Priprema za ispit znanja trigonometrija pravokutnog trokuta

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Priprema za ispit znanja trigonometrija pravokutnog trokuta"

Transcript

1 Pipem z ispit znnj tigonometij pvokutnog tokut 1. Zoj duljin ktet pvokutnog tokut jednk je 12 m, jedn kut tokut iznosi 58⁰. Kolik je duljin hipotenuze ovog tokut? + = 12 = 58⁰ =? S oziom d se u zdnim podim pojvljuju ktete i te kut, uočimo te elemente n skii pvokutnog tokut i odeimo tigonometijsku funkiju koj ih povezuje (nvno, di se o tngensu je su oe stnie ktete nem hipotenuze): ko pomnožimo ijelu jedndžu s doijemo: = = Polem je što se pojvljuju dvije nepoznnie, p gonju jedndžu momo kominiti s već doivenom + = 12: = + = 12 Umjesto nepoznnie u dugoj jedndži uvstit ćemo : Nkon izlučivnj nepoznnie immo: Podijelimo sve s + p doijemo: += += = + Sd kd immo stniu možemo funkijom kosinus povezti tu stniu, kut i hipotenuzu : Te nkon množenj s i dijeljenj s os immo: = = 2. Izčunj stnie pvokutnog tokut ko mu je povšin jednk 22 m 2, veličin jednog kut iznosi 56⁰ 40.? P = 22 m 2 = 56⁰ 40,, =? P = * /2

2 N skii pvokutnog tokut uočimo stnie i, te ih funkijom tngens povežemo s zdnim kutom : Odnosno, nkon množenj: = = Polem je što se pojvljuju dvije nepoznnie, p gonju jedndžu momo kominiti s već doivenom povšinom: = = = = U dugu jedndžu, umjesto uvstimo te pomnožimo s 2: Nkon seđivnj i dijeljenj s tn immo: = = Sd je jednostvno doiti i ostle stnie njpije uvstimo u = i izčunmo, dok možemo doiti Pitgoinim poučkom. 3. Kolik je duljin hipotenuze pvokutnog tokut, ko je duljin visine n hipotenuzu 11 m. = 48⁰ 50? v = 11 m = 48⁰ 50 =? v Visin n hipotenuzu je podijelil pvokutni tokut n dv mnj pvokutn tokut. Pimijetimo d u istnom pvokutnom tokutu immo poznt dv element ktetu v i kut, p i mogli izčunti hipotenuzu koisteći funkiju sinus: odnosno, nkon množenj s i dijeljenj s sin : = = No, sd u pvokutnom tokutu immo pozntu ktetu i kut p možemo izčunti i ostle dvije stnie:

3 odnosno = = Teću stniu možemo izčunti pomoću Pitgoinog poučk. 4. ko je duljin otogonlne pojekije ktete n hipotenuzu pvokutnog tokut jednk 10 m, duljin ktete je 7 m, koliki su kutovi ovog tokut? (IV.1) 5. Rzlik kut uz osnoviu i kut pi vhu jednkokčnog tokut iznosi 12⁰, kk je dulji od osnovie z 3 m. Kolik je povšin ovog tokut?? (IV.16) = 12⁰ = 3 m P =? = 2 Iz fomule z povšinu jsno se vidi d je poteno izčunti osnoviu i visinu v. Stog ćemo jednkokčnom tokutu povući visinu n osnoviu i uočiti jedn od dv pvokutn tokut n koje visin podijeli jednkokčn tokut No, njpije je poteno iskoistiti činjeniu d je = 12⁰, te izčunti kutove i. To ćemo postići koištenjem činjenie d je zoj kutov u tokutu 180⁰. Npišimo te dvije činjenie zjedno: = 12⁰ + 2 = 180⁰ Zjnjem ovih jedndži ( se pokti) doijemo: 3 = 192⁰ odnosno = 64⁰ Sd je poteno odti ti element u izdvojenom pvokutnom tokutu te ih povezti tigonometijskom funkijom. Pi odiu element poteno je otiti pžnju što nm je zdno u zdtku. Stog uočimo ktetu /2 i hipotenuzu te kut i povežimo ih funkijom kosinus: = =

4 Nkon množenj s 2 immo: = Jedndž koju smo doili nije, sm z see, ješiv je u sei im 2 nepoznnie. Međutim, mi smo pmetno ili elemente tokut koje smo povezli funkijom kosinus je iste te dvije nepoznnie immo povezne u jedndži koju smo doili pi zdvnju zdtk. Npišimo oje jedndže jednu ispod duge kko i olje vidjeli nčin n koji ćemo od njih dvije doiti jednu jedndžu, li smo s jednom nepoznniom: = = 3 m Pv jedndž nm kže d umjesto u dugu jedndžu uvstimo izz : Izlučimo i podijelimo s zgdom: = = Dlje je jednostvno izčunti podtk z uvstimo u = 3 te izčunmo stniu, ztim Pitgoom izčunmo i visinu v te sve to uvstimo u fomulu z povšinu. = 6. U jednkokčnom tokutu kut uz osnoviu z 20⁰ je veći od kut nsupot osnovii. Rzlik duljin kk i osnovie je 1 m. Kolike su duljine stni tokut? = + 20⁰ = 1 m, =? Izčunjmo njpije kutove tko d zdnu vezu između kutov i koju smo doili u zdtku ( = + 20⁰) uvstimo u izz z zoj kutov u tokutu, tj. u jedndžu + 2 = 180⁰ : + += te izčunmo njpije kut ztim i. Postupk nstvljmo uočvjući pvokutni tokut kojeg doijemo povlčenjem visine n osnoviu te povezujući tigonometijom stnie i (je je zdn vez između tih stni: = 1 ). = = Te nkon množenj s 2: = v /2

5 Sd peostje kominijom dvju izz s dvije nepoznnie doiti jednu jedndžu s jednom nepoznniom: = = U dugu jedndžu umjesto uvstimo i izlučimo : = te podijelimo s zgdom: = = 1 I još peostje izčunti uvštvnjem vijednosti u jedndžu = Opseg jednkokčnog tokut iznosi 30 m. Kut nspm osnovie tokut jednk je 104⁰. Izčunj povšinu tokut.? o = 30 m = 104⁰ P =? = 2 S oziom d je opseg jednkokčnog tokut + 2 jsno je d te tigonometijom povezti, i kut u pvokutnom tokutu kojeg doijemo povlčenjem visine n osnoviu v /2 = = /2 Seđivnjem te jedndže množenjem s 2 i komininjem s jedndžom z opseg (o = + 2 = 30) doijemo: = + = Iz pve jedndže uvstimo izz u dugu jedndžu i izlučimo : + = += Još nm peostje sve podijeliti s zgdom: = + Sd nm peostje izčunti uvštvnjem upvo izčuntog podtk z u = ztim pimjenom Pitgoinog poučk ponći i visinu v te izčunti povšinu tokut.

6 8. Kk jednkokčnog tokut tostuko je dulji od njegove osnovie. Koliki su kutovi tog tokut? = 3, =? Podi koji su zdni kžu nm što momo povezti koisteći tigonometiju: to su stnie i te jedn kut. /2 Skiijmo jednkokčn tokut te jedn od dv pvokutn tokut koj doijemo povlčeći visinu n osnoviu i pimijenimo tigonometiju: = = Sd u doivenu fomulu u nzivnik umjesto uvstimo 3, te sktimo : = = v /2 Kd doijemo kut, do kut dolzimo koisteći činjeniu d je zoj kutov u tokutu 180⁰. Pošto jednkokčn tokut im kutove, i vijedi: + 2 = 180⁰ 9. Rzlik duljin kk i osnovie jednkokčnog tokut iznosi 3 m, kut nsupot osnovii im 44⁰ 20. Kolik je povšin tog tokut? 10. Duljin dijgonle pvokutnik je 16 m, kut između dijgonl iznosi 118⁰. Kolik je povšin pvokutnik? d = 16 m Φ = 118⁰ P =? P = Izvuimo jednkokčn tokut s osnoviom i kutom φ nsupot osnovii (istni dio) ond g visinom podijelimo n dv pvokutn te pimijenimo tigonometiju: = = odnosno: = d/2 φ/2 /2 /2 Stniu doijemo pimjenom Pitgoinog poučk: =

7 11. Povšin pvokutnik jednk je 33m 2, kut što g ztv dijgonl s jednom stniom iznosi 33⁰. Kolike su duljine stni pvokutnik? P = 33m 2 δ = 33⁰, =? S oziom d je P = *, jsno je d tigonometijom te povezti, i zdni kut. S oziom d su i ktete imo funkiju tnges: d = δ udući d ne znmo dvije vijednosti (ni ni ) mot ćemo kominiti dvije jedndže te ih spojiti u jednu jedndžu s jednom nepoznniom : = = U ovkvim situijm je poteno u jednoj jedndži postići d se jedn nepoznni nđe sm n jednoj stni jedndže, nkon tog tj izz uvštvmo u dugu jedndžu. U nšem pimjeu doo je pvu jedndžu pomnožiti s nzivnikom. Tko ćemo se i iješiti nzivnik i doiti nepoznniu smu n desnoj stni: = = Uvstimo sd izz z iz pve jedndže u dugu: Dijeljenjem s tn δ doijemo: = = = Sd nm peostje uvstiti doiveni podtk z stniu u izz = te izčunti i stniu. 12. Duljine dijgonl om jednke su 11 m i 16 m. Koliki su kutovi om? e = 11 m f = 16 m, =? Zdne su dijgonle om p te uočiti pvokutni tokut kojem je pvi kut u sjeištu dijgonl. Dijgonle se, osim tog, spolvljju spolvljju i kutove i n osnovii: e f

8 Istknimo 3 element u tom tokutu (dv koj znmo i teći koji želimo izčunti) te pimijenimo tigonometiju pvokutnog tokut: = = Kd iz gonjeg izz izčunmo kut, do kut dolzimo jednostvno zhvljujući činjenii d je zoj kutov om jednk 180⁰, p je = 180⁰ -. f/2 e/2 /2 /2 13. Visin om dug je 4 m, njegov šiljsti kut iznosi 48⁰. Kolik je duljin veće dijgonle om? v = 4 m = 48⁰ e, f =? Osim pvokutnog tokut kojeg čine dijgonle pvokutnik u omu pvi kut možemo doiti i povlčenjem visine. v Tj pvokutni tokut nm je poten kko i iz njeg izčunli stniu. On nm je poten kko i u pvokutnom tokutu iz kojeg želimo izčunti dijgonle imli dv poznt element. Dkle, njpije funkijom sinus povežimo, v i : f/2 e/2 /2 /2 = te izzimo : = Sd iz dugog tokut funkijom sinus povežimo e/2, /2 i : = = Kd pomnožimo ijelu jedndžu s 2 doijemo dijgonlu e: = Dijgonlu f izčunjte ili Pitgoinim poučkom ili pimjenom funkije kosinus te odeite veću dijgonlu (sjetite se, tži se već dijgonl). 14. Opseg om je 32 m, zoj duljin njegovih dijgonl 34 m. Koliki je tupi kut om? o = 32 m e + f = 34 m, =? Lgno se, iz opseg izčun stni, = 8 m. Uz tj podtk vidimo d immo jedndžu koj povezuje e i f - dkle dvije nepoznnie. Stog temo još jednu jedndžu s e i f, d pi tome ne uvedemo novu nepoznniu. To je moguće pimjenjujući Pitgoin poučk n istni tokut: f/2 e/2 /2 /2

9 + = += U pvoj jedndži izvšimo kvdinj, pomnožimo s nzivnikom, iz duge jedndže izzimo e pomoću f: + = = Uvstimo izz z e iz duge jedndže u pvu jedndžu: Doiju se dv ješenj: + = + + = += += f 1 = 25 e 1 = 9 f 2 = 9 e 2 = 25 Dovoljno je uzeti jedn p te pimjenom tigonometije (np. funkije tngens ) povezti e, f i kut : = = f/2 e/2 /2 /2 Kut se doije iz : = 180⁰ Duljine osnovi jednkokčnog tpez jednke su 10 m i 2 m, duljin je kk 6 m. Koliki su kutovi tpez? = 10 m = 2 m = d = 6 m, =? Tpez podijelimo n tokut i plelogm, ztim u tokutu spustimo visinu kko i g podijelili n dv pvokutn tokut. x = - Povežimo, x/2 i funkijom kosinus i izčunjmo kut : = = Ztim izčunjmo kut : = 180⁰ -.

10 16. Šiljsti kut jednkokčnog tpez je 63⁰, duljine osnovi jednke su 3 m i 12 m. Kolik je povšin tpez? = 63⁰ = 12 m = 3 m P =? Iz fomule z povšinu: = + vidimo d nedostje visin v x = - Nći ćemo je iz pvokutnog tokut tko d pimijenimo funkiju tngens: = = v /2 x/2 Pomnožimo gonju jedndžu s x, ztim sve podijelimo s 2: Sd uvstimo izčuntu visinu u fomulu z povšinu. = 17. Dijgonl jednkokčnog tpez okomit je n kk, s osnoviom ztv kut od 42⁰ 30. ko je duljin dijgonle 12 m, kolik je povšin tpez? δ = 42⁰ 30 d = 12 m P =? = + Iz istnog tokut (pvokutn je ) izčunt ćemo stniu i kut, ztim n klsičn nčin doći do visine v i kće osnovie : δ d Pimijetimo d su i δ kutovi pvokutnog tokut, p je njihov zoj 90⁰. Stog je: Sd pimijenimo funkiju kosinus n kut δ: = 90⁰ - = Množenjem jedndže s, ztim dijeljenjem s osδ doijemo stniu : =

11 Ntjmo sd tpez ez dijgonle, li povuimo visinu v i uočimo jedn od dv pvokutn tokut koji pi tome nstnu: S oziom d u tom tokutu ne znmo ni jednu stniu, vtimo se Tokutu iz kojeg smo izčunli stniu te izčunjmo iz /2 njeg i kk (np. Pitgoinim poučkom). v Sd je moguće, funkijom sinus, povezti, v i : x/2 = odnosno, nkon množenj s : = Peostje nm još izčunti osnoviu, kko i imli sve podtke koji su nm poteni z čunnje povšine. To ćemo npviti tko d nđemo x iz tokut: = Iz x = slijedi = x. 18. Kolik je povšin deveteokut kojem je polumje upisne kužnie jednk 3 m? n = 9 Ρ = 3 m P =? = Njpije ćemo izčunti sedišnji kut = 360⁰ : 9 = 40⁰ Nkon tog uočimo kkteistični tokut pvilnog deveteokut te povuimo visinu ρ (polumje upisne kužnie ) i uočimo jedn od dv pvokutn tokut koji pi tome nstnu, te pomoću njeg izčunjmo stniu koj nm je poten z čunnje povšine: ρ = = Nkon množenj jedndže s 2ρ: = ρ /2 /2 19. Kolik je povšin pvilnog petnesteokut opisnog kužnii polumje 6 m? n = 15 ρ = 6 m P =? = ρ /2 ρ Zdtk ješvmo n isti nčin ko i 18. Zdtk ( = 360⁰ : 15 = 24⁰ ostlo je identično) /2

12 NPOMEN: udite opezni kd se di o kužnim i mnogokutu. itno je je li kužni opisn ili upisn mnogokutu, ne (ko u tekstu ovog 19. Zdtk je li mnogokut opisn ili upisn kužnii!!! 20. Kolik je duljin tetive u kužnii polumje 10 m, ko toj tetivi pipd oodni kut od 77⁰? = 10 m = 77⁰ t =? itno je znti teoem o oodnom i sedišnjem kutu: Sedišnji kut nd tetivom je dvostuko veći od oodnog kut nd istom tetivom (itno je smo d se o nlze s iste stne tetive) S 2 t Uočimo jednkokčni tokut S, te povuimo visinu iz vh S kko i doili dv pvokutn tokut i n jednom od njih pimijenili tigonometiju pvokutnog tokut kko i izčunli veličinu t: Pvi izo je funkij sinus (povezujemo hipotenuzu i ktetu t/2 nsupot kut ): Množenjem s 2 doijemo izz z t: = = = 21. Koliki je oodni kut nd tetivom duljine 7 m u kužnii polumje 10 m? t/2 t= 7 m = 10 m =? Zdtk se ješv identično ko i pošli 20. Zdtk. 22. Koliki je oodni kut nd tetivom kužnie kojoj je duljin jednk 3/5 duljine polumje? t = 3/5 =? Zdtk se ješv identično ko i 20. Zdtk, pi čemu se u izz = = umjesto t uvsti 3/5, te se skti p immo: = =

13 23. Tetiv kužnie od njen je sedišt udljen 5 m. ko je polumje kužnie 8 m, koliki je šiljsti oodni kut nd tetivom? d = 5 m = 8 m =? t/2 d S 2 Ovdje te iskoistiti funkiju kosinus: t = Odnosno, nkon množenj s : = 24. Nd tetivom duljine 6 m nlzi se oodni kut 53⁰. U točkm i konstuiju se tngente n kužniu i one se sijeku u točki P. Koliko je točk P udljen od sedišt kužnie? t = 6 m = 53⁰ d =? S t P Ovdje je poteno uočiti dv tokut. Pvi je tokut S u kojem je kut pi vhu S jednk 2 (po teoemu o oodnom i sedišnjem kutu) U tom tokutu ćemo spustiti visinu iz vh S n tetivu S t/2 t/2 Uočit ćemo pvokutn tokut (istno) te pimijeniti funkiju Sinus kko i doili polumje : = = Množenjem s 2 i dijeljenjem s 2sin immo polumje : =

14 Sd te koistiti dugi tokut - to je tokut SP, je se u njemu nlzi tženi podtk d (udljenost SP). Tj je tokut pvokutn s pvim kutom pi vhu (je je polumje okomit n tngentu u točki dodi): U njemu je funkijom sinus moguće doiti tženu veličinu d: = Odnosno = S d δ P Međutim, poteno je izčunti kut δ. Z to je poteno uočiti četveokut SP te uočiti d su njegov 4 kut: 2, 90⁰, 90⁰ i 2δ. Pošto je zoj kutov u četveokutu 360⁰ vijedi: ⁰ + 90⁰ + 2δ = ⁰ + 180⁰ + 2δ = 360⁰ 2δ = 74⁰ δ = 37⁰ S 2 90⁰ 90⁰ 2δ P 25. Dvije se kužnie diju izvn. Pod kojim se kutom sijeku njihove zjedničke vnjske tngente ko je polumje veće kužnie 10 m, polumje mnje 7 m? (IV.10) R = 10 m = 7 m =? R P S 1 R S 2 Njpije te uočiti dv pvokutn tokut: S 1 P i S 2 P: R S 1 S2 R + /2 P

15 Ni u jednom od t dv pvokutn tokut nemmo poznt dv element. Stog povuimo točkom plelu s pvem S 1 S 2 : S 1 R R + R + /2 S2 Doili smo teći pvokutni tokut čij je hipotenuz R +, ktet nsupot kut /2 iznosi R (zmisli zšto?!) p možemo funkijom sinus doći njpije do kut /2, ond je lko izčunti i : /2 P =+ Svim učeniim želim ugodno ješvnje i puno uspjeh n pismenom ispitu Ukoliko im nejsnoć, pitnj, eventulnih gešk možete jviti n E-mil muzni@msn.om

Priprema za ispit - RJEŠENJA

Priprema za ispit - RJEŠENJA Priprem z ispit - RJEŠENJA 1. Odredi duljinu strnie i kutove trokut ABC ko je = 16 m, = 11.2 m te + = 93⁰. = 16 m = 11.2 m + = 93⁰,,, =? Njprije ćemo izrčunti kut jer je = 180⁰ - ( + ) = 87⁰ No, sd znmo

Διαβάστε περισσότερα

( ) 2. 3 upisana je kocka. Nađite brid kocke.

( ) 2. 3 upisana je kocka. Nađite brid kocke. Zdtk 00 (Tomislv, tehničk škol) Kugli polumje upisn je kok. Nđite id koke. Rješenje 00 ko je kugli upisn kok, ond je pomje kugle jednk postonoj dijgonli koke: =. Poston dijgonl koke čun se fomulom: D =.

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

Budući da je u jednakokračnom pravokutnom trokutu visina osnovice jednaka polovini osnovice, vrijedi: a 2

Budući da je u jednakokračnom pravokutnom trokutu visina osnovice jednaka polovini osnovice, vrijedi: a 2 Zdtk (Romn, gimnzij) Sdnji jdnkokčnog tpz im duljinu 5 ko su dijgonl mđusono okomit, kolik j njgo pošin? Rjšnj udući d j u jdnkokčnom pokutnom tokutu isin osnoi jdnk poloini osnoi, ijdi: x = + = x + y

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

γ = 120 a 2, a, a + 2. a + 2

γ = 120 a 2, a, a + 2. a + 2 Zdtk (Slvi, gimnzij) Duljine strni trokut čine ritmetički niz (slijed) s rzlikom Jedn kut iznosi Koliki je opseg trokut? Rješenje inči udući d duljine strni trokut čine ritmetički niz (slijed) s rzlikom,

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

Poučak o kosinusu (kosinusov poučak) U trokutu ABC vrijede ove jednakosti b + c a a + c b a + b c.

Poučak o kosinusu (kosinusov poučak) U trokutu ABC vrijede ove jednakosti b + c a a + c b a + b c. Zdtk 4 (4, TUŠ) Kolik je mjer njmnjeg kut u trokutu kojemu su strnie duljin 7 m, 8 m i 9 m? Rješenje 4 Trokut je dio rvnine omeñen s tri dužine Te dužine zovemo strnie trokut Nsuprot većoj strnii u trokutu

Διαβάστε περισσότερα

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata] Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

PRIMENA INTEGRALA

PRIMENA INTEGRALA www.mtmtinj.com PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nđmo

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N. Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu

Διαβάστε περισσότερα

α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10.

α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10. Zdtk (Mrij, gimzij) Koliko stric im prvili mogokut ko jed jegov uutrji kut izosi 8? Rješeje Formul z veličiu jedog uutrjeg kut prvilog mogokut je: ( ) 8 α = ( ) 8 8 = / 8 = ( ) 8 8 = 8 6 8 8 = 6 7 = 6

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa, Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

Metode rješavanja izmjeničnih krugova

Metode rješavanja izmjeničnih krugova Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. ANALITIČA GEOMETRIJA PROSTORA II. DIO (Pv).. Min Roić Linović 9./. Pv u otou Jenž v Nek je: T (,, ) n točk oto {,, } ni vekto mje Znom točkom oto oli mo v leln nim vektoom. T (,,) - oivoljn točk v

Διαβάστε περισσότερα

IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv

Διαβάστε περισσότερα

Trigonometrijske formule sve iz jednog trokuta i još ponešto

Trigonometrijske formule sve iz jednog trokuta i još ponešto Poučk 60 Trigonometrijske formule sve iz jednog trokut i još ponešto Uvod Oštroumni zključi iz tupokutnog trokut i iz-skok trokutomjernih funkij iz trokut Vldimir Ćepulić 1, Kristin Penzr U ovom su člnku,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

Istosmjerni krugovi. 1. zadatak. Na trošilu će se trošiti maksimalna snaga u slučaju kada je otpor čitavog trošila jednak unutrašnjem otporu izvora.

Istosmjerni krugovi. 1. zadatak. Na trošilu će se trošiti maksimalna snaga u slučaju kada je otpor čitavog trošila jednak unutrašnjem otporu izvora. Strnic: X stosmjerni krugovi Prilgođenje n mksimlnu sngu. Rješvnje linernih mrež: Strnic: X. zdtk Otpor u kominciji prem slici nlzi se u posudi u kojoj vld promjenjiv tempertur. Pri temperturi ϑ = 0 C,

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

( ) ( )

( ) ( ) ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 9. siječnj 05. 4. rzred-rješenj OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ

Διαβάστε περισσότερα

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka?

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka? MATEMATIKA Zdci s držvne mture viš rzin Brojevi i lgebr Funkcije Jedndžbe i nejedndžbe Geometrij Trigonometrij LINEARNA FUNKCIJA 1. Uz koji uvjet jedndžb A+By+C=0 predstvlj prvc?. Koje je znčenje broj

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Opsezi i površine - DZ

Opsezi i površine - DZ Opsezi i površine - DZ Iko učenici u 4. rzredu uče vrste trokut, uče o prvokutniku i kvdrtu, upoznju se s pojmom opseg i površine, s kvdrtnim mjernim jedinicm, s pojmom formule i kko u formulu uvrštvmo

Διαβάστε περισσότερα

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih: Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α

Διαβάστε περισσότερα

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između

Διαβάστε περισσότερα

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a Kinemik meijlne oke 3. dio ) Zdnje kiocnog gibnj b) Bzin i ubznje 1 Kiocno gibnje meijlne oke Položj meijlne oke u skom enuku emen možemo definii n slijedee nine: 1. Vekoski nin defininj gibnj (). Piodni

Διαβάστε περισσότερα

FURIJEOVI REDOVI ZADACI ( II

FURIJEOVI REDOVI ZADACI ( II FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Koliko sati toga dana je razina vode bila iznad 30 cm? A) 5 B) 6 C) 7 D) 9 E) 13 Rješenje: E. Rješenje: A A) 1 B) 2 C) 6 4 D) 3 4 E) 2.

Koliko sati toga dana je razina vode bila iznad 30 cm? A) 5 B) 6 C) 7 D) 9 E) 13 Rješenje: E. Rješenje: A A) 1 B) 2 C) 6 4 D) 3 4 E) 2. MATEMATIČKI KLOKAN S 6 700 000 sudionik u zemlji Europe, Amerike, Afrike i Azije Četvrtk,. ožujk 0. Trjnje 7 minut Ntjecnje z Student (IV. rzred SŠ) * Ntjecnje je pojedinčno. Rčunl su zbrnjen. * Svki zdtk

Διαβάστε περισσότερα

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote

Διαβάστε περισσότερα

Osnove inženjerskog proračuna

Osnove inženjerskog proračuna Osnove inženjerskog prorčun Skript z studente Sveučilišt Sjever Ktrin Pisčić, UNIN 04. Kut Kut je dio rvnine omeđen s dv prvc koj se sijeku. Obično se obilježv kružnim lukom među prvcim. Ako je duljin

Διαβάστε περισσότερα

4. Relacije. Teorijski uvod

4. Relacije. Teorijski uvod VI, VII i VIII dvoqs veжbi Vldimir Blti 4. Relije Teorijski uvod Podsetimo se n neke od pojmov veznih z skupove, koji su nm potrebni z uvođeƭe pojm relije. Dekrtov proizvod skup iniemo n slede i nqin:

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Многоугао, странице и дијагонале. Број дијагонала многоугла. Obele`i svaki mnogougao, a zatim napi{i kojoj vrsti po broju stranica pripada.

Многоугао, странице и дијагонале. Број дијагонала многоугла. Obele`i svaki mnogougao, a zatim napi{i kojoj vrsti po broju stranica pripada. Многоугао Многоугао, странице и дијагонале. Број дијагонала многоугла 1 Obele`i svki mnogougo, ztim npi{i kojoj vrsti po broju strnic pripd. Petougo Ncrtj osmougo FGH. Obele`i wegov temen. ) Npi{i temen

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1)

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1) TEKSTOV ZADATAKA (2. kolokvijum) iz Elektomgnetike (stuijski pogm EEN, 22/). Oeiti silu koj eluje n tčksto opteećenje Q smešteno izn polusfeične povone izočine nultog potencijl. 2. Oeiti elimične kpcitivnosti

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine.

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine. KONSRUKIVNI ZI (ROUGO) Rešvje kotruktivih zdtk je jed od jtežih olti koj v ček ove godie. Zhtev doro predzje, pozvje odgovrjuće teorije. Zto vm mi preporučujemo d e jpre podetite teorije veze z trougo

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Mimoilazni pravci. Ela Rac Marinić Kragić, Zagreb

Mimoilazni pravci. Ela Rac Marinić Kragić, Zagreb Mimoilzni prvci El Rc Mrinić Krgić, Zgreb Dv se prvc u rvnini ili sijeku ili ne sijeku. Ako se sijeku, sjecište može biti jedn tok, prvci se mogu i poklpti. Ovj drugi sluj zjedno s slujem kd dv prvc nemju

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

sin 30,, a c b d C Sa slike vidi se:

sin 30,, a c b d C Sa slike vidi se: Zadatak 08 (Gimnazijalka, gimnazija) Nad stanicom B jednakostaničnog tokuta BC konstuiana je polukužnica koja dia iznuta ostale dvije stanice tokuta. ko je duljina stanice tokuta BC jednaka 6 cm, koliki

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac ) Kosi hic Kriolinijsko ibnje merijlne oke Ssljeno ibnje 5. dio 3 4 Specijlni slujei koso hic: b) orizonlni hic c) Veriklni hic b) orizonlni hic c) Veriklni hic 5 6 7 ) Kosi hic 8 Kosi hic (bez opor zrk)

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Tada je obujam ostatka kocke jednak: b

Tada je obujam ostatka kocke jednak: b Ztk (Mrko, gimnzij) Jenom ijgonlom osnoke kr položimo rninu koj n rugoj osnoki prolzi smo jenim rhom đite omjer oujmo nstlih tijel Rješenje đimo pro oujm pirmie: + = = = = T je oujm osttk koke jenk: 5

Διαβάστε περισσότερα

Specijalna vrsta nepravih integrala jesu oni koji sadrze potencije ili geometrijski red u podintegralnoj funkciji.

Specijalna vrsta nepravih integrala jesu oni koji sadrze potencije ili geometrijski red u podintegralnoj funkciji. Mt Vijug: Rijsni zdci iz vis mtmti 9. NEPRAVI INTEGRALI 9. Opcnito o nprvim intgrlim Intgrl oli f d s nziv nprviln o: ) jdn ili oj grnic intgrcij nisu oncn vc soncn:, ) pod intgrln funcij f j prinut u

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi MEHANKA FLUDA Pritisk tečnosti n rvne površi. zdtk. Tešk brn dimenzij:, b i α nprvljen je od beton gustine ρ b. Kosi zid brne smo s jedne strne kvsi vod, gustine ρ, do visine h. Odrediti ukupni obrtni

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

pismeni br : Odrediti interval konvergencije reda = 11.2: Metodom varijacije konstante odrediti opće rješenje jednadžbe ( x

pismeni br : Odrediti interval konvergencije reda = 11.2: Metodom varijacije konstante odrediti opće rješenje jednadžbe ( x Piedio D.Joičić pismei b..: Odediti itel koegecije ed..: Metodom ijcije kostte odediti opće ješeje jeddžbe e.: Ičuti d, gdje je K goj poloic elipse peđe od K b točke A, do B,..: Ičuti pom okttu. I d, gdje

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P =

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P = Zadatak (Tomislav gimnazija) Nađite sve pravokutne trokute čije su stranice tri uzastopna parna roja Rješenje inačica pća formula za parne rojeve je n n N udući da se parni rojevi povećavaju za možemo

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f

Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f Mte ijug: Rijeseni zdci iz vise mtemtike 8. ODREDJENI INTEGRALI 8. Opcenito o odredjenom integrlu Odredjeni integrl je grnicn vrijednost sume eskoncnog roj clnov svki cln tezi k nuli i ozncv se s : n n

Διαβάστε περισσότερα

Osnovna škola. b) Koliko prstenova treba objesiti na kukicu s lijeve strane na slici 2 da bi poluga bila u ravnoteži? 1 3 F/N

Osnovna škola. b) Koliko prstenova treba objesiti na kukicu s lijeve strane na slici 2 da bi poluga bila u ravnoteži? 1 3 F/N ŠKOLSKO/OPĆINSKO NTJENJE IZ FIZIKE 2.2.2009. Osnovn škol Uut: U svim zdcim gdje je to otrebno koristiti g = 10 N/kg. 1. zdtk (7 bodov) ) Slik 1 rikzuje olugu u rvnoteži n kojoj se nlze dv rsten i neoznti

Διαβάστε περισσότερα

MATEMATIČKI KLOKAN C 2018.

MATEMATIČKI KLOKAN C 2018. MATEMATIČKI KLOKAN C 018. RJEŠENJA ZADATAKA Pitnj z 3 od: 1. Koliko je (0 + 18) : (0 18)? A) 18 B) 19 C) 0 D) 34 E) 36 Rješenje: B) 19 (0 + 18) : (0 18) = 38 : = 19.. Kd se slov u riječi MAMA npišu vertiklno

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα