinės išvestinės Dviejų kintamųjų funkcijos dalinės išvestinės Dalinės išvestinės Tarkime, kad dviejų kintamųjų funkcija (, )yra apibrėžta srityje, o taškas 0 ( 0, 0 )yra vidinis srities taškas. Jei fiksuosime argumento

Διαβάστε περισσότερα

AIBĖS, FUNKCIJOS, LYGTYS

AIBĖS, FUNKCIJOS, LYGTYS AIBĖS, FUNKCIJOS, LYGTYS Aibės sąvoka ir pavyzdžiai Atskirų objektų rinkiniai, grupės, sistemos, kompleksai matematikoje vadinami aibėmis. Šie atskiri objektai vadinami aibės elementais. Kai elementas

Διαβάστε περισσότερα

Elektronų ir skylučių statistika puslaidininkiuose

Elektronų ir skylučių statistika puslaidininkiuose lktroų ir skylučių statistika puslaidiikiuos Laisvų laidumo lktroų gracija, t.y. lktroų prėjimas į laidumo juostą, gali vykti kaip iš dooriių lygmų, taip ir iš valtiės juostos. Gracijos procsas visuomt

Διαβάστε περισσότερα

Matematika 1 3 dalis

Matematika 1 3 dalis Matematika 1 3 dalis Vektorių algebros elementai. Vektorių veiksmai. Vektorių skaliarinės, vektorinės ir mišriosios sandaugos ir jų savybės. Vektoriai Vektoriumi vadinama kryptinė atkarpa. Jei taškas A

Διαβάστε περισσότερα

Stanislovas NORGĖLA MATEMATINĖ LOGIKA

Stanislovas NORGĖLA MATEMATINĖ LOGIKA Stanislovas NORGĖLA MATEMATINĖ LOGIKA Vilnius, 2004 1 ISBN - Recenzavo: dr. R.Alonderis, doc. hab.dr. R.Pliuškevičius, dr. J.Sakalauskaitė 2 TURINYS I ι vadas...5 1. Aibės ir grafai...7 1.1 Skaičiosios

Διαβάστε περισσότερα

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS

2.5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS .5. KLASIKINĖS TOLYDŽIŲ FUNKCIJŲ TEOREMOS 5.. Pirmoji Bolcao Koši teorema. Jei fucija f tolydi itervale [a;b], itervalo galuose įgyja priešigų želų reišmes, tai egzistuoja tos tašas cc, ( ab ; ), uriame

Διαβάστε περισσότερα

1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad

1 Tada teigini Ne visi šie vaikinai yra studentai galima išreikšti formule. 2 Ta pati teigini galima užrašyti ir taip. 3 Formulė U&B C reiškia, kad 45 DISKREČIOJI MATEMATIKA. LOGIKA. PAVYZDŽIAI Raidėmis U, B ir C pažymėti teiginiai: U = Vitas yra studentas ; B = Skirmantas yra studentas ; C = Jonas yra studentas. 1 Tada teigini Ne visi šie vaikinai

Διαβάστε περισσότερα

Matematinis modeliavimas

Matematinis modeliavimas ALGIRDAS AMBRAZEVIƒIUS Matematinis modeliavimas Vilniaus universitetas 2006 2 TURINYS 1 SKYRIUS PAPRASƒIAUSI MATEMATINIAI MODELIAI 4 11 Pagrindines s vokos 4 12 Fundamentaliu gamtos desniu taikymas 10

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis

LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA m. valstybinio brandos egzamino uþduotis LIETUVOS RESPUBLIKOS ŠVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINU CENTRAS MATEMATIKA 006 m. valstybinio brandos egzamino uþduotis Pagrindinë sesija 006 m. geguþës 17 d. Trukmë 3 val. Nacionalinis

Διαβάστε περισσότερα

Įžanginių paskaitų medžiaga iš knygos

Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 1 Teiginio

Διαβάστε περισσότερα

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos

MATEMATINĖ LOGIKA. Įžanginių paskaitų medžiaga iš knygos MATEMATINĖ LOGIKA Įžanginių paskaitų medžiaga iš knygos Aleksandras Krylovas. Diskrečioji matematika: vadovėlis aukštųjų mokyklų studentams. Vilnius: Technika, 2009. 320 p. ISBN 978-9955-28-450-5 Teiginio

Διαβάστε περισσότερα

2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija

2008 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 008 M MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA 008 m matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 7 uždavinių atsakymai I variantas Užd

Διαβάστε περισσότερα

KLASIKIN E MECHANIKA

KLASIKIN E MECHANIKA KLASIKIN E MECHANIKA Algirdas MATULIS Puslaidininkiu zikos institutas Vadoveliu serijos papildymas auk²tuju mokyklu tiksliuju mokslu specialybiu studentams Email: amatulis@takas.lt Mob.: +370 654 543 06

Διαβάστε περισσότερα

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas

Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Pirmasis uždavinys Temos. Intervalinės statistinės eilutės sudarymas. Santykinių dažnių histogramos brėžimas. Imties skaitinių charakteristikų skaičiavimas Uždavinio formulavimas a) Žinoma n = 50 tiriamo

Διαβάστε περισσότερα

Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras,

Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras, MIF kurss, Bioinformtik, semestrs, 29 6 Tolydžios tške ir intervle funkciju pibrėžimi Teorem Jei f C[, ], f() = A , ti egzistuoj toks c [, ], kd f(c) = 2 Konverguojnčios ir diverguojnčios eikutės

Διαβάστε περισσότερα

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] )

ATSITIKTINIAI PROCESAI. Alfredas Račkauskas. (paskaitų konspektas 2014[1] ) ATSITIKTINIAI PROCESAI (paskaitų konspektas 2014[1] ) Alfredas Račkauskas Vilniaus universitetas Matematikos ir Informatikos fakultetas Ekonometrinės analizės katedra Vilnius, 2014 Iš dalies rėmė Projektas

Διαβάστε περισσότερα

ELEMENTARIOJI TEORIJA

ELEMENTARIOJI TEORIJA ELEMENTARIOJI TEORIJA Pirmosios kombinatorikos þinios siekia senàsias Rytø ðalis, kuriose mokëta suskaièiuoti këlinius bei derinius ir sudarinëti magiðkuosius kvadratus, ypaè populiarius viduramþiais.

Διαβάστε περισσότερα

KADETAS (VII ir VIII klasės)

KADETAS (VII ir VIII klasės) ADETAS (VII ir VIII klasės) 1. E 10 000 Galima tikrinti atsakymus. adangi vidutinė kainasumažėjo, tai brangiausia papūga kainavo daugiau kaip 6000 litų. Vadinasi, parduotoji papūga kainavo daugiau kaip

Διαβάστε περισσότερα

5 klasė. - užduotys apie varniuką.

5 klasė. - užduotys apie varniuką. 5 klasė - užduotys apie varniuką. 1. Varniukas iš plastilino lipdė raides ir iš jų sudėliojo užrašą: VARNIUKO OLIMPIADA. Vienodas raides jis lipdė iš tos pačios spalvos plastelino, o skirtingas raides

Διαβάστε περισσότερα

Matematinė logika. 1 skyrius Propozicinės formulės. žodį, Graikiškas žodis logos (λóγoς) reiškia

Matematinė logika. 1 skyrius Propozicinės formulės. žodį, Graikiškas žodis logos (λóγoς) reiškia 1 skyrius Matematinė logika Graikiškas žodis logos (λóγoς) reiškia mintį, žodį, protą, sąvoką. Logika arba formalioji logika nagrinėja teisingo mąstymo dėsnius ir formas, kai samprotavimų turinys nėra

Διαβάστε περισσότερα

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ

LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 2014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS 014 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 014 m. birželio 5 d. matematikos valstybinį

Διαβάστε περισσότερα

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai

2009 m. matematikos valstybinio brandos egzamino VERTINIMO INSTRUKCIJA Pagrindinė sesija 1 6 uždavinių atsakymai M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA PATVIRTINTA Nacionalinio egzaminų centro direktoriaus -6- įsakymu Nr. (..)-V-8 m. matematikos valstybinio brandos egzamino VERTINIMO

Διαβάστε περισσότερα

DISKREČIOJI MATEMATIKA

DISKREČIOJI MATEMATIKA VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS KATEDRA Valdas Diči ūnas Gintaras Skersys DISKREČIOJI MATEMATIKA Mokymo priemonė Vilnius 2003 Įvadas Išvertus iš lotynu kalbos

Διαβάστε περισσότερα

Matematinės analizės konspektai

Matematinės analizės konspektai Matematinės analizės konspektai (be įrodymų) Marius Gedminas pagal V. Mackevičiaus paskaitas 998 m. rudens semestras (I kursas) Realieji skaičiai Apibrėžimas. Uždarųjų intervalų seka [a n, b n ], n =,

Διαβάστε περισσότερα

I.4. Laisvasis kūnų kritimas

I.4. Laisvasis kūnų kritimas I4 Laisvasis kūnų kitimas Laisvuoju kitimu vadinamas judėjimas, kuiuo judėtų kūnas veikiamas tik sunkio jėos, nepaisant oo pasipiešinimo Kūnui laisvai kintant iš nedidelio aukščio h (dau mažesnio už Žemės

Διαβάστε περισσότερα

Vilijandas Bagdonavi ius. Julius Jonas Kruopis MATEMATIN E STATISTIKA

Vilijandas Bagdonavi ius. Julius Jonas Kruopis MATEMATIN E STATISTIKA VILNIAUS UNIVERSITETO MATEMATIKOS IR INFORMATIKOS FAKULTETAS Vilijandas Bagdonavi ius Julius Jonas Kruopis MATEMATIN E STATISTIKA Vadovelis IV DALIS DAUGIAMAT E STATISTIKA Vilniaus universiteto leidykla

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Specialieji analizės skyriai Kompleksinio kinamojo funkcijų teorija Furje eilutės ir Furje integralai Operacinis skaičiavimas Lauko teorijos elementai. 2 Kompleksinio kintamojo

Διαβάστε περισσότερα

Specialieji analizės skyriai

Specialieji analizės skyriai Specialieji analizės skyriai. Trigonometrinės Furje eilutės Moksle ir technikoje dažnai susiduriame su periodiniais reiškiniais, apibūdinamais periodinėmis laiko funkcijomis: f(t). 2 Paprasčiausia periodinė

Διαβάστε περισσότερα

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3

1 Įvadas Neišspręstos problemos Dalumas Dalyba su liekana Dalumo požymiai... 3 Skaičių teorija paskaitų konspektas Paulius Šarka, Jonas Šiurys 1 Įvadas 1 1.1 Neišspręstos problemos.............................. 1 2 Dalumas 2 2.1 Dalyba su liekana.................................

Διαβάστε περισσότερα

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav.

t. y. =. Iš čia seka, kad trikampiai BPQ ir BAC yra panašūs, o jų D 1 pav. LIETUVOS JUNŲ J Ų MTEMTIKŲ MOKYKL tema. TRIGONOMETRIJOS TIKYMI GEOMETRIJOJE (008-00) Terinę medžiagą parengė bei šeštąją uždutį sudarė Vilniaus pedaggini universitet dentas Edmundas Mazėtis Šiame darbe

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lygčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

11 klasei Pirmas skyrius MATEMATIKA. tempus. Bendrasis ir išplėstinis kursas

11 klasei Pirmas skyrius MATEMATIKA. tempus. Bendrasis ir išplėstinis kursas 11 klasei Pirmas skyrius MATEMATIKA tempus Bendrasis ir išplėstinis kursas MATEMATIKA tempus Bendrasis ir išplėstinis kursas 11 klasei Pirmas skyrius UDK 51(075.3) Ma615 Autoriai: VILIJA DABRIŠIENĖ, MILDA

Διαβάστε περισσότερα

doc. dr. Jurgita Dabulytė-Bagdonavičienė Taikomosios matematikos katedra, KTU 2011/2012 m.m. 2011/2012 Matematinė logika

doc. dr. Jurgita Dabulytė-Bagdonavičienė Taikomosios matematikos katedra, KTU 2011/2012 m.m. 2011/2012 Matematinė logika doc. dr. Jurgita Dabulytė-Bagdonavičienė Taikomosios matematikos katedra, KTU m.m. 1/31 doc. dr. Jurgita Dabulytė-Bagdonavičienė Taikomosios matematikos katedra Studentų 50-326 a tel. 300313 FMF dekanatas

Διαβάστε περισσότερα

VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis?

VIII. FRAKTALINĖ DIMENSIJA. 8.1 Fraktalinės dimensijos samprata. Ar baigtinis Norvegijos sienos ilgis? VIII FRAKTALINĖ DIMENSIJA 81 Fraktalinės dimensijos samprata Ar baigtinis Norvegijos sienos ilgis? Tarkime, kad duota atkarpa, kurios ilgis lygus 1 Padalykime šia atkarpa n lygiu daliu Akivaizdu, kad kiekvienos

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Taikomosios matematikos institutas, Diferencialinių lygčių katedra Naugarduko g. 24, LT-3225

Διαβάστε περισσότερα

4 laboratorinis darbas. PARAMETRŲ ĮVERČIAI IR STATISTINĖS HIPOTEZĖS

4 laboratorinis darbas. PARAMETRŲ ĮVERČIAI IR STATISTINĖS HIPOTEZĖS PARAMETRŲ ĮVERČIAI IR STATISTINĖS HIPOTEZĖS DARBO TIKSLAS - išstudijuoti parametrų taškiių ir itervaliių įverčių radimo, parametriių ir eparametriių hipotezių tikriimo uždaviius ir jų taikymą Teorijos

Διαβάστε περισσότερα

MATEMATIKOS BRANDOS EGZAMINO PROGRAMA I. BENDROSIOS NUOSTATOS

MATEMATIKOS BRANDOS EGZAMINO PROGRAMA I. BENDROSIOS NUOSTATOS PATVIRTINTA Lietuvos Respublikos švietimo ir mokslo ministro 0 m. liepos d. įsakymu Nr. V-97 (Lietuvos Respublikos švietimo ir mokslo ministro 04 m. gruodžio 9 d. įsakymo Nr. V- 7 redakcija) MATEMATIKOS

Διαβάστε περισσότερα

Tikimybių mokslo pagrindai. Vilius Stakėnas

Tikimybių mokslo pagrindai. Vilius Stakėnas Tikimybių mokslo pagrindai Vilius Stakėnas VILNIUS 2017 Apsvarstė ir rekomendavo spaudai Vilniaus universiteto Matematikos ir informatikos fakulteto taryba (2016 m. gruodžio 15 d.; protokolas Nr. 9) Recenzentai:

Διαβάστε περισσότερα

KENGŪRA Klausimai po 3 taškus. 2. Dominyko lentynoje yra du meškiukai, mašinėlė ir du kamuoliai. Kuris paveikslėlis

KENGŪRA Klausimai po 3 taškus. 2. Dominyko lentynoje yra du meškiukai, mašinėlė ir du kamuoliai. Kuris paveikslėlis Lietuvos Respublikos švietimo ir mokslo ministerija Kengūros konkurso organizavimo komitetas Matematikos ir informatikos institutas Leidykla TEV KENGŪRA 2010 Konkurso trukmė 50 minučiu Konkurso metu negalima

Διαβάστε περισσότερα

II dalis Teisingas atsakymas į kiekvieną II dalies klausimą vertinamas 1 tašku g/mol

II dalis Teisingas atsakymas į kiekvieną II dalies klausimą vertinamas 1 tašku g/mol PATVIRTINTA Nacionalinio egzaminų centro direktoriaus 05 m. birželio 8 d. įsakymu Nr. (.3.)-V-73 05 M. CHEMIJOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA. Pagrindinė sesija I dalis Teisingas

Διαβάστε περισσότερα

0.1. Bendrosios sąvokos

0.1. Bendrosios sąvokos .1. BENDROSIOS SĄVOKOS 1.1. Bendrosios sąvokos.1.1. Diferencialinės lygtys su mažuoju parametru F ) x n),x n 1),...,x,x,t;ε =, xt;ε) C n T), T [,+ ), < ε ε ) F x n) t;ε),x n 1) t;ε),...,x t;ε),xt;ε),t;ε,

Διαβάστε περισσότερα

Remigijus Leipus. Ekonometrija II. remis

Remigijus Leipus. Ekonometrija II.   remis Remigijus Leipus Ekonometrija II http://uosis.mif.vu.lt/ remis Vilnius, 2013 Turinys 1 Trendo ir sezoniškumo vertinimas bei eliminavimas 4 1.1 Trendo komponentės vertinimas ir eliminavimas........ 4 1.2

Διαβάστε περισσότερα

Nacionalinis egzaminų centras Projektas Brandos egzaminų kokybės sistemos plėtra m. brandos egzaminų užduočių analizė.

Nacionalinis egzaminų centras Projektas Brandos egzaminų kokybės sistemos plėtra m. brandos egzaminų užduočių analizė. Nacionalinis egzaminų centras Projektas Brandos egzaminų kokybės sistemos plėtra 2007 m. brandos egzaminų užduočių analizė Matematika Vilnius 2008 Išleista Europos Socialinio fondo ir Lietuvos Respublikos

Διαβάστε περισσότερα

ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE

ŠVIESOS SKLIDIMAS IZOTROPINĖSE TERPĖSE ŠVIESOS SKLIDIMAS IZOTROPIĖSE TERPĖSE 43 2.7. SPIDULIUOTĖS IR KŪO SPALVOS Spinduliuotės ir kūno optiniam apibūdinimui naudojama spalvos sąvoka. Spalvos reiškinys yra nepaprastas. Kad suprasti spalvos esmę,

Διαβάστε περισσότερα

2018 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ

2018 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ N A C I O N A L I N I S E G Z A M I N Ų C E N T R A S 018 METŲ MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO REZULTATŲ STATISTINĖ ANALIZĖ 018 m. birželio 9 d. įvyko matematikos valstybinis brandos egzaminas.

Διαβάστε περισσότερα

Diskrečioji matematika

Diskrečioji matematika VILNIAUS UNIVERSITETAS Gintaras Skersys Julius Andrikonis Diskrečioji matematika Pratybų medžiaga Versija: 28 m. sausio 22 d. Vilnius, 27 Turinys Turinys 2 Teiginiai. Loginės operacijos. Loginės formulės

Διαβάστε περισσότερα

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu

4.1 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n. Priminsime, kad šios erdvės elementai yra vektoriai vektoriu IV DEKARTO KOORDINAČIU SISTEMA VEKTORIAI 41 Skaliarinė sandauga erdvėje R n Tarkime, kad duota vektorinė erdvė R n Priminsime, kad šios erdvės elementai yra vektoriai α = (a 1,, a n ) Be mums jau žinomu

Διαβάστε περισσότερα

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA. Algoritmų teorija. Paskaitų konspektas

VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA. Algoritmų teorija. Paskaitų konspektas VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS PROGRAMŲ SISTEMŲ KATEDRA Algoritmų teorija Paskaitų konspektas Dėstytojas: lekt. dr. Adomas Birštunas Vilnius 2015 TURINYS 1. Algoritmo samprata...

Διαβάστε περισσότερα

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui)

ANALIZINĖ GEOMETRIJA III skyrius (Medžiaga virtualiajam kursui) ngelė aškienė NLIZINĖ GEMETRIJ III skrius (Medžiaga virtualiajam kursui) III skrius. TIESĖS IR PLKŠTUMS... 5. Tiesės lgts... 5.. Tiesės [M, a r ] vektorinė lgtis... 5.. Tiesės [M, a r ] parametrinės lgts...

Διαβάστε περισσότερα

1. Individualios užduotys:

1. Individualios užduotys: IV. PAPRASTOSIOS DIFERENCIALINĖS LYGTYS. Individualios užduots: - trumpa teorijos apžvalga, - pavzdžiai, - užduots savarankiškam darbui. Pirmosios eilės diferencialinių lgčių sprendimas.. psl. Antrosios

Διαβάστε περισσότερα

eksponentinės generuojančios funkcijos 9. Grafu

eksponentinės generuojančios funkcijos 9. Grafu DISKREČIOJI MATEMATIKA (2 semestras) KOMBINATORIKOS IR GRAFU TEORIJOS PRADMENYS PROGRAMA I KOMBINATORIKA 1 Matematinės indukcijos ir Dirichlė principai 2 Dauginimo taisyklė,,skaičiuok dukart principas

Διαβάστε περισσότερα

Algoritmai. Vytautas Kazakevičius

Algoritmai. Vytautas Kazakevičius Algoritmai Vytautas Kazakevičius September 2, 27 2 Turinys Baigtiniai automatai 5. DBA.................................. 5.. Abėcėlė............................ 5..2 Automatai..........................

Διαβάστε περισσότερα

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1

Spalvos. Šviesa. Šviesos savybės. Grafika ir vizualizavimas. Spalvos. Grafika ir vizualizavimas, VDU, Spalvos 1 Spalvos Grafika ir vizualizavimas Spalvos Šviesa Spalvos Spalvų modeliai Gama koregavimas Šviesa Šviesos savybės Vandens bangos Vaizdas iš šono Vaizdas iš viršaus Vaizdas erdvėje Šviesos bangos Šviesa

Διαβάστε περισσότερα

1 iš 15 RIBOTO NAUDOJIMO

1 iš 15 RIBOTO NAUDOJIMO iš 5 PATVIRTINTA Nacionalinio egzaminų centro direktoriau 00-06-08 įakymu Nr. 6.-S- 00 m. matematiko valtybinio brando egzamino VERTINIMO INSTRUKCIJA Pagrindinė eija 8 uždavinių atakymai Užd. Nr. 5 6 7

Διαβάστε περισσότερα

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2013 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2013 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 013 m. pagrindinio ugdymo pasiekimų patikrinimo

Διαβάστε περισσότερα

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis

klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo užduotis LIETUVOS RESPUBLIKOS ÐVIETIMO IR MOKSLO MINISTERIJA NACIONALINIS EGZAMINØ CENTRAS (miestas / rajonas, mokykla) klasës (grupës) mokinio (-ës) (vardas ir pavardë) 2014 m. pagrindinio ugdymo pasiekimų patikrinimo

Διαβάστε περισσότερα

1.4. Rungės ir Kuto metodas

1.4. Rungės ir Kuto metodas .4. RUNGĖS IR KUTO METODAS.4. Rungės ir Kuto metodas.4.. Prediktoriaus-korektoriaus metodas Palyginkime išreikštinį ir simetrinį Eulerio metodus. Pirmojo iš jų pagrindinis privalumas tas, kad išreikštinio

Διαβάστε περισσότερα

Paprastosios DIFERENCIALINĖS LYGTYS

Paprastosios DIFERENCIALINĖS LYGTYS Paprastosios DIFERENCIALINĖS LYGTYS prof. Artūras Štikonas Paskaitų kursas Matematikos ir informatikos fakultetas Diferencialinių lgčių ir skaičiavimo matematikos katedra Naugarduko g. 24, LT-3225 Vilnius,

Διαβάστε περισσότερα

Modalumo logikos S4 kai kurios išsprendžiamos klasės

Modalumo logikos S4 kai kurios išsprendžiamos klasės VILNIAUS UNIVERSITETAS MATEMATIKOS IR INFORMATIKOS FAKULTETAS INFORMATIKOS KATEDRA Magistro baigiamasis darbas Modalumo logikos S4 kai kurios išsprendžiamos klasės Some Decidable Classes of Modal Logic

Διαβάστε περισσότερα

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA

JONAS DUMČIUS TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA JONAS DUMČIUS (1905 1986) TRUMPA ISTORINĖ GRAIKŲ KALBOS GRAMATIKA 1975 metais rotaprintu spausdintą vadovėlį surinko klasikinės filologijos III kurso studentai Lina Girdvainytė Aistė Šuliokaitė Kristina

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

Statistinė termodinamika. Boltzmann o pasiskirstymas

Statistinė termodinamika. Boltzmann o pasiskirstymas Statistinė termodinamika. Boltzmann o pasiskirstymas DNR molekulių vaizdas DNR struktūros pakitimai. Keičiantis DNR molekulės formai keistųsi ir visos sistemos entropija. Mielėse esančio DNR struktūros

Διαβάστε περισσότερα

Švietimo panorama. mo de lis. Žalio sios ener ge ti kos cen tras jau ir Lie tu vo je...2. Pa si ren ka mo jo švie ti mo fi nan sa vi mo

Švietimo panorama. mo de lis. Žalio sios ener ge ti kos cen tras jau ir Lie tu vo je...2. Pa si ren ka mo jo švie ti mo fi nan sa vi mo Informacinis leidinys Švietimo naujienos 2011 m. Nr. 6 (306) Švietimo panorama Pa si ren ka mo jo švie ti mo fi nan sa vi mo mo de lis Ge gu žę Švie ti mo ir moks lo mi nis te ri joje or ga ni zuo tas

Διαβάστε περισσότερα

5 paskaita. 5.1 Kompaktiškosios aibės Sąvokos

5 paskaita. 5.1 Kompaktiškosios aibės Sąvokos 5 pskit 5.1 Kompktiškosios ibės 5.1.1 Sąvokos Iš mtemtinės nlizės kurso žinome dvi svrbis prėžtu reliu ju skičiu ibiu svybes. Pirmoji Bolcno-Vejerštrso teorem: bet kuri beglinė prėžt reliu ju skičiu ibė

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

❷ s é 2s é í t é Pr 3

❷ s é 2s é í t é Pr 3 ❷ s é 2s é í t é Pr 3 t tr t á t r í í t 2 ➄ P á r í3 í str t s tr t r t r s 3 í rá P r t P P á í 2 rá í s é rá P r t P 3 é r 2 í r 3 t é str á 2 rá rt 3 3 t str 3 str ýr t ý í r t t2 str s í P á í t

Διαβάστε περισσότερα

DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2

DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2 DISPERSINĖ, FAKTORINĖ IR REGRESINĖ ANALIZĖ Laboratorinis darbas Nr. 2 Marijus Radavičius, Tomas Rekašius 2010 m. vasario 23 d. Santrauka Antras laboratorinis darbas skirtas išmokti sudarinėti daugialypės

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

TEORIJOS PRADMENYS PROGRAMA

TEORIJOS PRADMENYS PROGRAMA DISKREČIOJI MATEMATIKA (2 semestras) KOMBINATORIKOS IR GRAFU TEORIJOS PRADMENYS PROGRAMA I KOMBINATORIKA 1 Matematinės inducijos principas 2 Dauginimo taisylė 3 Gretiniai, ėliniai ir deriniai 4 Kartotiniai

Διαβάστε περισσότερα

Mažylis (III ir IV klasės) 19 SA LYGOS. MAŽYLIS (III ir IV klasės)

Mažylis (III ir IV klasės) 19 SA LYGOS. MAŽYLIS (III ir IV klasės) Mažylis (III ir IV klasės) 19 SA LYGOS MAŽYLIS (III ir IV klasės) KLAUSIMAI PO 3 TAŠKUS M1. Peteliškė nutūpė ant vieno iš teisingos lygybės skaičiu. Kokį skaičiu dengia peteliškė? A 250 B 400 C 500 D 910

Διαβάστε περισσότερα

EUROPOS CENTRINIS BANKAS

EUROPOS CENTRINIS BANKAS 2005 12 13 C 316/25 EUROPOS CENTRINIS BANKAS EUROPOS CENTRINIO BANKO NUOMONĖ 2005 m. gruodžio 1 d. dėl pasiūlymo dėl Tarybos reglamento, iš dalies keičiančio Reglamentą (EB) Nr. 974/98 dėl euro įvedimo

Διαβάστε περισσότερα

2 laboratorinis darbas. TIKIMYBINIAI MODELIAI

2 laboratorinis darbas. TIKIMYBINIAI MODELIAI laboratorns darbas laboratorns darbas. TIKIMYBINIAI MODELIAI DARBO TIKSLAS - šstudjuot atstktnų dydžų r vektorų skrstnus, skrstno (passkrstymo) funkcją, tanko funkcją, skatnes charakterstkas r jų savybes.

Διαβάστε περισσότερα

04 Elektromagnetinės bangos

04 Elektromagnetinės bangos 04 Elektromagnetinės bangos 1 0.1. BANGINĖ ŠVIESOS PRIGIMTIS 3 Šiame skyriuje išvesime banginę lygtį iš elektromagnetinio lauko Maksvelo lygčių. Šviesa yra elektromagnetinė banga, kurios dažnis yra optiniame

Διαβάστε περισσότερα

06 Geometrin e optika 1

06 Geometrin e optika 1 06 Geometrinė optika 1 0.1. EIKONALO LYGTIS 3 Geometrinėje optikoje įvedama šviesos spindulio sąvoka. Tai leidžia Eikonalo lygtis, kuri išvedama iš banginės lygties monochromatinei bangai - Helmholtco

Διαβάστε περισσότερα

FDMGEO4: Antros eilės kreivės I

FDMGEO4: Antros eilės kreivės I FDMGEO4: Antros eilės kreivės I Kęstutis Karčiauskas Matematikos ir Informatikos fakultetas 1 Koordinačių sistemos transformacija Antrosios eilės kreivių lgtis prastinsime keisdami (transformuodami) koordinačių

Διαβάστε περισσότερα

MATEMATIKA. VIDURINIO UGDYMO BENDROSIOS PROGRAMOS 3 priedas

MATEMATIKA. VIDURINIO UGDYMO BENDROSIOS PROGRAMOS 3 priedas VIDURINIO UGDYMO BENDROSIOS PROGRAMOS 3 priedas Vi du ri nio ug dy mo ben drų jų pro gra mų 3 prie das Matematika Redakcinė grupė: Alvyda Ambraškienė, Regina Rudalevičienė, Marytė Skakauskienė, dr. Eugenijus

Διαβάστε περισσότερα

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip:

III. MATRICOS. DETERMINANTAI. 3.1 Matricos A = lentele žymėsime taip: III MATRICOS DETERMINANTAI Realiu ju skaičiu lentele 3 Matricos a a 2 a n A = a 2 a 22 a 2n a m a m2 a mn vadinsime m n eilės matrica Trumpai šia lentele žymėsime taip: A = a ij ; i =,, m, j =,, n čia

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

MECHANINIS DARBAS, GALIA, ENERGIJA. TVERMĖS DĖSNIAI MECHANIKOJE. HIDRODINAMIKA

MECHANINIS DARBAS, GALIA, ENERGIJA. TVERMĖS DĖSNIAI MECHANIKOJE. HIDRODINAMIKA LIETUVOS FIZIKŲ DRAUGIJA ŠIAULIŲ UNIVERSITETO JAUNŲJŲ FIZIKŲ MOKYKLA FOTONAS MECHANINIS DARBAS, GALIA, ENERGIJA TVERMĖS DĖSNIAI MECHANIKOJE HIDRODINAMIKA III KURSO III TURO METODINIAI NURODYMAI IR UŢDUOTYS

Διαβάστε περισσότερα

8 mikroekonomikos pratybos

8 mikroekonomikos pratybos 8 mikroekonomikos pratybos 203 m. lapkričio 20 d. Pastabos: A žymi taško vertės uždavinį, B 0,5 taško, K 0, papildomo taško. Pagrindinės sąvokos: Technologiniai apribojimai, technologija (angl. technology)

Διαβάστε περισσότερα

MODERNIOSIOS FINANSŲ RINKOS TEORIJOS PAGRINDAI. Rimas Norvaiša

MODERNIOSIOS FINANSŲ RINKOS TEORIJOS PAGRINDAI. Rimas Norvaiša MODERNIOSIOS FINANSŲ RINKOS TEORIJOS PAGRINDAI Paskaitų konspektas - 18 Variantas Rimas Norvaiša E-paštas: norvaisa @ktl.mii.lt Vilnius, 26 sausis Turinys.1 Klausimai atsiskaitymui už 25 metų rudens kurso

Διαβάστε περισσότερα

Vilius Stakėnas. Kodavimo teorija. Paskaitu. kursas

Vilius Stakėnas. Kodavimo teorija. Paskaitu. kursas Vilius Stakėnas Kodavimo teorija Paskaitu kursas 2002 2 I vadas Informacija perduodama kanalais, kurie kartais iškraipo informacija Tarsime, kad tie iškraipymai yra atsitiktiniai, t y nėra nei sistemingi,

Διαβάστε περισσότερα

DEFORMUOJAMO KŪNO MECHANIKA 1 dalis

DEFORMUOJAMO KŪNO MECHANIKA 1 dalis DEFORMUOJAMO KŪNO MECHANIKA dalis T U R I N Y S. Deformuojamojo kūo mechaikos objektas ir jos ršs su kitais mokslais. Tamprumo teorijos sąvokos ir prielaidos 3. Įtempimų būvio teorija 4. Pusiausvros difereciali

Διαβάστε περισσότερα

AUTOMATINIO VALDYMO TEORIJA

AUTOMATINIO VALDYMO TEORIJA Saulius LISAUSKAS AUTOMATINIO VALDYMO TEORIJA Projekto kodas VP1-.-ŠMM-7-K-1-47 VGTU Elektronikos fakulteto I pakopos studijų programų esminis atnaujinimas Vilnius Technika 1 VILNIAUS GEDIMINO TECHNIKOS

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Meren virsi Eino Leino

Meren virsi Eino Leino œ_ œ _ q = 72 Meren virsi Eino Leino Toivo Kuua o. 11/2 (1909) c c F c Kun ne F iu L? c œ J J J J œ_ œ_ nœ_ Min ne rien nät, vie ri vä vir ta? Kun ne c c F c Kun ne F iu L? c œ J J J J œ_ œ_ nœ_ Min ne

Διαβάστε περισσότερα

ĮVADAS Į FINANSŲ SISTEMĄ

ĮVADAS Į FINANSŲ SISTEMĄ III. AKCIJOS, OBLIGACIJOS IR JŲ VERTINIMAS 5 ATEITIES VERTĖ, DABARTINĖ VERTĖ IR PALŪKANŲ NORMOS Turinys 5.1 Įvadas 5.2 Mokėjimų dabar ir ateityje vertė 5.2.1 Ateities vertė ir sudėtinė palūkanų norma 5.2.2

Διαβάστε περισσότερα