Trigonometrijske formule sve iz jednog trokuta i još ponešto

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Trigonometrijske formule sve iz jednog trokuta i još ponešto"

Transcript

1 Poučk 60 Trigonometrijske formule sve iz jednog trokut i još ponešto Uvod Oštroumni zključi iz tupokutnog trokut i iz-skok trokutomjernih funkij iz trokut Vldimir Ćepulić 1, Kristin Penzr U ovom su člnku, polzeći od smih definiij, izvedene temeljne činjenie o trigonometrijskim funkijm u trokutu i rzmotren poopćenj tih funkij n sve relne vrijednosti kutev. Pri tome je polzište jednostvn i pregledn slik dopunjenog tupokutnog trokut (sl. 3), s sveg 5 točk i s 5 dužin koje ih spjju. T se slik pokzl vrlo plodnim sredstvom neposrednog dokzivnj svih četiriju temeljnih trigonometrijskih formul sinus i kosinus zbroj, ko i sinusovog i kosinusovog poučk. Formule z sinus i kosinus zbroj omogućuju proširbu područj definiije ovih funkij s prvotnog otvorenog intervl n ijeli skup R. Tkv pristup mogo bi učeniim srednjih škol olkšti rzumijevnje pripdnih dokz, ond i pmćenje ili smostlnu izvedbu tih formul. Tkođer posvijestiti si poveznost lgebrskog i geometrijskog znčenj tko proširenih funkij. 1. Trigonometrijske funkije u prvokutnom trokutu. Ko što znmo, polzno se trigonometrijske ( trokutomjerne ) funkije definirju u prvokutnom trokutu ko omjeri njegovih strni, u ovisnosti od njegovih kutev. Pri tom im vžnu ulogu Pitgorin poučk koji izriče d je ploštin kvdrt nd hipotenuzom ( suprotniom, jer je nsuprot prvom kutu) jednk zbroju ploštin kvdrt nd ktetm ( okomim one ztvrju prvi kut, međusobno su okomite). Uz uobičjene oznke immo ovu sliku prvokutnog trokut: 1 Vldimir Ćepulić, Fkultet Elektrotehnike i rčunrstv, Zgreb Kristin Penzr, Ndbiskupsk klsičn gimnzij, Zgreb 16 Pouk 60.indd :05:59

2 Trigonometrijske formule Temeljne trigonometrijske funkije sinus i kosinus definirju se formulm: b (1) sin () os. Iz (1) i () slijedi: (1'). sin (') b. os. Slik 1. (3) Po Pitgorinom poučku je + b, p je b sin + os + 1. Ove su tri formule temelj z sv dljnj zbivnj u trigonometriji. Prve dodtne definiije su sin (4) tg os os i (5) tg b b sin (6) tg. tg 1., njihov je vžn svez Oslobđjući se konkretnih oznk, sinus kut definirn je ko omjer duljinâ kutu suprotne ktete i hipotenuze, kosinus ko omjer duljinâ ktete uz kut i hipotenuze. Stog je z kut b: b sin b os, p os b sin, pri čemu je b, dkle je (7) U dnevnoj uporbi formule (1' ) i (' ) rbe se češće od smih definiij (1) i (), govore d je duljin ktete umnožk duljine hipotenuze i sinus kut nsuprot toj kteti, dotično umnožk duljine hipotenuze i kosinus šiljstog kut uz tu ktetu.. Trigonometrijske funkije i trigonometrijsk kružni. Sljedeći kork koji je temelj z poopćenje definiij trigonometrijskih funkij je promtrnje tih funkij n trigonometrijskoj kružnii kružnii polumjer 1 s središtem u ishodištu prvokutnog koordintnog sustv XOY (v. sl. ). Z svki kut j koji je nnešen u 17 Pouk 60.indd :05:59

3 Poučk 60 ishodište tko d mu je os OX prvi krk, drugi krk kut siječe tu kružniu u nekoj točki koju oznčimo s T j (x j, y j ), njezinu projekiju n os OX ko T' j. Nek je kut u prvom kvdrntu, 0 < < p y (vidi sl. ). U trokutu OT αt α je sin y, 1 x os x, p je 1 (8) T ( x, y ) T ( os,sin ) dkle je z tkve kuteve u prvome kvdrntu os jednk x-koordinti, sin jednk y-koordinti pripdne točke T. Slik. Ov okolnost nvodi n pomiso proširbe definiij trigonometrijskih funkij n kuteve izvn prvotnog rspon, 0 < j <, preko koordint pripdnih točk n trigonometrijskoj kružnii. Nu je li to smisleno s obzirom n izvorne definiije bitno povezne s prvokutnim trokutom, i mtemtički plodno? Pokzlo se d jest i to je dlo novi zmh mtemtičkim istrživnjim. U trženju odgovor n ov pitnj vžnu ulogu imju formule z sinus i kosinus zbroj kutev. 3. Formule z sinus i kosinus zbroj kutev u ovisnosti o sinusim i kosinusim kutev pribrojnik njvžnije su otkriće z dljnje sgledvnje nrvi tih funkij i njihovo poznvnje. Potržimo sliku trokut n kojoj će se uz kuteve i b neposredno pojviti i kut + b, s vrijednošću 0 < + b < p. Znmo d je vnjski kut trokut jednk zbroju nutrnjih dvju kutev koji nisu s njime sukuti. Kko je zbroj kutev u trokutu + b + g p, iz nvedenog zhtjev slijedi d treb biti g >, to jest g je tupi kut kojemu je sukut + b u nvedenim grnim. To ns vodi n sljedeću sliku: 18 Slik 3. Pouk 60.indd :06:00

4 Trigonometrijske formule U tupokutnom trokutu ABC s tupim kutem g produljimo strniu b preko vrh C i spustimo okomiu iz vrh C n strniu, te iz vrh B n strniu b. Pripdn nožišt oznčimo s D i E. Kut ECA + b, p je u prvokutnom trokutu CEB. (9) EB sin( + b ), CE os( + b ) Iz prvokutnih trokut ADC i BDC očitvmo: (10) CD sin b b sin,, DB os b, p je AB AD + DB b os + os b. U trokutu AEB je pk AE os, EB sin. Stog je EB ( ) ( b ) sin + b sin os + os b sin b sin os + os bsin (po (10)) sin bos + os bsin. Podijelivši drugi i zdnji izrz u ovoj jednkosti s, dobiv se: formul z sinus zbroj dvju kutev. (*) sin( + b) sin os b + os sin b Iz sl. 3. tkođer vidimo d je CE os( α+ β) os α b ( b osα+ os β) os α b b( os α 1)+ os αosβ os αosβ b sin α (po (10)), osαos β sinαsin β, te opet, dijeleći drugi i zdnji izrz u jednkosti s, dobivmo: (**) os( α+ β) os αosβ sin αsin β, formulu z kosinus zbroj kutev. 4. Sinusov i kosinusov poučk Primjenjujući Pitgorin poučk n dopunski trokut CEB s sl. 3. jednostvno dobivmo kosinusov poučk z strniu : CB CE + EB ( os b) + ( sin ) os b os + b + sin, tj. b + b os. Posve slično se iz trokut ADC, uzimljući u obzir d je AD os b dobiv b + os b, kosinusov poučk z strniu b. Promtrjući pk nutrnje trokute ADC i CDB trokut ABC s sl. 3. vidjeli smo u (10) d je CD sinβ b sin α, odkle slijedi sinusov poučk : b sin : sin b. Ob smo poučk zsd rzmotrili z slučj strni nsuprot šiljstim kutevim jer su polzno trigonometrijske funkije definirne smo z tkve kuteve. Ostje pitnje mo- 19 Pouk 60.indd :06:14

5 Poučk 60 gućnosti prikldnog proširenj vljnosti tih poučk i n slučj strni nsuprot kutu koji nije šiljst. To omogućuje proširb trigonometrijskih funkij i n tkve kuteve. 5. Poopćenje trigonometrijskih funkij n bilo koje kuteve j, < j < +. Po izvornoj definiiji u prvokutnom trokutu, funkije sin i os definirne su z kuteve, 0 < <. Z pripdne točke T n trigonometrijskoj kružnii, kko smo vidjeli u., vrijedi T x y T (, os,sin ) ( ). Formule (*) i (**) možemo formlno protegnuti i n druge vrijednosti, n primjer svki se pozitivn broj može dobiti susljednim, uzstopnom zbrojidbom mlih brojev, reimo jedini 1 i osttk mnjeg od 1. Pitmo se, međutim, o smislenosti tko dobivenih vrijednosti i kkvo je njihovo geometrijsko znčenje? Pokzt ćemo d su rezultti z os j i sin j, koje n tj nčin dju formule (*) i (**) z bilo koji kut j, neovisni o pribrojniim u jednkim ukupnim zbrojevim i d su uprvo jednki: os j x, sin j y z točku T (x, y ). j j j j j U dokzivnju tih činjeni bit će nm više put potrebno rješvti sustve dviju linernih jedndžb s dvije nepoznnie. Podsjetimo, opći tkv sustv x+ by x+ by im rješenj (što se lko provjeri): D D x 1, y D D pri čemu je D b b, D, D b b U dljnjem će nm biti korisne formule z sinus i kosinus rzlike kutev: Izrze z sin( b), os( b), u slučju 0 < b < <, dobivmo n temelju definiijske formule z rzliku ( b) + b. Primijenimo formule (*) i (**): sin sin b os( b) + os b sin( b) os os b os( b) sin b sin( b) p je z os( b) i sin( b) nmjesto nepoznni x i y u gore nvedenom općem sustvu: D 1 sin ( sin b) os os b, D sin b os sin os b, D sin b( sin b) osb os b 1, dkle vrijedi d je 0 (***) os( b) os os b + sin sin b, sin( b) sin os b os sin b. Pouk 60.indd :06:4

6 Trigonometrijske formule Sd ćemo, kko je njvljeno, pokzti d su z sve j, vrijednosti os j, sin j rčunne s pomoću formul (*), (**) i (***) uprvo koordinte točk T (x, y ), tj. j j j d je T j (x j, y j ) T j (os j, sin j). 5.1 Z j 0 je T 0 (1,0) T 0 (os0, sin0): Ovo slijedi iz činjenie d je + 0 z svki, dkle vrijedi d je os os( + 0) os os 0 sin sin 0 sin sin( + 0) sin os 0 + os sin 0 što je sustv dviju linernih jedndžb s nepoznnim os 0 i sin 0. Lko se provjeri d su rješenj doist os 0 1 i sin Po (7), (*) i (**) immo: π π os os α + α os α π π os α sin α sin α os sin sin os 0, π π sin sin α + α sin α π π os α os α sin α + sin sin b + os os 1. Vidimo d je rezultt neovisn o pribrojniim. 5.3 Svrnimo opet pogled n trigonometrijsku kružniu. Iz sl. 4. vidimo d je uz T x y T (, os,sin ) ( ) z 0 < <, tkođer T π α α α ( os,sin ), T π α α α + ( os, sin ), T α α T α α π α( os, sin ) α ( os, sin ). Pokzt ćemo d ns formule (*) i (**) vode uprvo n te vrijednosti ko sinuse i kosinuse pripdnih kutev. Slik 4. 1 Pouk 60.indd :06:30

7 Poučk T ( os α,sinα) T os ( π α),sin ( π α) : π α π α ( ) Nime, π π π π π os( π α) os + α os os α sin si n π α 0 sin 1 os os π π π π π sin( π α) sin + α sin os α os si + n π α 1 sin+ 0 os sin. 5.5 : 5.6 T ( os α, sinα) T os ( π+ α),sin( π+ α) : π+ α π+ α ( ) Sd je os( π+ α) os πosα sin πsinα 1 os α 0 sinα os α sin( π+ α) sin πosα+ os πsinα 0 os α 1 sinα sin α 5.7. Iz (*) i (**) slijedi: Slično je: 5.8 T α α T π α π α π α( os, sin ) π α( os ( ),sin( )): os( π α) os π+ ( π α) osπos( π α) sinπsin( π α ) ( 1) ( os) 0 ( sin ) os sin( π α) sin π+ ( π α) sinπos( π α)+ osπsin( π α ) 0 ( os)+ ( 1) sin sin Pouk 60.indd :06:40

8 Trigonometrijske formule 5.9 : sinπ sin ( π + π) sinπ osπ + osπsinπ 0 ( 1)+ ( 1) os ( + p) os, sin ( + p) sin, u skldu s T +p T : os ( + p) os os p sin sin p os. 1 sin. 0 os, sin ( + p) sin os p + os sin p sin. 1 + os. 0 sin. Potpunom indukijom lko se pokže d je općenito os( + k. p) os, sin( + k. p) sin z svki k N, dkle su funkije kosinus i sinus periodične, temeljn period im je p Ove se funkije mogu jednostvno proširiti i n područje negtivnih vrijednosti kut j. ( ) Pri tome je T ϕ ( os ϕ, sinϕ) T ϕ os ( ϕ),sin ( ϕ), z sve j: U lgebri je j definirn relijom ( j)+ j 0. Po (*), (**) i po 5.1 je: os0 os j+ ( j) osjos( j) sinjsin( j) 1 ( ) ( ) ( ) sin0 sin j+ j sin jos j + os jsin j 0 Iz ovih dviju linernih jedndžb s nepoznnim os( j) i sin( j) dobiv se rješenje: os( j) os j, sin( j) sin j. Operij rzlike b definir se u lgebri ko b : +( b), što sd dje drugi nčin izvedbe formul (***): os( α β) os α+ ( β) osαos( β) sinαsin( β) osαos β sinα( sin β) osαos β+ sinαsin β, sin( α β) sin α+ ( β) sinαos( β)+ osαsin( β) sinαos β+ osα( sin β) sinαos β osαsin β. 6. Dobr definirnost općenitih trigonometrijskih funkij Pokžimo još i to, d su ovko proširene trigonometrijske funkije sinus i kosinus dobro definirne formulm (*) i (**). Što će to ovdje znčiti? Kko vrijednost funkije zbroj rčunmo s pomoću funkij pribrojnik, t vrijednost ne smije ovisiti o izboru pribrojnik, dkle ko je + b g + d, treb biti i os ( + b) os (g + d), sin ( + b) sin (g + d). 3 Pouk 60.indd :06:45

9 Poučk 60 Nek je dkle j + b g + d. Ako je g, možemo (ne smnjujući općenitost) pretpostviti d je > g, p je ond g + e z neki e > 0, stog b d e. Immo: ( b ) ( g e ) ( d e ) ( g e ) ( d e ) ( g e ) ( d e ) ( os gos e + sin gsin e)( os dos e sin dsin e) ( sin gos e+ os gsin e)( sin dos e os dsin e) os e( os gos d sin gsin d) + sin e( os gos d sin gsin d) + + sin eos e( os gsin d sin gos d+ sin gos d os gsin d) os eos( g+ d) + sin eos( g+ d) + sin eos e 0 os( g+ d ), os + os + + os + os sin + sin dkle je Slično se pokzuje d je: os ( + ) os( + ) b g d. ( b ) ( g e ) ( d e ) ( g e ) ( d e ) ( g e ) ( d e ) e ( g+ d) + e ( g+ d) + e e ( g+ d ), sin + sin + + sin + os + os + sin... os sin sin sin sin os 0 sin čime su obje tvrdnje dokzne. 7. Sinusov i kosinusov poučk z slučj tupokutnog trokut s obzirom n trigonometrijske funkije tupog kut Vrtimo se nšoj slii br. 3. Znmo kko se u šiljstokutnom trokutu dokzuje sinusov i kosinusov poučk. Pokzt ćemo sd d se iste formule proširuju i n slučjeve tupokutnog trokut uzimljući u obzir proširbu područj definiije trigonometrijskih funkij. Iz slike 3., uzimljući u obzir d je ECB + b p g, očitvmo ( ) ( ) + ( + ) AB AE + EB EC+ b EB os( α β) b sin( α β) (. os(p g) + b) +(. sin(p g)) (. os g + b) + (. sin g), tj. i u slučju tupog kut g vrijedi ist formul kosinusovog poučk ko i z šiljste kuteve, + b b. os g. N slii 3. vidimo tkođer d je EB. sin. sin( + b). sin(p g). sing, stog je i opet : sin : sin g, p je i z tupokutni trokut sinusov poučk oblik: : b : sin : sin b : sin g. 4 Pouk 60.indd :06:46

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

γ = 120 a 2, a, a + 2. a + 2

γ = 120 a 2, a, a + 2. a + 2 Zdtk (Slvi, gimnzij) Duljine strni trokut čine ritmetički niz (slijed) s rzlikom Jedn kut iznosi Koliki je opseg trokut? Rješenje inči udući d duljine strni trokut čine ritmetički niz (slijed) s rzlikom,

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata]

c = α a + β b, [sustav rješavamo metodom suprotnih koeficijenata] Zdtk (Tihomir, tehničk škol) c = 8 i. Rješenje Prikži vektor c ko linernu kombinciju vektor i b ko je = i + 3 j, b = 4 i 3 j, Nek su i b vektori i α, β relni brojevi. Vektor c = α + β b nzivmo linernom

Διαβάστε περισσότερα

Poučak o kosinusu (kosinusov poučak) U trokutu ABC vrijede ove jednakosti b + c a a + c b a + b c.

Poučak o kosinusu (kosinusov poučak) U trokutu ABC vrijede ove jednakosti b + c a a + c b a + b c. Zdtk 4 (4, TUŠ) Kolik je mjer njmnjeg kut u trokutu kojemu su strnie duljin 7 m, 8 m i 9 m? Rješenje 4 Trokut je dio rvnine omeñen s tri dužine Te dužine zovemo strnie trokut Nsuprot većoj strnii u trokutu

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa,

Analitička geometrija i linearna algebra. Kartezijev trodimenzionalni pravokutni koordinatni sustav čine 3 međusobno okomite osi: Ox os apscisa, Alitičk geoetrij i lier lger Vektori KOORDINATNI SUSTAV Krteijev prvokuti koorditi sustv Krteijev trodieioli prvokuti koorditi sustv čie eđusoo okoite osi: O os pscis O os ordit O os plikt točk O ishodište

Διαβάστε περισσότερα

Priprema za ispit - RJEŠENJA

Priprema za ispit - RJEŠENJA Priprem z ispit - RJEŠENJA 1. Odredi duljinu strnie i kutove trokut ABC ko je = 16 m, = 11.2 m te + = 93⁰. = 16 m = 11.2 m + = 93⁰,,, =? Njprije ćemo izrčunti kut jer je = 180⁰ - ( + ) = 87⁰ No, sd znmo

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F

SLIČNOST TROUGLOVA. kažemo da su slične ( sa koeficijentom sličnosti k ) ako postoji transformacija sličnosti koja figuru F prevodi u figuru F SLIČNOST TROUGLOV Z dve figure F i F kžemo d su slične ( s koefiijentom sličnosti k ) ko postoji trnsformij sličnosti koj figuru F prevodi u figuru F. Činjeniu d su dve figure slične obeležvmo s F F. Sličnost

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Koliko sati toga dana je razina vode bila iznad 30 cm? A) 5 B) 6 C) 7 D) 9 E) 13 Rješenje: E. Rješenje: A A) 1 B) 2 C) 6 4 D) 3 4 E) 2.

Koliko sati toga dana je razina vode bila iznad 30 cm? A) 5 B) 6 C) 7 D) 9 E) 13 Rješenje: E. Rješenje: A A) 1 B) 2 C) 6 4 D) 3 4 E) 2. MATEMATIČKI KLOKAN S 6 700 000 sudionik u zemlji Europe, Amerike, Afrike i Azije Četvrtk,. ožujk 0. Trjnje 7 minut Ntjecnje z Student (IV. rzred SŠ) * Ntjecnje je pojedinčno. Rčunl su zbrnjen. * Svki zdtk

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10.

α =. n n n Vježba 001 Koliko stranica ima pravilni mnogokut ako jedan njegov unutarnji kut iznosi 144? Rezultat: n = 10. Zdtk (Mrij, gimzij) Koliko stric im prvili mogokut ko jed jegov uutrji kut izosi 8? Rješeje Formul z veličiu jedog uutrjeg kut prvilog mogokut je: ( ) 8 α = ( ) 8 8 = / 8 = ( ) 8 8 = 8 6 8 8 = 6 7 = 6

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

4. Relacije. Teorijski uvod

4. Relacije. Teorijski uvod VI, VII i VIII dvoqs veжbi Vldimir Blti 4. Relije Teorijski uvod Podsetimo se n neke od pojmov veznih z skupove, koji su nm potrebni z uvođeƭe pojm relije. Dekrtov proizvod skup iniemo n slede i nqin:

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

( ) ( )

( ) ( ) ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 9. siječnj 05. 4. rzred-rješenj OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

FURIJEOVI REDOVI ZADACI ( II

FURIJEOVI REDOVI ZADACI ( II FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Budući da je u jednakokračnom pravokutnom trokutu visina osnovice jednaka polovini osnovice, vrijedi: a 2

Budući da je u jednakokračnom pravokutnom trokutu visina osnovice jednaka polovini osnovice, vrijedi: a 2 Zdtk (Romn, gimnzij) Sdnji jdnkokčnog tpz im duljinu 5 ko su dijgonl mđusono okomit, kolik j njgo pošin? Rjšnj udući d j u jdnkokčnom pokutnom tokutu isin osnoi jdnk poloini osnoi, ijdi: x = + = x + y

Διαβάστε περισσότερα

Primjene odreženog integrala

Primjene odreženog integrala VJEŽBE IZ MATEMATIKE Ivn Brnović Miroslv Jerković Lekcij 5 Primjen određenog integrl Poglvlje Primjene odreženog integrl. Povr²in rvninskog lik Z dni rvninski lik omežen krivuljm y = f(x) i y = g(x) te

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Osnove inženjerskog proračuna

Osnove inženjerskog proračuna Osnove inženjerskog prorčun Skript z studente Sveučilišt Sjever Ktrin Pisčić, UNIN 04. Kut Kut je dio rvnine omeđen s dv prvc koj se sijeku. Obično se obilježv kružnim lukom među prvcim. Ako je duljin

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Temeljni pojmovi trigonometrije i vektorskog računa

Temeljni pojmovi trigonometrije i vektorskog računa 1 Temeljni pojmovi trigonometrije i vektorskog računa 1. Trigonometrijske funkcije Trigonometrijske funkcije su omjeri stranica u pravokutnom trokutu. Mjerenjem je utvrdeno - da medusobni - omjeri stranica

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА

ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. ANALITIČA GEOMETRIJA PROSTORA II. DIO (Pv).. Min Roić Linović 9./. Pv u otou Jenž v Nek je: T (,, ) n točk oto {,, } ni vekto mje Znom točkom oto oli mo v leln nim vektoom. T (,,) - oivoljn točk v

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Neodreeni integrali. Glava Teorijski uvod

Neodreeni integrali. Glava Teorijski uvod Glv Neodreeni integrli. Teorijski uvod Nek je funkcij f :, b R. Definicij: ϕ- primitivn funkcij funkcije f ϕ f, b Teorem: ϕ- primitivn funkcij funkcije f ϕ+c- primitivn funkcij funkcije f Definicij: f

Διαβάστε περισσότερα

Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f

Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f Mte ijug: Rijeseni zdci iz vise mtemtike 8. ODREDJENI INTEGRALI 8. Opcenito o odredjenom integrlu Odredjeni integrl je grnicn vrijednost sume eskoncnog roj clnov svki cln tezi k nuli i ozncv se s : n n

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih: Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α

Διαβάστε περισσότερα

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P =

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P = Zadatak (Tomislav gimnazija) Nađite sve pravokutne trokute čije su stranice tri uzastopna parna roja Rješenje inačica pća formula za parne rojeve je n n N udući da se parni rojevi povećavaju za možemo

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Formule iz Matematike II. Mandi Orlić Tin Perkov

Formule iz Matematike II. Mandi Orlić Tin Perkov Formule iz Mtemtike II Mndi Orlić Tin Perkov INTEGRALI NEODREDENI INTEGRALI Svojstv 1. (f(x) ± g(x)) = ± g(x) 2. = Tblic integrl f(x) F(x) + C x + C x x +1 +1 + C 1 x ln x + C 1 x+b ln x + b + C e x e

Διαβάστε περισσότερα

Polinomijalna aproksimacija

Polinomijalna aproksimacija 1 Polinomijln proksimcij 1.1 Problem njbolje proksimcije Rzmotrimo ponovo problem u kojem je zdn tblic brojev x x 0 x 1 x x 3 x 4 x n y y 0 y 1 y y 3 y 4 y n (1.1) z koju treb nći funkciju f koju t tblic

Διαβάστε περισσότερα

Matematika 2. Boris Širola

Matematika 2. Boris Širola Mtemtik 2 (. Riemnnov integrl) Boris Širol predvnj . Riemnnov integrl 3 Pretpostvimo d immo neku neprekidnu relnu funkciju f, definirnu n nekom segmentu; tj., nek je dn neprekidn funkcij f : [, b] R.

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj

( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka?

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka? MATEMATIKA Zdci s držvne mture viš rzin Brojevi i lgebr Funkcije Jedndžbe i nejedndžbe Geometrij Trigonometrij LINEARNA FUNKCIJA 1. Uz koji uvjet jedndžb A+By+C=0 predstvlj prvc?. Koje je znčenje broj

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

3. Rubni problem za obične diferencijalne jednadžbe Egizstencija i jedinstvenost rješenja... 64

3. Rubni problem za obične diferencijalne jednadžbe Egizstencija i jedinstvenost rješenja... 64 Sdržj 1. Numeričk integrcij.......................... 1 1.1. Općenito o integrcijskim formulm................ 1 1.. Newton Cotesove formule...................... 3 1..1. Trpezn formul.......................

Διαβάστε περισσότερα

Zadatak 1

Zadatak 1 PISMENI ISPIT IZ KLASIČNE MEHANIKE I 3.. 9. Zdtk Čestic mse m izbčen je s površine Zemlje pod kutem α brzinom v. Ako je otpor zrk proporcionln trenutnoj brzini konstnt proporcionlnosti je ), izrčunjte

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Trigonometrijski prikaz kompleksnog broja

Trigonometrijski prikaz kompleksnog broja Trigonometrijski prikaz kompleksnog broja Ono sto znamo od prije jest da svakom kompleksnom broju mozemo pridruziti sljedeci uredjeni par: z Re z, Im z Sto znaci da ako je kompleksan broj oblika z = x

Διαβάστε περισσότερα

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α

Διαβάστε περισσότερα

Tada je obujam ostatka kocke jednak: b

Tada je obujam ostatka kocke jednak: b Ztk (Mrko, gimnzij) Jenom ijgonlom osnoke kr položimo rninu koj n rugoj osnoki prolzi smo jenim rhom đite omjer oujmo nstlih tijel Rješenje đimo pro oujm pirmie: + = = = = T je oujm osttk koke jenk: 5

Διαβάστε περισσότερα

1. Trigonometrijske funkcije

1. Trigonometrijske funkcije . Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006. šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα