Ispit iz Fizike 1 u februarskom roku (školska 2009/10.) ETF, Beograd,
|
|
- Ἰεζάβελ Σπηλιωτόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ispit iz Fizike 1 u februarskom roku (školska 2009/10.) ETF, Beograd, Telo, koje se može smatrati materijalnom tačkom, bačeno je kao kosi hitac sa neke visine pod nekim početnim elevacionim uglom nekom početnom brzinom (vidi sliku uz zadatak 1). Ako je maksimalna visina tela tokom leta y max = 287, 5 m, poluprečnik krivine trajektorije u tački maksimuma trajektorije R B = 125 m, poluprečnik krivine trajektorije u tački izbacivanja tela R A = 1000 m i ubrzanje Zemljine teže g = 10 ms 2, odrediti: a) [20] početni elevacioni ugao (α), b) [20] početnu brzinu (v 0 ) kojom je telo izbačeno, c) [20] visinu (h) sa koje je telo izbačeno, d) [20] domet tela (D) mereno duž horizontale i e) [20] vreme leta (τ). y h v 0 α A B y max D C x Slika 1: Slika uz zadatak 1. Slika 2: Slika uz zadatak Eksperimentator meri koeficijente statičkog i dinamičkog trenja izmed - u malog masivnog tela koje klizi po strmoj ravni i strme ravni sa osloncem u osi koja prolazi kroz tačku O (videti sliku uz zadatak 2). Menjajući nagibni ugao strme ravni u odnosu na ravnu horizontalnu površ Zemlje θ, eksperimentator je zabeležio sledeća tri podatka: (1) za θ = θ 1, telo miruje na strmoj ravni; (2) ako θ malo poraste za θ ( θ θ 1 ) iznad vrednosti θ 1, telo se pokrene niz strmu ravan; (3) zatim se θ smanji na vrednost θ 2, kada se telo kreće konstantnim intenzitetom brzine niz strmu ravan. Odrediti: a) [50] koeficijent statičkog trenja µ s i b) [50] koeficijent dinamičkog trenja µ d.
2 k 3. Funkcija potencijalne energije je data sa E p (x, y, z) = gde je k poznata x2 + y 2 + z2, pozitivna konstanta, a x, y i z Dekartove koordinate. Odrediti: a) [40] vektor sile koja deluje na česticu, b) [30] rad koji izvrši ta sila pri premeštanju čestice iz pozicije (x 1, y 1, z 1 ) u poziciju (x 2, y 2, z 2 ) i c) [30] promenu kinetičke energije pri tom premeštanju. 4. Kretanje sa promenljivom masom: a) [60] izvesti jednačinu Meščerskog; b) [40] izvesti jednačinu (formulu) Ciolkovskog. 5. Puni homogeni disk poluprečnika R osciluje sa malom ugaonom amplitudom oko horizontalne ose normalne na bazis diska. a) [50] Na kom udaljenju r od centra diska treba da bude osa oscilovanja tako da period malih oscilacija bude minimalan? b) [50] Koliki je minimalni period oscilovanja diska? 6. Na udaljenosti r 1 = 1 m od tačkastog izvora zvuka u vazduhu, njegov nivo intenziteta (jačina) je 80 db. a) [50] Koliki je nivo intenziteta zvuka u db na rastojanju r 2 = 100 m, ako nema apsorpcije zvuka u vazduhu? b) [50] Neka postoji apsorpcija zvuka u vazduhu koja je modelovana eksponencijalnim slabljenjem intenziteta zvuka sa rastojanjem (srednja snaga zvuka opada sa e µ r ), gde je faktor slabljenja µ = 0, 02 m 1, a r = r 2 r 1. Odrediti koliki je u ovom slučaju nivo intenziteta zvuka u db na rastojanju r 2 = 100 m. Uputstvo: Nivo intenziteta zvuka u db se računa po formuli β = 10 log(i/i 0 ), gde je I 0 = Wm 2 referentni intenzitet zvuka (prag čujnosti), a I intenzitet zvuka. Napomene. Ispit traje 180 min. Studenti koji su zadovoljni poenima osvojenim na predispitnim obavezama (kolokvijumu) rade zadatke od 3 do 6. Na naslovnoj strani vežbanke u polju rednih brojeva zadataka 1 i 2 treba upisati oznake K1 i K1, da bi poeni ostvareni na predispitnim obavezama bili priznati. Studenti koji nisu zadovoljni osvojenim poenima na predispitnim obavezama rade sve zadatke (od 1 do 6). Zadatak koji nije rad - en ili rešenje ne treba bodovati jasno označiti na koricama sveske u odgovarajućoj rubrici znakom X. Na vrhu naslovne strane vežbanke obavezno napisati ime profesora i oznaku grupe (J. Cvetić- P1, P. Marinković-P2, M. Tadić-P3). Dozvoljena je upotreba neprogramabilnih kalkulatora, kao i upotreba grafitne olovke. U gornjem desnom uglu sveske označiti da li ste radili prijemni iz fizike ili ne u formi: prijemni=da ili prijemni=ne. Ako ste radili, a sećate se koliko ste dobili poena, navedite broj poena u formi: prijemni=da=** poena.
3 Rešenja 1. a) Poluprečnik krivine trajektorije u tački A je (imajući u vidu da je za kosi hitac uvek a = g) R A = v2 0 a n,a = v2 0 g cos α, (1) dok je vrednost poluprečnika krivine u tački B (u maksimumu trajektorije) je R B = v2 0 cos 2 α a n,b gde je g ubrzanje zemljine teže. Deljenjem prethodna dva izraza ima se odakle je b) Iz jed. 1 se ima = v2 0 cos 2 α, (2) g R B R A = cos 3 α, (3) α = arccos 3 R B /R A = 60. (4) v 0 = gr A cos α = 70, 71 m/s. (5) c) Na osnovu parametarskih jednačina x(t) = v 0 t cos α i y(t) = h+v 0 t sin α gt 2 /2, eliminacijom gx 2 vremena dobija se jednačina trajektorije u obliku y = h + x tan α 2v0 2 cos 2 α. Postavljanjem zahteva da je dy/dx = 0, dobija se da je maksimalna visina tela tokom leta Visina sa koje je telo izbačeno y max = h + v2 0 sin 2 α. (6) h = y max v2 0 sin 2 α = 100 m. (7) d) Domet D se lako dobije iz jednačine trajektorije postavljanjem uslova da je za x = D, y = 0, pa je D = v2 0 sin 2α h v0 2 sin 2 = 484, 60 m. (8) α e) Vreme leta se dobije iz parametarske jednačine x = v 0 t cos α stavljajući da je za t = τ, x = D, odakle je D τ = = 13, 71 s. (9) v 0 cos α 2. a) Za mirovanje: mg sin θ 1 F tr,s = 0, (10) N mg cos θ 1 = 0. (11)
4 Sila statičkog trenja: F tr,s µ s N. (12) Na osnovu uslova (2), zaključi se da je sila statičkog trenja maksimalna (neposredno pre pokretanja) F tr,s = µ s N, (13) pa se dobije: b) Uniformno pravolinijsko kretanje: µ s = tan θ 1. (14) mg sin θ 2 F tr,d = 0, (15) odakle se dobije: N mg cos θ 2 = 0, (16) F tr,d = µ d N, (17) µ d = tan θ 2. (18) 3. (a) F x = E p x = kx (x2 + y 2 + z 2 ) 3, F y = E p y = ky (x2 + y 2 + z 2 ) i F 3 z = E p z = kz (x2 + y 2 + z 2 ) 3, (b) A 12 = (E p,2 E p,1 ), (c) E k = A Videti predavanja i skripta. 5. a) Moment inercije diska oko horizontalne ose normalne na bazis diska, na nekom udaljenju r od centra diska, je I = mr2 + mr 2. (19) 2 DJ malih ugaonih oscilacija diska oko ove ose (radi se o fizičkom klatnu) je θ + ω 2 0θ = 0, ω 2 0 = mgr/i = mgr/(mr 2 /2 + mr 2 ). (20) Pošto je traženje minimuma za period oscilovanja ekvivalentno traženju maksimuma kvadrata kružne frekvencije, sledi uslov d(ω 2 0)/dr = 0, odakle se dobija r = R 2. (21) b) Zamenom (21) u (20) sledi 6. a) Intenzitet zvuka na rastojanju r 1 je T min = 2 5/4 π R/g. (22) I 1 = I 0 10 β 1/10. (23) Tačkasti izvor generiše sferne talase srednje snage P na mestu izvora, a njihov intenzitet opada sa kvadratom udaljenosti ako nema apsorpcije zvuka, I = P /(4πr 2 ) = C/r 2, C = const. Na rastojanju r 1 od izvora intenzitet zvuka je jednak I 1 = C/r 2 1, a na rastojanju biće I 2 = C/r 2 2. Koristeći (23) sledi I 2 = I 0 10 β 1/10 r 2 1/r 2 2. (24) Intenzitet zvuka u db na rastojanju r 2 biće prema (24) β 2 = 10 log(i 2 /I 0 ) = 10 log(10 β 1/10 r 2 1/r 2 2) = 10 [ β 1 /10 + log(r 2 1/r 2 2) ] = 40 db. (25)
5 b) Ako postoji apsorpcija zvuka u vazduhu njegov intenzitet na rastojanju r 1 od izvora je jednak I 1 = P /(4πr 2 ) = (C/r 2 1)e µr 1, a na rastojanju r 2 biće I 2 = (C/r 2 2)e µr 2. Koristeći (23) sledi Jačina zvuka u db na rastojanju r 2 prema (26) biće I 2 = I 0 10 β 1/10 (r 2 1/r 2 2)e µ(r 2 r 1 ). (26) β 2 = 10 log(i 2 /I 0 ) = 10 [ β 1 /10 + log(r 2 1/r 2 2) µ(r 2 r 1 ) log e ] = 31.4 db. (27)
3. (a) [50] Formulisati i dokazati teoremu o promeni količine kretanja
Elektrotehnički fakultet u Beogradu Ispit iz Fizike Ispitni rok: januar 4. (8..4. godine). Trajanje ispita je 3 h Predmetni nastavnici: (P) Jovan Cvetić, (P) Predrag Marinković i (P3) Milan Tadić. Parametarske
Slika 1: Slika uz zadatak 3.
Univerzitet u Beogradu-Elektrotehnički fakultet Oktobarski ispitni rok iz Fizike 1, 14.9.2016. godine Ispit sadrži 6 zadataka. Trajanje ispita je 3h. Predmetni nastavnici: Jovan Cvetić (P1), Predrag Marinković
Junski ispitni rok iz Fizike 1, godine
Univerzitet u Beogu-Elektrotehnički fakultet Junski ispitni rok iz Fizike 1, 196215 godine Predmetni nastavnici: Jovan Cvetić (P1), Predrag Marinković (P2) i Milan Tadić (P3) Trajanje ispita je 3 h 1 Tačka
Slika 1: Uz zadatak 2.
Univerzitet u Beogradu-Elektrotehnički fakultet Junski ispitni rok iz Fizike 1, 8.6.016. godine Predmetni nastavnici: Jovan Cvetić (P1), Predrag Marinković (P) i Milan Tadić (P3) Trajanje ispita je 3h
ISPIT IZ FIZIKE 1 ETF, Beograd,
ISPIT IZ FIZIKE 1 ETF, Beograd, 0901013 1 Parametarske jednačine kretanja tačke su x() t Acost i yt () Asint, A, 0 Naći: (a) [10] vektor brzine tačke, (b) [10] vektor ubrzanja tačke, (c) [0] tangencijalno
(1) [70] poluprečnik Zemlje, (2) [10] relativnu nesigurnost (relativnu grešku) merenja ako je tačna vrednost poluprečnika Zemlje R 0 = 6378 km.
Elektrotehnički fakultet u Beogradu Ispit iz Fizike 1 Ispitni rok: februarski 014. (9.1.014. godine). Trajanje ispita je 3 h Predmetni nastavnici: (P1) Jovan Cvetić, (P) Predrag Marinković i (P3) Milan
Slika 1: Uz zadatak 1.
Elektrotehnički fakultet u Beogradu Ispit iz Fizike 1 Ispitni rok: septembarski 214. (21.8.214. godine). Trajanje ispita je 3 h Predmetni nastavnici: (P1) Jovan Cvetić, (P2) Predrag Marinković i (P3) Milan
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
2.Čamac mase m se kreće pravolinijski po površi jezera brzinom konstantnog intenziteta v 0
ISPIT IZ FIZIKE (Ispit traje 3 sata) ETF, Beograd, 4. ebruar 5.. (a) [5] Izvesti izraz za poluprečnik krivine trajektorije kod kosog hica u unkciji vreena. Poznati su intenzitet početne brzine v i elevacioni
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II
1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja
Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo
Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
RAD, SNAGA I ENERGIJA
RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
1 Osnovni problemi dinamike materijalne tačke
M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, V predavanje, 2017. 0.1 III Njutnov zakon Posmatrajmo dva tela za koja smatramo da su materijalne tačke. Ove dve čestice međusobno interaguju tako
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =
x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
m 2 Slika 1: Slika uz zadatak 2.
ISPIT IZ FIZIKE ETF, Beograd, 0.09.00.. Zavisnost vektora ubrzanja aterijalne tačke od vreena, napisana u polarno koordinatno sisteu, je a = (R v 0/ρ 3 ) e ρ, gde je ρ = ρ(t). Vektor brzine tačke u početno
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a
Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika
Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika Rešenja. Matematičkom indukcijom dokazati da za svaki prirodan broj n važi jednakost: + 5 + + (n )(n + ) = n n +.
M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VI predavanje, 2017.
M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VI predavanje, 2017. 1 Kretanje neslobodne materijalne tačke Telo može biti primorano da se kreće po površi ili liniji. Takav oblik kretanja naziva se neslobodno
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
I Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
2. Kolokvijum iz MEHANIKE (E1)
Fakultet tehničkih nauka Novi Sad Katedra za Mehaniku 2. Kolokvijum iz MEHANIKE (E1) A grupa A3 Dva robota se kreću po glatkoj horizontalnoj podlozi. Robot A, mase 20, 0 kg, kreće se brzinom 2, 00 m/s
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
1 Ubrzanje u Dekartovom koordinatnom sistemu
M. Tadić, Predavanja iz Fizike 1, ETF, grupe P2 i P3, II predavanje, 2017. 1 Ubrzanje u Dekartovom koordinatnom sistemu Posmatrajmo materijalnu tačku koja se kreće po trajektoriji prikazanoj na slici 1.
PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE
Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
3525$&8158&1(',=$/,&(6$1$92-1,095(7(120
Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A
Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja
Zadaci iz trigonometrije za seminar
Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.
4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos
Analitička geometrija
1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
1.1 Tangentna ravan i normala površi
Površi. Tangentna ravan i normala površi Zadatak Data je površ r(u, v) = (u cos v, u sin v, a 2 u 2 ), a = const. Ispitati o kojoj se površi radi i odrediti u i v linije. Zadatak 2 Data je površ r(u, v)
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017.
M. Tadić, Predavanja iz Fizike 1, ETF, grupa P3, VII predavanje, 2017. Konzervativne sile i potencijalna energija 1 Konzervativne sile Definicija konzervativne sile. Sila je konzervativna ako rad te sile
4 Numeričko diferenciranje
4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)
Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će
Silu trenja osećaju sva tela koja se nalaze u blizini Zemlje i zbog nje tela koja se puste padaju nadole. Ako pustimo telo da slobodno pada, ono će se bez obzira na masu kretati istim ubrzanjem Zanimljivo
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Rad, snaga, energija. Tehnička fizika 1 03/11/2017 Tehnološki fakultet
Rad, snaga, energija Tehnička fizika 1 03/11/2017 Tehnološki fakultet Rad i energija Da bi rad bio izvršen neophodno je postojanje sile. Sila vrši rad: Pri pomjeranju tijela sa jednog mjesta na drugo Pri
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.
Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Dinamičke jednačine ravnog kretanja krutog tela.
Dinamičke jednačine ravnog kretanja krutog tela. Prve dve dinamičke jednačine ravnog kretanja krutog tela, u prvoj varijanti, imaju oblik: 1) m & x X, ) m & y = Y. = i i Dok, u drugoj varijanti, njihov
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
5 Ispitivanje funkcija
5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:
Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike