1 SKYRIUS. Laplaso transformacija 2 SKYRIUS. Integralinės lygtys

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 SKYRIUS. Laplaso transformacija 2 SKYRIUS. Integralinės lygtys"

Transcript

1 1 SKYRIUS. Lplo trnformcij 3 1. Integrlinė trnformcijo Lplo trnformcij Lplo trnformcijo vybė Lplo trnformcijo tikym prendžint diferenciline lygti SKYRIUS. Integrlinė lygty 9 1. Įvd Integrlinių lygčių klifikcij Konvoliucijo tipo integrlinė lygty Ryšy trp diferencilinių ir I rūšie integrlinių lygčių

2 . 2

3 1 kyriu Lplo trnformcij 1. Integrlinė trnformcijo Mtemtikoje nudojmo įvirio trnformcijo, kurių bendr formulė yr T [f](x) = 2 Ki kuriom iš jų pibrėžt tvirkštinė trnformcij f(t) = 2 t 1 K(t, x)f(t)dt. (1.1) x 1 K 1 (x, t)t [f](x)dx. (1.2) Džniuii nudojmo integrlinė trnformcijo, pteikto 1.1 lentelėje. 2. Lplo trnformcij Tikymuoe vrbiui tveji (ki išpildyt funkcijo f(t)e γt integruojmum) yr: { f(t) < Ce σt, ki t, (2.1) f(t) =, ki t <, či σ ir C yr kontnto. L[f] := Φ() = f(t) = 1 f(t)e t dt, (2.2) µ+ı µ ı t d Φ()e = 1 ı ı µ+ı µ ı Funkcij Φ yr pibrėžt ir nlizinė puplokštumėje Re > σ. Φ()e t d. (2.3) 1.1 pibrėžim [Lplo trnformcij]. Funkciją, pibrėžtą (2.2) formule, vdinime funkcijo f Lplo trnformcij. Atvirkštinę Lplo trnformciją pibrėži formulė L 1 [Φ] = 1 ı µ+ı µ ı Φ()e t d. Funkcij f vdinm originlu, o funkcij Φ vizdu.

4 lentelė Integrlinė trnformcijo. trnformcij žymuo K t 1 t 1 K 1 x 1 x 2 Furjė F e ıxt + e ıxt + Sinu F 2 in(xt) + Koinu F c 2 co(xt) + 2 in(xt) + 2 co(xt) + Hrtlio H in(xt)+co(xt) + in(xt)+co(xt) + Melino M t x 1 + Lplo L e xt + dvipuė Lplo B e xt + t x ı σ ı σ + ı e xt ı σ ı σ + ı e xt ı σ ı σ + ı Vejerštro Hilberto Abelio W Hil A e (x t)2 /4 4π + 1 π(x t) + 2t x + t 2 x 2 e (x t)2 /4 ı 4π σ ı σ + ı 1 π(x t) + 2t t + x 2 t 2 Hnkelio J tj ν(xt) + xj ν(xt) + Lplo trnformcij vo vybėmi beveik neikiri nuo Furjė trnformcijo, tčiu klė funkcijų, kuriom yr pibrėžt Lplo trnformcij, kirii nuo klė L 1 (R), kuriom egzituoj Furjė trnformcijo Lplo trnformcijo vybė Apibrėžkime vienetinę Heviido funkciją u(t) (ji tip pt žymim H(t), bet opercinime kičivime džniu u(t)): u(t) =, ki t < ; u(t) = 1, ki t. Toliu kiekvieną funkciją f likyime ndug f u ir ngrinėime tikti intervle [; + ). 1.1 pvyzdy. L[u] = u(t)e t dt = e t dt = 1, Re >. 1.2 pvyzdy. L[e t ] = e t e t dt = e t t dt = 1, Re > Re. 1.1 vybė [tieiškum]. L[αf 1 + βf 2 ] = αl[f 1 ] + βl[f 2 ]. 1.3 pvyzdy. L[co(ωt)] = L[ 1 2 (eıωt + e ıωt )] = 1 2 (L[(eıωt ] + L[e ıωt )]) = 1 ( ) = ; L[in(ωt)] = ω, Re > ; 2 ıω ( ıω) 2 +ω 2 2 +ω 2 L[coh(ωt)] = ; L[inh(ωt)] = ω, 2 ω 2 2 ω 2 Re > ω.

5 5 1 SKYRIUS. Lplo trnformcij [ (9:42)] 1.2 vybė [pnšum]. L[f(αt)] = 1 α L[f]( α), α >. 1.3 vybė [potūmi]. L[e αt f(t)] = L[f]( α). 1.4 vybė [vėlvim]. L[f(t τ)] = e τ L[f](). 1.4 pvyzdy. Jeigu δ h := (u(t) u(t h))/h, h >. Turime L[δ h (t)] = L[u(t)] L[u(t h)] h = 1 h e h h ; lim L[δ h(t)] = lim ( 1 h + h + e h h h ) = lim h + e h = vybė [periodini originl]. Jeigu f(t + T ) = f(t), tuomet L[f] = 1 1 e T T f(t)e t dt. 1.6 vybė [originlo diferencijvim]. L[f ] = f (t)e t dt = f(t)e t + + f(t)e t dt = L[f]() f(). L[f (n) ] = n L[f]() n 1 f() n 2 f () f (n 1) ()). 1.7 vybė [Borelio teorem (originlų ąūk)]. Jeigu f ir g tenkin originlm kelimu reiklvimu, tuomet (f g)(t) = tip pt juo tenkin. Td L[(f g)(t)] = = f(ξ)g(t ξ)dξ = f(ξ)g(t ξ)dξe t dt = f(ξ)g(t ξ)dξ f(ξ) f(ξ)e ξ L[g]()dξ = L[f]()L[g](). 1.1 išvd. L [ f(τ)dτ] = L[u f] = L[f](). 1.5 pvyzdy. L [ ] [ ] [ u(t) tn t n 1 n! = L τ u(τ) dτ = L (n 1)! 1.1 uždviny. Įrodykite Diumelio formule: L [ f()g(t) + L [ g()f(t) pvyzdy. Turime L[e t ] = 1. Td 1 ( )( b) = L[et e bt ] = L [ u(t) tn 1 (n 1)! ] ξ g(t ξ)e t dtdξ = L[u(t)] n = 1 n+1. f (τ)g(t τ)dτ ] = L[f]L[g]; g (τ)f(t τ)dτ ] = L[f]L[g]. e bt e( b)t dξ ] [ ] e = L t e bt. b

6 vybė [vizdo diferencijvim ir integrvim]. (L[f]) () = tf(t)e t dt L[tf(t)] = (L[f(t)]) L[t n f(t)] = ( 1) n (L[f(t)]) (n) ; = L[f](p)dp = f(t) e t dt L[f(t)/t]() = t f(t)e pt dtdp = L[f](p)dp. f(t) e pt dpdt 2.2. Lplo trnformcijo tikym prendžint diferenciline lygti Trkime, kd duot tieinė diferencilinė lygti u ptovii koeficienti ir prdinė ąlygo y (n) + 1 y (n 1) n y = b(t) (2.4) y() = y, y () = y 1,..., y (n) = y n 1. (2.5) Funkcijo y Lplo trnformciją pžymėkime Y () = L[y]. Tikome Lplo trnformciją (2.4) lygčii: L[y (n) ] + 1 L[y (n 1) ] n L[y] = L[b(t)] = B(). Pinudojme Lplo trnformcijo 6 vybe ir lygtį trnformuojme į lgebrinę lygtį Q() + R()Y () = B(), či Q yr n 1 lipnio duginri pgl kintmąjį, priklunti nuo lygtie koeficientų ir prdinių ąlygų, o R() = n n k k, = 1, k= yr (2.4) lygtie chrkteritini duginri. Iš guto lgebrinė lygtie rndme B() Q() Y () =. (2.6) R() Td prendiny y rndm nudojnt tvirkštinę Lplo trnformciją y(t) = 1 µ+ı ı µ ı B() Q() e t d. R() Jeigu tieinė lygtie koeficienti yr duginrii kintmojo t tžvilgiu, ti Lplo trnformcij diferencilinę lygtį trnformuoj į diferencilinę lygtį.

7 7 1 SKYRIUS. Lplo trnformcij [ (9:42)] 1.7 pvyzdy. Rime Koši uždvinio y y = 1, y() =, y () = prendinį. Tikome Lplo trnformciją 2 Y () Y () = 1 Y () = 1 ( 2 1) = y(t) = coh t pvyzdy. Rime Koši uždvinio y y = 1 coh t, y() =, y () = prendinį. Tieiogii išpręti nepvykt, ne nežinome funkcijo 1/ coh t vizdo. Pinudoime Diumelio formule. Iš prdžių prendžime lygtį u b 1 = u(t) ir iš preito uždvinio turime prendinį g(t) = coh t 1, g (t) = inh t. Abi prdinė ąlygo lygio nuliui, todėl iš (2.6) turime lygybę Vdini, y(t) = R() = B() Y () = B1() Y = 1 Y () = G()B(). 1() G() = inh t 1 inh τ coh(t τ) dτ = dz coh t 1 inh(t z) coh z dτ inh z dz = t inh t coh t ln coh t. coh z 1.2 uždviny. Rkite Koši uždvinio ty + y ty =, y() = 1, y () = prendinį.

8 2. 8

9 2 kyriu Integrlinė lygty Integrlinė lygty džni nudojmi įviruoe tikymų ritye ir yr tokio pt vrbio kip ir diferencilinė lygty. Dugeli uždvinių gli būti ekvivlentiški formuluojmi kip diferencilinė rb kip integrlinė lygti. Uždvinii, kuriuo pršo integrlinė lygty, yr pinduliuotė perdvim, tygo, membrno r šie vyrvymi. 1. Įvd Integrlinemi lygtimi vdinmo lygty, kurioe nežinomoji funkcij yr po integrlo ženklu. Jei tokioje lygtyje yr nežinomo funkcijo išvetinė, klbm pie integro-diferencilinę lygtį. Integrlinė lygti nežinomi funkciji y(x) bendru tveju gli būti užršyt kip θ(x)y(x) + b k(x, t)y(t)dt = f(x), či f(x), θ(x) ir k(x, t) yr duotoio funkcijo ( f(x) titink išorinę jegą). Funkcij k(x, t) yr vdinm brnduoliu ( ngl. kernel). 2.1 pvyzdy. Integrlinių lygčių pvyzdžii: 1. y(x) = x (x t)y(t)dt. 2. y(x) = f(x) + λ k(x t)y(t)dt, či f(x) ir k(x) yr duotoio funkcijo. 3. y(x) = λ 1 k(x, t)y(t)dt, k(x, t) = 4. y(x) = λ 1 (1 3xt)y(t)dt. 5. y(x) = f(x) + λ 1 (1 3xt)y(t)dt. { (x(1 t), x t; t(1 x), t x 1. Funkcij, pverčinti integrlinę lygtį tptybe, vdinm integrlinė lygtie prendiniu. 2.2 pvyzdy. 1. Integrlinė lygti u nežinomąją funkciją y(x) turi prendinį y(x) = 3x/2, ne 1 xty(t)dt + x = y(x) = 1 1 xty(t)dt + x xt 3t 2 dt + x = x 2 + x = 3x 2 y(x). Glim įrodyti, kd ti vieninteli šio lygtie prendiny.

10 2. Įvd 1 2. Integrlinė lygti y(x) = 1 3xty(t)dt + x neturi prendinių. 3. Neunku ptikrinti, kd y(x) = 1 3xty(t)dt + x 2/3 turi be glo dug prendinių y(x) = cx 2/3, či c yr kontnt. Mtome, kd nedideli integrlinių lygčių koeficientų pkeitimi duod kokybiški kirting itucij. Todėl integrlinių lygčių teorijoje vrbu ngrinėti prendinių egzitvimą, vientį ir glodumą. Integrlinėm lygtim džni neglim užršyti nlizinio prendinio, tokiu tveju reiki pręti kitiški. Ti glim pdryti dikretizuojnt neprikluomą kintmjį x ir prokimuojnt integrlą kvdrtūrinemi formulėmi n c j k (x i, t j ) y(t j ) = f(x i ), i =, 1,, n. j=1 Uždvini užršom kip n lygčių itemą u n kintmiii. Išprendu, gunme dikretujį prendinį y(t ), y(t 1 ),, y(t n ). 2. Integrlinių lygčių klifikcij Integrlinė lygty yr klifikuojmo pgl tri kirting dichotomij, tokiu būdu udromo štuonio kirtingo klė: Integrvimo režii fikuoti: Fredholmo lygti, vien reži kintm: Volter lygti. Išdėtym nežinomo funkcijo Tik po integrlo ženklu: I rūšie, po integrlu ir jo išorėje: II rūšie. Žinomo funkcijo f tip f homogeninė, f nehomogeninė. Fredholmo lygti ir Volterr lygti yr tieinė lygty, ne funkcij y(x) į integrlą įein tieiški. Netieinė Volter lygti turi pvidlą ϕ(x) = f(x) + λ či F yr žinom funkcij. k(x, t) F (x, t, y(t)) dt,

11 11 2 SKYRIUS. Integrlinė lygty [ (9:42)] Ngrinėkime tieine integrline lygti (θ yr kontnt) θy(x) + λ Integrlinių lygčių tipi: b k(x, t)y(t)dt = f(x). Lygti vdinm I rūšie, jei nežinom funkcij yr tik po integrlo ženklu, t.y. θ(x), priešingu tveju lygti yr II rūšie. Lygti vdinm - Fredholmo integrline lygtimi, jei integrvimo režii ir b yr kontnto, (Ivr Fredholm) - Volter integrline lygtimi, jei ir b yr kintmuojo x funkcijo (Vito Volterr). Lygti yr homogeninė, jei f(x), priešingu tveju nehomogeninė. 2.3 pvyzdy. ) I rūšie Fredholmo lygti b) II rūšie Fredholmo lygti b b k(x, t)y(t)dt = f(x). k(x, t)y(t)dt + y(x) = f(x). c) I rūšie Volter lygti k(x, t)y(t)dt = f(x). d) II rūšie Volter lygti k(x, t)y(t)dt + y(x) = f(x). 2.4 pvyzdy [Sndėlivimo uždviny]. Norint optimlii išnudoti ndelivimo erdvę, ndėlinink turi išlikyti ptovų kiekį prekių trgų. Glim prodyti, kd šią ituciją pršo integrlinė lygti. Apibrėžkime: θ = prekių trgų kieki liko momentu t =, k(t) = prekių trgų likuti (procenti) liko momentu t, u(t) = nujų prekių pirkimo greiti (prekė/liko vieneti), u(t)δτ = įigytų prekių kieki per liko intervlą δτ. Bendr prekių kieki ndėlyje liko momentu t pkičiuojm pgl formulę: θk(t) + k(t τ)u(τ)dτ, Jei produktų kieki ndėlyje yr ptovu ir lygu kontnti c, ti θk(t) + k(t τ)u(τ)dτ = c. Norint užinoti, kip greiti reikę pirkti nuj preke (t.y. u(t)) tm, kd išlikyti ptovų trgų kiekį, reiki išpręti I rūšie Volterą lygtį.

12 3. Įvd Konvoliucijo tipo integrlinė lygty Lplo trnformcijo metod gli būti tikom integrlinei lygčii, jei įeinnty į ją integrl yr dviejų funkcijų ąūk: f(x t)g(t) dt = F (p)g(p), t. y. brnduoly yr dviejų kintmujų kirtumo funkcij: y(x) = f(x) + K(x )y() d. 2.5 pvyzdy. Lygtie Lplo trnformcij y(x) = in x + 2 co(x t)y(t)dt. L[y] = L[y] L[y] = 1 (p 1) 2. Atvirkštinė Lplo trnformcij y(x) = xe x. Ngrinėkime tokio tipo integrline lygti: y(x) = f(x) + k(x t)y(t)dt = f(x) + k y(x), či k y(x) yr funkcijų k ir y ąūk. Integrlinių lygčių u ąūką pgrindini prendimo metod yr Lplo trnformcij. 2.6 pvyzdy. Išprękime lygtį y(x) = x (x t)y(t)dt. Sprendim: Lygti yr ąūko tipo u f(x) = x ir k(x) = x. Priiminkime, kd Lygtie Lplo trnformcij L[x] = 1 2. L[y] = 1 L[x y] = 1 2 L[x]L[y] = L[y] L[y] = Iš či gunme [ ] y(x) = L 1 1 = in x

13 13 2 SKYRIUS. Integrlinė lygty [ (9:42)] 2.7 pvyzdy. Išprękime lygtį y(x) = f(x) + λ k(x t)y(t)dt, či f(x) ir k(x) yr duoto funkcijo. Sprendim: Lygti yr ąūko tipo. Pritikome Lplo trnformciją L[y] = L[f] + λl[k]l[y] L[y] = L[f] 1 λl[k]. [ ] y(x) = L 1 L[f]. 1 λl[k] 4. Ryšy trp diferencilinių ir I rūšie integrlinių lygčių 2.8 pvyzdy. Ngrinėkime Koši uždvinį y (x) = f(x, y), y(x ) = y. (4.1) Integruojnt nuo x iki x gunme iš či x y (t)dt = x f(t, y(t))dt, y(x) = y + f(t, y(t))dt. x (4.2) Iš kito puė, jei (4.2) teiing, ti y(x ) = y ir y (x) = f(x, y(x)), t.y. (4.1) teiing. Ti rodo, kd uždvinii (4.1) ir (4.2) yr ekviivlentu. Glim uformuluoti dug prdinių ir krštinių diferencilinių uždvinių nudojnt integrline lygti, ir tvirkčii. Bendruoju tveju: Koši uždviny Dinminė itemo } Volter lygti, Krštini uždviny Fredholmo lygti.

Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras,

Matematinės analizės egzamino klausimai MIF 1 kursas, Bioinformatika, 1 semestras, MIF kurss, Bioinformtik, semestrs, 29 6 Tolydžios tške ir intervle funkciju pibrėžimi Teorem Jei f C[, ], f() = A , ti egzistuoj toks c [, ], kd f(c) = 2 Konverguojnčios ir diverguojnčios eikutės

Διαβάστε περισσότερα

5 paskaita. 5.1 Kompaktiškosios aibės Sąvokos

5 paskaita. 5.1 Kompaktiškosios aibės Sąvokos 5 pskit 5.1 Kompktiškosios ibės 5.1.1 Sąvokos Iš mtemtinės nlizės kurso žinome dvi svrbis prėžtu reliu ju skičiu ibiu svybes. Pirmoji Bolcno-Vejerštrso teorem: bet kuri beglinė prėžt reliu ju skičiu ibė

Διαβάστε περισσότερα

Labai svarbi tiesiniu operatoriu šeima kompaktiškieji operatoriai. Jiems skirtas paskutinysis?? skyrelis.

Labai svarbi tiesiniu operatoriu šeima kompaktiškieji operatoriai. Jiems skirtas paskutinysis?? skyrelis. 13 pskit 13.1 Tiesinii opertorii Šime skyriuje ngrinėjmos normuotu ju erdviu tiesinės funkcijos tiesinii opertorii. Bigtinės dimensijos erdvėms, kip mtysime, jie pršomi mtricomis. Tigi tiesiniu opertoriu

Διαβάστε περισσότερα

Matematiniai modeliai ir jų korektiškumas

Matematiniai modeliai ir jų korektiškumas 1 skyrius Mtemtinii modelii ir jų korektiškums 1.1. Mtemtinių uždvinių klsifikcij Mtemtinis modelivims yr svrbus nujs žinių gvimo būds, kuris vis džniu nudojms sprendžint technologinius uždvinius, tirint

Διαβάστε περισσότερα

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει. Έστω xt : Ο (αμφίπλευρος) μετασχηματισμός LAPLACE ορίζεται : X: L { xt} : X xt e dt = = μιγαδική συνάρτηση της μιγαδικής μεταβλητής = σ+ j Ο (μονόπλευρος) μετασχηματισμός LAPLACE ορίζεται : L { xt } :

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

Matematika 1 4 dalis

Matematika 1 4 dalis Matematika 1 4 dalis Analizinės geometrijos elementai. Tiesės plokštumoje lygtis (bendroji, kryptinė,...). Taško atstumas nuo tiesės. Kampas tarp dviejų tiesių. Plokščiosios kreivės lygtis Plokščiosios

Διαβάστε περισσότερα

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis

2015 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pagrindinė sesija. I dalis PATVIRTINTA Ncionlinio egzminų centro direktorius 0 m. birželio d. įskymu Nr. (..)-V-7 0 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIES VERTINIMO INSTRUKCIJA Pgrindinė sesij I dlis Užd. Nr. 4 7

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

FORMULE VEZANE UZ MATEMATIČKE KOLEGIJE PREDDIPLOMSKOG STUDIJA

FORMULE VEZANE UZ MATEMATIČKE KOLEGIJE PREDDIPLOMSKOG STUDIJA FORMULE VEZANE UZ MATEMATIČKE KOLEGIJE PREDDIPLOMSKOG STUDIJA Vrijednoti inu i koinu π π π π ϕ 6 4 3 in ϕ 3 co ϕ 3 Trigonometrijke funkcije polovičnih rgument in x = co x co x = + co x Trigonometrijke

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

TD 1 Transformation de Laplace

TD 1 Transformation de Laplace TD Transformation de Lalace Exercice. On considère les fonctions suivantes définies sur R +. Pour chacune de ces fonctions, on vous demande de déterminer la transformée de Lalace et de réciser le domaine

Διαβάστε περισσότερα

Matematika PIRMOJI KNYGA. Išplėstinis kursas. Vadovėlis gimnazijos IV klasei

Matematika PIRMOJI KNYGA. Išplėstinis kursas. Vadovėlis gimnazijos IV klasei Mtemtik Išplėstinis kurss Vdovėlis gimnzijos IV klsei PIRMOJI KNYGA Turinys Trigonometrinės funkcijos 5 Rdininis kmpo mts Posūkio kmpi 5 Bet kokio kmpo sinuss, kosinuss, tngents ir kotngents 9 Funkcijos

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

Solutions - Chapter 4

Solutions - Chapter 4 Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]

Διαβάστε περισσότερα

Διαφορικές εξισώσεις 302.

Διαφορικές εξισώσεις 302. Διαφορικές εξισώσεις 32. Μαθηματικό Αθήνας Συλλογή ασκήσεων 1 Λύτες: Βουλγαρίδου Εύα Ορμάνογλου Στράβων Παπαμικρούλη Ελένη Παπανίκου Μυρτώ Καθηγητές: Αθανασιάδου - Μπαρμπάτης Επιμέλεια L A TEX: Βώβος Μάριος

Διαβάστε περισσότερα

Κεφάλαιο 7. Μετασχηματισμός Laplace. 7.1 Εισαγωγή στον μετασχηματισμό Laplace

Κεφάλαιο 7. Μετασχηματισμός Laplace. 7.1 Εισαγωγή στον μετασχηματισμό Laplace Κεφάλαιο 7 Μετασχηματισμός Laplace Σε αυτο το κεφάλαιο θα μελετήσουμε τη μέθοδο του μετασχηματισμού Laplace, η οποία αποτελεί μία από τις βασικές τεχνικές μαθηματικών προβλημάτων: μετασχηματίζει δύσκολα

Διαβάστε περισσότερα

X galioja nelygyb f ( x1) f ( x2)

X galioja nelygyb f ( x1) f ( x2) Monotonin s funkcijos Tegul turime funkciją f : A R, A R. Apibr žimas. Funkcija y = f ( x) vadinama monotoniškai did jančia (maž jančia) aib je X A, jei x1< x2 iš X galioja nelygyb f ( x1) f ( x2) ( f

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Teor imov r. ta matem. statist. Vip. 94, 2016, stor eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Ιδιότητες της Συνέλιξης Η συνέλιξη μετατοπισμένων σημάτων

Διαβάστε περισσότερα

NEAPIBRĖŽTINIS INTEGRALAS su MAPLE. Aleksandras KRYLOVAS

NEAPIBRĖŽTINIS INTEGRALAS su MAPLE. Aleksandras KRYLOVAS NEAPIBRĖŽTINIS INTEGRALAS su MAPLE Aleksndrs KRYLOVAS TURINYS. PIRMYKŠTĖ FUNKCIJA IR NEAPIBRĖŽTINIS INTEGRALAS 6.. PIRMYKŠTĖS FUNKCIJOS APIBRĖŽIMAS 6.. NEAPIBRĖŽTINIO INTEGRALO SAVOKA 7.. NEAPIBRĖŽTINIO

Διαβάστε περισσότερα

P. Kasparaitis. Vaizdų ir signalų apdorojimas. Filtrai

P. Kasparaitis. Vaizdų ir signalų apdorojimas. Filtrai P Ksritis Vidų ir signlų dorojims Filtri 8 Filtri Sitmeninii filtri Aibrėžims Sitmeninis filtrs ti mtemtiši ibrėžt sistem, sirt sitmeninim signlui modifiuoti Sitmeninio signlo [ tvidvimą į žymėime ti:

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA

LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA LIETUVOS JAUNŲJŲ MATEMATIKŲ MOKYKLA 6 tem. SĄLYGINĖS TAPATYBĖS IR NELYGYBĖS 009 0 Teorinę medžigą prengė ei šeštąją užduotį sudrė Vilnius pedgoginio universiteto doents Juos Šinkūns Įrodmo uždvinii r vieni

Διαβάστε περισσότερα

= λ. u t = u xx UT = U T T T = U U. Οσον αφορά τη χρονική εξίσωση έχουμε. T + λt =0 T (t) =e λt. ενώ για τη χωρική

= λ. u t = u xx UT = U T T T = U U. Οσον αφορά τη χρονική εξίσωση έχουμε. T + λt =0 T (t) =e λt. ενώ για τη χωρική Prìlhm Το φυσικό πρόβλημα είναι: τοίχος σε επαφή με λουτρό θερμοκρασίας T = αριστερά και μονωμένος δεξιά, με αρχική θερμοκρασία T =.Θέτουμεu(x, t) = U(x)T (t), οπότεu t = UT και u xx = U T, και προχωράμε

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ] συνεχές τόξο (arc) - τροχιά R [a, b] t 1:1 επί x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n x i (t), i = 1, 2,..., n συνεχείς συναρτήσεις, π.χ c 1 : x(t) = (x(t), y(t)) = (1 t, 1 t), t [0, 1] [ c 2 : x(t)

Διαβάστε περισσότερα

Μετασχηματισμός Laplace με εφαρμογές στις διαφορικές εξισώσεις

Μετασχηματισμός Laplace με εφαρμογές στις διαφορικές εξισώσεις Κεφάλαιο 7 Μετασχηματισμός Lplce με εφαρμογές στις διαφορικές εξισώσεις Ο μετασχηματισμός Lplce είναι ολοκληρωτικός μετασχηματισμός, ο οποίος εισάγεται με τη βοήθεια συγκεκριμένου γενικευμένου ολοκληρώματος

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) =

x(t) ax 1 (t) y(t) = 1 ax 1 (t) = (1/a)y 1(t) x(t t 0 ) y(t t 0 ) = ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-25: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 26-7 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λύσεις Τρίτης Σειράς Ασκήσεων Ηµεροµηνία Ανάθεσης

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ Pierre-Simn Laplace ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE ΑΝΑΛΥΣΗ στο πεδίο των ΣΥΧΝΟΤΗΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ /4 Τι περιλαμβάνει Ορισμοί Μετασχ. Laplace απλών σημάτων Ιδιότητες Εφαρμογή στη λύση ΔΕ Μετασχηματισμένο

Διαβάστε περισσότερα

Ολοκληρώματα. ) x. f(x)dx = lim f(ξ. Παραδείγµατα Επισηµάνσεις Θεωρίας Θέµατα. f(ξκ) Επιµέλεια: Μάριος Ελευθεριάδης 1. + κ=1

Ολοκληρώματα. ) x. f(x)dx = lim f(ξ. Παραδείγµατα Επισηµάνσεις Θεωρίας Θέµατα. f(ξκ) Επιµέλεια: Μάριος Ελευθεριάδης 1. + κ=1 Ολοκληρώμτ Cf f(ξκ) = 3 κ-ξκ κ - = f()d = lim f(ξ κ ) + κ= Πρδείγµτ Επισηµάσεις Θεωρίς Θέµτ Επιµέλει: Μάριος Ελευθεριάδης . Αρχική συάρτηση ΟΛΟΚΛΗΡΩΜΑΤΑ Πρδείγµτ Επισηµάσεις Θεωρίς Θέµτ Ορισµός: Αρχική

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

ΙΙ. b) Μιγαδικό ολοκλήρωμα

ΙΙ. b) Μιγαδικό ολοκλήρωμα ΙΙ b Μιγαδικό ολοκλήρωμα Οι συναρτήσεις που θα θεωρούμε εδώ πραγματικές ή μιγαδικές θα τις υποθέτουμε παραγωγίσιμες Ορισμοί Έστω g :[α, β] C Αν gt xt + iyt και οι xy, yt είναι παραγωγίσιμες, τότε η παράγωγος

Διαβάστε περισσότερα

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÌÏÌÄÍÔÉÓÀ ÃÀ ÃÀÂÅÉÀÍÄÁÄÁÉÓ ÛÄÛ ÏÈÄÁÉÓ Ä ÄØÔÉ, ÀÂÒÄÈÅÄ

Διαβάστε περισσότερα

2.6. IŠVESTINĖ, DIFERENCIJAVIMAS

2.6. IŠVESTINĖ, DIFERENCIJAVIMAS 6 IŠVESTINĖ DIFERENCIJAVIMAS 61 Išvestiės sąvok Fukcijos išvestiės sąvok yr mtemtikos istrumets kurio reikšmę suku įvertiti Glbūt ti glim plygiti su vidus degimo vriklio sukūrimu Diferecijuoti pprsčiusis

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Μετασχηματισμός Fourier Στο κεφάλαιο αυτό θα εισάγουμε και θα μελετήσουμε

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

iii) x + ye 2xy 2xy dy

iii) x + ye 2xy 2xy dy ΕΚΠΑ - Τμήμα Μαθηματικών Διαφορικές Εξισώσεις Ι Χειμερινό Εξάμηνο 2016-2017 Παραδόσεις Ε. Κόττα-Αθανασιάδου Ασκήσεις (Είναι οι ασκήσεις που αφήνονται για «λύση στο σπίτι» στις παραδόσεις της διδάσκουσας.

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 0: Σήματα και Συστήματα Ι ΔΙΑΛΕΞΗ # Μετασχηματισμός Laplace και ΓΧΑ Συστήματα Συνάρτηση μεταφοράς αιτιατών και ευσταθών συστημάτων Συστήματα που περιγράφονται από ΔΕ Διαγράμματα Μπλοκ Μετασχηματισμός

Διαβάστε περισσότερα

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Αντίστροφος Μετασχηματισμός Laplace Στην

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

σ (9) = i + j + 3 k, σ (9) = 1 6 k. Ασκήσεις από το Διανυσματικός Λογισμός των Marsden - romba και από το alculus του Apostol. 1. Βρείτε τα διανύσματα της ταχύτητας και της επιτάχυνσης και την εξίσωση της εφαπτομένης για κάθε μία από τις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑ ΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΗΣΙΩΝ ΛΥΚΕΙΩΝ -11 ΕΠΙΜΕΛΕΙΑ: ΠΑΠΠΑΣ ΑΘΑΝΑΣΙΟΣ Ο ΓΕΛ ΥΜΗΤΤΟΥ ΙΟΥΝΙΟΣ 11 Pappas Ath...page 1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Σήματα και Συστήματα

Σήματα και Συστήματα Σήματα και Συστήματα Διάλεξη 12: Ιδιότητες του Μετασχηματισμού aplace Ο αντίστροφος Μετασχηματισμός aplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ιδιότητες του Μετασχηματισμού aplace 1. Ιδιότητες

Διαβάστε περισσότερα

L A TEX 2ε. mathematica 5.2

L A TEX 2ε. mathematica 5.2 Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica

Διαβάστε περισσότερα

Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας

Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας ιαφορικές Εξισώσεις Μετασχηματισμοί Laplace Μανόλης Βάβαλης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας Βόλος, 11 Μαΐου 2015 Περιεχόμενα Μετασχηματισμοί Laplace Ορισμός μετασχηματισμού

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Επιµέλεια: Ι. Σπηλιώτης Άσκηση.3 σελ.45 Εξάγονται δύο σφαίρες από την Α και τοποθετούνται στην Β. Υπάρχουν τρία δυνατά ενδεχόµενα: Ε : εξάγονται δύο

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Prima Esercitazione. Baccarelli, Cordeschi, Patriarca, Polli 1

Prima Esercitazione. Baccarelli, Cordeschi, Patriarca, Polli 1 Prima Esercitazione Cordeschi, Patriarca, Polli 1 Formula della Convoluzione + y() t = x( ) h( t ) d τ = τ τ τ x(t) Ingresso h(t) Filtro Uscita y(t) Cordeschi, Patriarca, Polli 2 Primo esercizio Si calcoli

Διαβάστε περισσότερα

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871,

E.E. Παρ. Ill (I) 429 Κ.Δ.Π. 150/83 Αρ. 1871, E.E. Πρ. ll () 429 Κ.Δ.Π. 50/ Αρ. 7, 24.6. Αρθμός 50 ΠΕΡ ΤΑΧΥΔΡΜΕΩΝ ΝΜΣ (ΚΕΦ. 0 ΚΑ ΝΜ 42 ΤΥ 96 ΚΑ 7 ΤΥ 977) Δάτγμ δνάμ τ άρθρ 7() Τ Υπργκό Σμβύλ, σκώντς τς ξσίς π πρέχντ Κ»>. 0. σ' τό δνάμ τ δφί τ άρθρ

Διαβάστε περισσότερα

1 iš 15 RIBOTO NAUDOJIMO

1 iš 15 RIBOTO NAUDOJIMO iš 5 PATVIRTINTA Nacionalinio egzaminų centro direktoriau 00-06-08 įakymu Nr. 6.-S- 00 m. matematiko valtybinio brando egzamino VERTINIMO INSTRUKCIJA Pagrindinė eija 8 uždavinių atakymai Užd. Nr. 5 6 7

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση και Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας Απριλίου 7 Αναγνώριση Παραμετρικών μοντέλών

Διαβάστε περισσότερα

Tables of Transform Pairs

Tables of Transform Pairs Tble of Trnform Pir 005 by Mrc Stoecklin mrc toecklin.net http://www.toecklin.net/ December, 005 verion.5 Student nd engineer in communiction nd mthemtic re confronted with trnformtion uch the -Trnform,

Διαβάστε περισσότερα

Μάθημα: Θεωρία Δικτύων

Μάθημα: Θεωρία Δικτύων Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 7-8, 5ο Εξάμηνο Μάθημα: Θεωρία Δικτύων Ανάλυση Ευσταθείας Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής Σχολή Ηλεκτρ.

Διαβάστε περισσότερα

Μαθηματικά Ο.Π. Γ ΓΕΛ 29/ 04 / 2018 ΘΕΜΑ Α. Α1. Σελίδα 216. Α2.i) Λ ii) Σελίδα 134. Α3. Σελίδα 128

Μαθηματικά Ο.Π. Γ ΓΕΛ 29/ 04 / 2018 ΘΕΜΑ Α. Α1. Σελίδα 216. Α2.i) Λ ii) Σελίδα 134. Α3. Σελίδα 128 Γ ΓΕΛ 9/ 4 / 8 Μαθηματικά Ο.Π. ΘΕΜΑ Α Α. Σελίδα 6 Α.i) Λ ii) Σελίδα 34 Α3. Σελίδα 8 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό

Διαβάστε περισσότερα

Κατεύθυνσης. Απαντήσεις Θεμάτων Επαναληπτικών Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων

Κατεύθυνσης. Απαντήσεις Θεμάτων Επαναληπτικών Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων 4 Ιουνίου Μαθηματικά Θετικής & Τεχνολογικής Κατεύθυνσης Απαντήσεις Θεμάτων Επαναληπτικών Πανελληνίων Εξετάσεων Ημερησίων Γενικών Λυκείων Θέμα Α Α. Σχολικό βιβλίο σελ. 6 Α. Σχολικό βιβλίο σελ. 4 Α. Σχολικό

Διαβάστε περισσότερα

Αναπαραστάσεις οµάδων: παραδείγµατα

Αναπαραστάσεις οµάδων: παραδείγµατα Φεβρουάριος-Μάρτιος 2016 1 τοπολογικές οµάδες 2 3 τοπολογικές οµάδες Ορισµός Μια οµάδα G λέγεται τοπολογική οµάδα αν είναι εφοδιασµένη µε µια τοπολογία τ.ω. οι (x, y) xy και x x 1 να είναι συνεχείς. Παραδείγµατα

Διαβάστε περισσότερα

7η ιεθνής Μαθηµατική Εβδοµάδα Θεσσαλονίκη Μαρτίου 2015 Ολοκληρωτικές εξισώσεις: τριτοβάθµια και δευτεροβάθµια εκπαίδευση

7η ιεθνής Μαθηµατική Εβδοµάδα Θεσσαλονίκη Μαρτίου 2015 Ολοκληρωτικές εξισώσεις: τριτοβάθµια και δευτεροβάθµια εκπαίδευση 7η ιεθνής Μαθηµατική Εβδοµάδα Θεσσαλονίκη 18 22 Μαρτίου 215 Ολοκληρωτικές εξισώσεις: τριτοβάθµια και δευτεροβάθµια εκπαίδευση Κυριαζής Χρήστος Πρωτοπαπάς Ελευθέριος 1 Ενότητες παρουσίασης Εισαγωγικές έννοιες

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ Σ.Δ. Φωτόπουλος 1/22

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ Σ.Δ. Φωτόπουλος 1/22 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΘΕΩΡΙΑ ΚΥΚΛΩΜΑΤΩΝ και ΣΗΜΑΤΩΝ Σ.Δ. Φωτόπουλος /22 περιεχόμενα ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ 2 ΚΕΦΑΛΑΙΟ 3 ΚΕΦΑΛΑΙΟ 4 ΚΕΦΑΛΑΙΟ 5 ΚΕΦΑΛΑΙΟ 6 ΚΕΦΑΛΑΙΟ 7 ΚΕΦΑΛΑΙΟ 8 ΚΕΦΑΛΑΙΟ 9 ΣΤΟΙΧΕΙΑ

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο. Aνάλυση Σήματος. 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Aνάλυση Σήματος 2 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Συνήθεις ιαφορικές Εξισώσεις. Άλκης Τερσένοβ. Περιεχόµενα ιαφορικές Εξισώσεις Πρώτης Τάξης... 3

Συνήθεις ιαφορικές Εξισώσεις. Άλκης Τερσένοβ. Περιεχόµενα ιαφορικές Εξισώσεις Πρώτης Τάξης... 3 Συνήθεις ιαφορικές Εξισώσεις 217 Άλκης Τερσένοβ Περιεχόµενα... 1 1. ιαφορικές Εξισώσεις Πρώτης Τάξης... 3 2. Συστήµατα ιαφορικών Εξισώσεων Πρώτης Τάξης... 25 2.1 ιαφορικές Εξισώσεις Ανώτερης Τάξης... 36

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική 9 Συνεχή δυναμικά συστήματα Μέρος 1 ο Λουκάς Ζαχείλας Ορισμός Διαφορικής

Διαβάστε περισσότερα

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t

ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada

Διαβάστε περισσότερα

B G [0; 1) S S # S y 1 ; y 3 0 t 20 y 2 ; y 4 0 t 20 y 1 y 2 h n t: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 1; 3: r = 10 5 ; a = 10 6 ei n = ỹi n y i t n ); i = 2; 4: r = 10 5 ; a = 10 6 t = 20

Διαβάστε περισσότερα

Déformation et quantification par groupoïde des variétés toriques

Déformation et quantification par groupoïde des variétés toriques Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μετασχηματισμός Laplace 1. Ο μετασχηματισμός

Διαβάστε περισσότερα

6 s(s 1)(s 3) = A s + B. 3. Íá âñåèåß ï ìåô/ìüò Laplace ôùí ðáñáêüôù óõíáñôþóåùí

6 s(s 1)(s 3) = A s + B. 3. Íá âñåèåß ï ìåô/ìüò Laplace ôùí ðáñáêüôù óõíáñôþóåùí ÔÅÉ ËÜñéóáò, ÔìÞìá Çëåêôñïëïãßáò ÅöáñìïóìÝíá ÌáèçìáôéêÜ, ÅîÝôáóç Ðåñéüäïõ Éïõíßïõ 22/6/21 ÄéäÜóêùí: Á éëëýáò Óõíåöáêüðïõëïò 1. (i Õðïëïãßóôå ôçí óåéñü Fourier S f (x ôçò óõíáñôþóåùò (18 ìïí. { ; < x f(x

Διαβάστε περισσότερα

EL 625 Lecture 2. State equations of finite dimensional linear systems

EL 625 Lecture 2. State equations of finite dimensional linear systems EL 625 Lecture 2 EL 625 Lecture 2 State equations of finite dimensional linear systems Continuous-time: ẋ(t) = A(t)x(t) + B(t)u(t) y(t) = C(t)x(t) + D(t)u(t) Discrete-time: x(t k+ ) = A(t k )x(t k ) +

Διαβάστε περισσότερα

40 επαναληπτικά θέματα

40 επαναληπτικά θέματα 4 επαναληπτικά θέματα για τα μαθηματικά κατεύθυνσης Γ Λυκείου Σχολικό έτος 4 Ελεύθερη διάθεση για εκπαιδευτικούς σκοπούς ΣΥΛΛΟΓΗ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέμα ο Έστω η παραγωγίσιμη συνάρτηση

Διαβάστε περισσότερα

Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων

Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων Ασκήσεις στους Μετασχηµατισµούς Laplace και Fourier και τα Συστήµατα Εξισώσεων Ε Κάππος 4 εκεµβρίου 7 Περιεχόµενα Ασκήσεις στο µετασχηµατισµό Laplace Ασκήσεις στα Συστήµατα Εξισώσεων 5 3 Ασκήσεις Fourier

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 5: Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής . Γραφική Μέθοδος Υπολογισμού του Συνελικτικού Ολοκληρώματος 2 Γραφικός

Διαβάστε περισσότερα

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018 ΝΙΚΟΛΑΟΣ M. ΣΤΑΥΡΑΚΑΚΗΣ: «Μερικές Διαφορικές Εξισώσεις & Μιγαδικές Συναρτήσεις: Θεωρία και Εφαρμογές» η Έκδοση, Αυτοέκδοση) Αθήνα, ΜΑΡΤΙΟΣ 06, Εξώφυλλο: ΜΑΛΑΚΟ, ΕΥΔΟΞΟΣ: 5084750, ISBN: 978-960-93-7366-

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011 2.019 Design of Ocean Systems Lecture 6 Seakeeping (II) February 21, 2011 ω, λ,v p,v g Wave adiation Problem z ζ 3 (t) = ζ 3 cos(ωt) ζ 3 (t) = ω ζ 3 sin(ωt) ζ 3 (t) = ω 2 ζ3 cos(ωt) x 2a ~n Total: P (t)

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο:

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ ΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Έστω [ α, b], f :[ α, b], y. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: Ζητείται µια συνάρτηση y :[

Διαβάστε περισσότερα

K F = F 2 /F 1 = l 1 /l 2. (1)

K F = F 2 /F 1 = l 1 /l 2. (1) Stiprinims 1. Mechninės jėgos F stiprinims 1.1. Archimedo sverts. O l 2 F 2 T l 1 m P = m g F 1 1 pv. K F = F 2 /F 1 = l 1 /l 2. (1) či: P sunkio jėg; T įtempimo (tmprumo) jėg; F 1, 2 titinkmi poveikio

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

Ακρότατα'Συναρτησιακών'μίας' Συνάρτησης:'Πρόβλημα+ +4α'

Ακρότατα'Συναρτησιακών'μίας' Συνάρτησης:'Πρόβλημα+ +4α' Ακρότατα'Συναρτησιακών'μίας' Συνάρτησης:'Πρόβλημα+ +4α' Τελικόςχρόνοςt f «ελεύθερος»0τελικήτιμήxt f ) «ελεύθερη»:ασυσχετιστα' Ηεύρεσητουακροτάτουσυνάρτηση)γίνεταιμετηνεπίλυσητηςΔιαφ.Εξισ... Εξίσωση'Euler'...καιοισταθερέςολοκληρώσεωςθαπροκύψουναπότηνικανοποίησητων...

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ A ΠΕΡΙΟΔΟΥ ΕΑΡΙΝΟΥ ΣΗΜΑΤΑ, ΣΥΣΤΗΜΑΤΑ & ΚΥΚΛΩΜΑΤΑ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ A ΠΕΡΙΟΔΟΥ ΕΑΡΙΝΟΥ ΣΗΜΑΤΑ, ΣΥΣΤΗΜΑΤΑ & ΚΥΚΛΩΜΑΤΑ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΕΙ ΠΕΙΡΑΙΑ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ A ΠΕΡΙΟΔΟΥ ΕΑΡΙΝΟΥ 008-09 ΣΗΜΑΤΑ, ΣΥΣΤΗΜΑΤΑ & ΚΥΚΛΩΜΑΤΑ 9.06.009 ΥΠΟΧΡΩΤΙΚΟ ΖΗΤΗΜΑ Υ (5.0 µονάδες) α) Σχεδιάστε το δίπλευρο φάσµα πλάτους του σήµατος g(t)in(t)

Διαβάστε περισσότερα

Η ϐέλτιστη σταθερά στην ανισότητα Hausdorff-Young

Η ϐέλτιστη σταθερά στην ανισότητα Hausdorff-Young Η ϐέλτιστη σταθερά στην ανισότητα Hausdorff-Youg Ασπασία Κωτσογιάννη Περίληψη Ο µετασχηµατισµός Fourier Εστω f L. Ορίζουµε. fξ = π fxe ix ξ dx, ξ. Το ολοκλήρωµα Lebesgue στη σχέση. συγκλίνει για κάθε ξ

Διαβάστε περισσότερα

Επίλυση Δ.Ε. με Laplace

Επίλυση Δ.Ε. με Laplace Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή

Διαβάστε περισσότερα

( 1 ) ( 2) ΘΕΜΑ 1 ο Α. 1 Θεώρημα σχ. βιβλίου σελ. 98 Α. 2 Ορισμός σχ. βιβλίου σελ. 141 Α. 3 Ορισμός σχ. βιβλίου σελ. 280

( 1 ) ( 2) ΘΕΜΑ 1 ο Α. 1 Θεώρημα σχ. βιβλίου σελ. 98 Α. 2 Ορισμός σχ. βιβλίου σελ. 141 Α. 3 Ορισμός σχ. βιβλίου σελ. 280 ΘΕΜΑ 1 ο Α. 1 Θεώρημα σχ. βιβλίου σελ. 98 Α. Ορισμός σχ. βιβλίου σελ. 11 Α. 3 Ορισμός σχ. βιβλίου σελ. 8 Β. α Λάθος β Λάθος γ Λάθος δ Σωστό ε Σωστό ΘΕΜΑ ο + αi α) z =, α R α + i + αi + αi + α z = = = =

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του έβδομου φυλλαδίου ασκήσεων. 1. Λύστε την παρακάτω δ.ε. με τη δοσμένη αρχική συνθήκη. Σχεδιάστε τις χαρακτηριστικές καθώς και το γράφημα της λύσης

Διαβάστε περισσότερα

Γραμμικό και Χρονικά Αμετάβλητο Σύστημα σε καθοριστική και τυχαία πρόκληση (8.1.3)

Γραμμικό και Χρονικά Αμετάβλητο Σύστημα σε καθοριστική και τυχαία πρόκληση (8.1.3) Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης

Διαβάστε περισσότερα

MÉTHODES ET EXERCICES

MÉTHODES ET EXERCICES J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP)

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP) Υ F21 LCI - Σειρά 1 3θυρη 1W11 120i ΧΚ 1.998 184 131 21.941,48 33.000 1W31 125i ΑΚ 1.998 224 130 26.407,03 42.040 1W91 M140i ΧΚ 2.998 340 179 31.878,02 52.790 1P91 M140i xdrive ΑΚ 2.998 340 169 35.428,74

Διαβάστε περισσότερα

Computing the Macdonald function for complex orders

Computing the Macdonald function for complex orders Macdonald p. 1/1 Computing the Macdonald function for complex orders Walter Gautschi wxg@cs.purdue.edu Purdue University Macdonald p. 2/1 Integral representation K ν (x) = complex order ν = α + iβ e x

Διαβάστε περισσότερα