Zadaci iz Topologije A

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Zadaci iz Topologije A"

Transcript

1 Zadaci iz Topologije A 1. Neka je X neprazan skup i Φ : P(X P(X funkcija za koju vaжi: (1 Φ( = ; (2 A Φ(A za sve A P(X; (3 Φ(A B = Φ(A Φ(B za sve A, B P(X; (4 Φ(Φ(A = Φ(A za sve A P(X. Dokazati da postoji jedinstvena topologija na X takva da se operator zatvorenja u toj topologiji poklapa sa Φ (da je A = Φ(A za sve A P(X. 2. Neka je X beskonaqan skup i T topologija na X koja sadrжi sve beskonaqne podskupove od X. Dokazati da je (X, T diskretan topoloxki prostor. 3. Neka su A i B podskupovi topoloxkog prostora X. (a Dokazati da je int(a \ B int A \ int B. (b Primerom pokazati da u delu pod (a ne mora da vaжi jednakost. (v Da li postoji neka veza (u smislu inkluzije između skupova A \ B i A \ B? 4. Neka je X topoloxki prostor. (a Ako je B zatvoren skup u X, dokazati da je int( B =. (b Primerom pokazati da tvrđenje (a ne vaжi ako se izostavi pretpostavka da je B zatvoren. (v Da li bi tvrđenje (a vaжilo kad bi se pretpostavka da je B zatvoren zamenila pretpostavkom da je B otvoren? (g Dokazati da za svaki A X vaжi da je A = A. 5. Neka je X neprazan skup i {T α } α A familija topologija na X. (a Dokazati da postoji (jedinstvena najxira (najfinija topologija T na X sa svojstvom da za svako α A vaжi T T α (ovu topologiju T oznaqavamo sa inf T α. α A (b Dokazati da postoji (jedinstvena najuжa (najgrublja topologija M na X sa svojstvom da za svako α A vaжi T α M (ovu topologiju M oznaqavamo sa sup α A (v Ako je U uobiqajena topologija na R, a T e topologija uoqene taqke e R na istom skupu, odrediti inf{u, T e } i sup{u, T e }. U topoloxkom prostoru (R, inf{u, T e } na i {(1 + 1 n n n N}. T α. 6. Neka je C[0, 1] = { f : [0, 1] R f je neprekidna }. Za svako f C[0, 1], svako ε > 0 i svaki konaqan skup A [0, 1] definixemo U(f, A, ε := { g C[0, 1] ( x A f(x g(x < ε } C[0, 1]. (a Ako je B familija svih ovih skupova, tj. B = { U(f, A, ε f C[0, 1], A [0, 1], A konaqan, ε > 0 }, dokazati da je B baza neke topologije T na C[0, 1]. ( (b Ako je U topologija na C[0, 1] indukovana ravnomernom metrikom d d (f, g = max f(x g(x, 0 x 1 uporediti topologije T i U ako se one mogu uporediti. (Drugim reqima, utvrditi koji od slede a qetiri iskaza je taqan: (1 T U; (2 U T ; (3 T = U; (4 T i U su neuporedive. (v Ako je M topologija na C[0, 1] indukovana integralnom metrikom d 1 (d 1 1 (f, g = f(x g(x dx, uporediti topologije T i M ako se one mogu uporediti. (g Uporediti topologije U i M ako se one mogu uporediti Dat je topoloxki prostor (X, T X, familija topoloxkih prostora {(X λ, T Xλ } λ Λ i familija preslikavanja f λ : X X λ. Dokazati da je kolekcija B = {f 1 λ (V λ Λ, V T X λ } jedna baza topologije T X ako i samo ako su sva preslikavanja f λ neprekidna i ( B F X ( x X \ B( λ Λ f λ (x / f λ (B. 8. Neka je f : X Y preslikavanje topoloxkih prostora. Dokazati da je f neprekidno ako i samo ako za svaki B Y vaжi (f 1 (B f 1 ( B. 1

2 9. (a Ako je f : R R neprekidna, strogo monotona funkcija, dokazati da je f otvoreno preslikavanje. (b Ispitati neprekidnost, otvorenost i zatvorenost preslikavanja f : R R definisanog sa f(x = { 1 e x, x x, x > Neka je f : X Y neprekidno i zatvoreno preslikavanje. Neka je jox y Y i V otvoren skup u X takav da je f 1 ({y} V. Dokazati da postoji B Y takav da y B, da je f 1 (B otvoren u X i da je f 1 (B V. 11. Dati su potprostori realne prave X := (0, 1 {2} (3, 4 {5}... (3n, 3n + 1 {3n + 2}... i Y := (0, 1] (3, 4 {5}... (3n, 3n + 1 {3n + 2}.... (a Dokazati da postoji neprekidna bijekcija f : X Y. (b Da li je X Y? 12. Neka je X proizvoljan topoloxki prostor i f, g : X R dva neprekidna preslikavanja takva da za svako x X vaжi da je f(x < g(x. Dokazati da je {(x, t X R f(x < t < g(x} X R. 13. (a Ako je D n = { x R n x 1 } i [0, 1] n = [0, 1] [0, 1] [0, 1] R n, dokazati da je D n [0, 1] n. (b Ako je S n 1 = { x R n x = 1 }, dokazati da je S n 1 ( [0, 1] n. 14. Dat je skup Λ i diskretan topoloxki prostor X takav da je X 2. Dokazati da je proizvod X Λ diskretan topoloxki prostor ako i samo ako je Λ konaqan skup. 15. (a Dokazati da je skup svih polinomijalnih funkcija svuda gust u proizvodu R R (sa Tihonovljevom topologijom proizvoda. (b Da li tvrđenje (a vaжi ako na R R posmatramo box topologiju? 16. Neka je C R N skup svih konvergentnih realnih nizova i f : C R preslikavanje definisano na slede i naqin: za x = (x n n N C, f(x := lim n x n. (a Ako je C snabdeven Tihonovljevom topologijom proizvoda (nasleđenom od R N, ispitati neprekidnost preslikavanja f. (b Ako je C snabdeven box topologijom (nasleđenom od R N, ispitati neprekidnost preslikavanja f. 17. Neka je A R. Ako je A kompaktan na Zorgenfrajovoj pravoj (R, S, dokazati da ne postoji strogo rastu i niz elemenata skupa A. Da li moжe postojati strogo opadaju i niz elemenata skupa A? 18. Neka je X kompaktan topoloxki prostor i A P(X \ { } neka familija njegovih nepraznih podskupova takva da je ( A 1, A 2 A A 1 A 2 A. Dokazati da postoji taqka x X takva da svaka njena okolina seqe sve skupove iz familije A ( ( G O(x ( A A G A. 19. Kaжemo da je prostor prebrojivo kompaktan ako se iz svakog njegovog prebrojivog otvorenog pokrivaqa moжe izvu i konaqan potpokrivaq. Dokazati da je svaka neprekidna funkcija iz prebrojivo kompaktnog prostora u realnu pravu ograniqena. 20. (a Neka je K kompaktan, a U otvoren podskup euklidskog prostora R n i neka vaжi K U. Dokazati da postoji kompaktan skup S R n takav da je K int S S U. (b Da li vaжi tvrđenje (a ako se euklidski prostor R n zameni proizvoljnim topoloxkim prostorom X? 21. Neka je A neka familija kompaktnih podskupova euklidskog prostora R n takva da postoji δ > 0 sa svojstvom da za sve A, B A vaжi A = B ili d(a, B > δ. (a Dokazati da je A zatvoren skup. (b Dokazati da je A kompaktan skup ako i samo ako je familija A konaqna. (v Da li bi vaжilo tvrđenje (a ako bismo izostavili uslov da postoji δ > 0 sa gornjim svojstvom?

3 22. Dat je niz topoloxkih prostora { (X n, T n } n N takav da je (X n, T n potprostor od (X n+1, T n+1 za svako n N. Neka je X := n N X n. (a Dokazati da je T := { A X ( n N A X n T n } jedna topologija na X. (b Dokazati da je (X n, T n potprostor od (X, T za svako n N. (v Dokazati da je f : X Y neprekidno ako i samo ako je f Xn neprekidno za svako n N. (g Dokazati da prostor (X, T ima svojstvo T 1 ako i samo ako svi prostori (X n, T n imaju to svojstvo. 23. Neka je f : X Y neprekidno preslikavanje iz T 2 -prostora ( X u T 1 -prostor Y. Ako je {K n } n N opadaju a familija kompaktnih skupova u X, dokazati da je f K n = f(k n. n N 24. Neka je (X, T X Hauzdorfov prostor, F X odgovaraju a familija zatvorenih, a K X odgovaraju a familija kompaktnih podskupova od X. Uoqimo familiju A := { A X ( K K X A c K F X }. (a Dokazati da je i A jedna topologija na X. (b Da li je prostor (X, A Hauzdorfov? n N 25. Neka su f : X Y i g : Y X neprekidna preslikavanja takva da je g f = 1 X. Ako je Y Hauzdorfov, dokazati da je i X Hauzdorfov, kao i da je f(x F Y. 26. Neka je X topoloxki prostor. Dokazati da je X Hauzdorfov ako i samo ako za svako neprekidno preslikavanje f : X X vaжi da je skup N f := {(x, x f(x = x} zatvoren u proizvodu X X. 27. (a Ako je R N prostor svih realnih nizova (sa Tihonovljevom topologijom proizvoda i f : R N (0, π neprekidna funkcija takva da je za sve racionalne nizove q Q N R N ispunjeno f(q = arcctg q 2016, dokazati da za svako x R N vaжi da je f(x = arcctg x (b Da li bi tvrđenje (a vaжilo kad bismo na proizvodu R N posmatrali box topologiju? 28. Neka je X lokalno kompaktan, Y Hauzdorfov i f : X Y neprekidna otvorena surjekcija. Dokazati da za svaki kompaktan skup K Y postoji kompaktan skup C X takav da je f(c = K. 29. (a Neka je X Hauzdorfov prostor, A njegov potprostor, a A i G okolina taqke a takva da je skup G A kompaktan. Dokazati da postoji otvoren skup V takav da a V A A. (b Neka je X lokalno kompaktan T 2 -prostor i A njegov potprostor. Dokazati da je A lokalno kompaktan ako i samo ako se moжe predstaviti kao presek jednog otvorenog i jednog zatvorenog skupa. 30. Ako je (X, T X regularan topoloxki prostor, dokazati da je familija B = { B X int B = B } jedna baza topologije T X. 31. Ako je svaki otvoren potprostor prostora X normalan, dokazati da je onda svaki potprostor prostora X normalan. 32. Dokazati da je topoloxki prostor X normalan ako i samo ako za svaka dva njegova otvorena podskupa U i V koja ga pokrivaju (U V = X vaжi da postoje neprekidne funkcije f, g : X I takve da je f(x + g(x = 1 za svako x X, f(u c = {0} i g(v c = {0}. 33. Neka je X kompaktan Hauzdorfov prostor i {U λ } λ Λ njegov otvoren pokrivaq. Dokazati da postoji n N i neprekidne funkcije f 1, f 2,..., f n : X I takve da vaжi: (1 ( i {1,..., n} ( λ i Λ f i U c λi 0; n (2 ( x X f i (x = 1. i=1 34. (a Neka je X topoloxki prostor, A, B X takvi da je A B = A B = i E A B. Ako je E povezan, dokazati da je onda E A ili E B. (b Da li bi tvrđenje (a vaжilo ako bismo pretpostavku da su skupovi A B i A B prazni zamenili (slabijom pretpostavkom da je samo jedan od njih prazan?

4 35. Na skupu kompleksnih brojeva C data je koprebrojiva topologija T cc. Neka je p : C C polinomijalno preslikavanje (s kompleksnim koeficijentima, deg p > 0. (a Dokazati da je p neprekidno. (b Dokazati da je p zatvoreno. (v Ako za A C vaжi da je p 1 (A povezan, dokazati da je A povezan (u prostoru (C, T cc. (g Da li tvrđenje (v vaжi ako na C posmatramo uobiqajenu (euklidsku topologiju? 36. Neka je X topoloxki prostor (ne obavezno nekompaktan i X njegova kompaktifikacija jednom taqkom (Aleksandrovljeva kompaktifikacija. (a Dokazati da ako je X povezan, onda je X nekompaktan. (b Primerom pokazati da u tvrđenju (a ne vaжi obrnuta implikacija. (v Dokazati da ako je X povezan i nekompaktan, onda je i X povezan. 37. Dato je linearno (totalno uređenje na skupu X. Za a X neka su S a := {x X x < a} i S a := {x X a < x}. Neka je T topologija na X data svojom predbazom S := {S a a X} {S a a X} ( (X, T je uređeni prostor. Dokazati da je prostor (X, T povezan ako i samo ako su ispunjena slede a dva uslova: (1 ( x, y X [ x < y = ( z X x < z < y ]; (2 ako su A, B X takvi da ( a A( b B a b, onda postoji c X takvo da ( a A( b B a c b (Dedekind. 38. Neka je (X, T proizvoljan topoloxki prostor i (R, S Zorgenfrajova prava. (a Dokazati da je f : (X, T (R, S neprekidno ako i samo ako je za svako a R skup f 1( (, a otvoreno-zatvoren u (X, T. (b Ako je (X, T povezan, odrediti sva neprekidna preslikavanja f : (X, T (R, S. 39. Neka su f, g : X R dva neprekidna preslikavanja iz povezanog prostora X u realnu pravu i neka su Γ f, Γ g X R njihovi grafici. Dokazati da je Γ f Γ g povezan potprostor proizvoda X R ako i samo ako postoji x 0 X takvo da je f(x 0 = g(x Neka je X povezan topoloxki prostor i U njegov otvoren pokrivaq. Dokazati da za svake dve taqke a, b X postoje n N i U 1, U 2,..., U n U takvi da vaжe slede a tri uslova: (1 a U 1 \ (U 2... U n ; (2 b U n \ (U 1... U n 1 ; (3 ( i, j {1, 2,..., n} [ U i U j i j 1 ]. 41. Neka je m N, Y metriqki prostor i f : R m Y preslikavanje takvo da za sve A R m vaжe implikacije: (1 ako je A kompaktan, onda je i f(a kompaktan; (2 ako je A povezan, onda je i f(a povezan. Dokazati da je f neprekidno. 42. Neka je X topoloxka grupa sa operacijom (X je topoloxki prostor, X je grupa u odnosu na i : X 2 X, kao i inverz 1 : X X, jesu neprekidna preslikavanja. Dokazati da je komponenta povezanosti prostora X koja sadrжi neutral normalna podgrupa od X. 43. Date su kruжnice u ravni K 1 := {(x, y R 2 (x y 2 = 1} i K 2 := {(x, y R 2 (x y 2 = 1}. Neka je f : S 1 K 1 K 2 neprekidno preslikavanje. Ako koordinatni poqetak O(0, 0 / f(s 1, dokazati da postoji taqka x 0 S 1 takva da je f(x 0 = f( x U ravni je data kruжnica k : (x p 2 + (y q 2 = r 2 (p, q R, r > 0 i taqka (x 0, y 0 R 2. Dokazati da postoji kvadrat oblika [x 0 a, x 0 + a] [y 0 a, y 0 + a] (a > 0 qija granica sadrжi (bar jedan par dijametralno suprotnih taqaka sa kruжnice k.

5 45. Neka su A i B neprazni putno povezani podskupovi euklidskog prostora R n i neka je δ := d(a, B. Ako je, za l > 0, C l := { x R n min{d(x, A, d(x, B} < l }, dokazati da je C l putno povezan ako i samo ako je l > δ Neka je U otvoren skup u euklidskom prostoru R n i φ : I U put u U. Dokazati da postoji otvoren putno povezan skup V R n takav da je φ(i V V U. 47. (a Dati su A, B R n pri qemu je A konveksan ( ( x, y A ( t [0, 1] (1 tx + ty A, a B kompaktan i putno povezan. Ako je d(a, B = 0, dokazati da je A B putno povezan. (b Primerima pokazati da tvrđenje (a ne bi vaжilo kada bi se pretpostavka da je B kompaktan zamenila pretpostavkom da je B (samo zatvoren ili pretpostavkom da je B (samo ograniqen. (v Primerom pokazati da tvrđenje (a ne bi vaжilo kada bi se pretpostavka da je A konveksan zamenila pretpostavkom da je A (samo putno povezan. 48. Neka je f : X Y koliqniqko preslikavanje. (a Primerom pokazati da za A X restrikcija f A : A f(a (s kodomenom suжenim na sliku ne mora biti koliqniqko. (b Ako je B Y otvoren ili zatvoren, dokazati da je f f 1 (B : f 1 (B B koliqniqko. (v Primerom pokazati da, za B Y, f f 1 (B : f 1 (B B ne mora biti koliqniqko. 49. Dat je prostor X i na njemu relacija ekvivalencije. Ako je koliqniqki prostor X/ Hauzdorfov, dokazati da je skup { (x, y X X x y } zatvoren u X X. 50. Neka su A i B potprostori prostora X takvi da je int A int B = X i A B. (a Dokazati da je V X otvoren u X ako i samo ako je V A otvoren u A i V B otvoren u B. (b Ako je i A : A X inkluzija i π : X X/B prirodna surjekcija, dokazati da je kompozicija π i A : A X/B koliqniqko preslikavanje. (v Dokazati da je A/A B X/B.

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Zadaća iz kolegija Metrički prostori 2013./2014.

Zadaća iz kolegija Metrički prostori 2013./2014. Zadaća iz kolegija Metrički prostori 2013./2014. Zadaća nosi 5 bodova. Sve tvrdnje u zadacima obrazložiti! Renato Babojelić 31 Lea Božić 13 Ana Bulić 7 Jelena Crnjac 5 Bernarda Dragin 19 Gabriela Grdić

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4.

x + 3y + 6z = 3 3x + 5y + z = 4 x + y + z = 4. Linearna algebra A, kolokvijum, 1. tok 22. novembar 2014. 1. a) U zavisnosti od realnih parametara a i b Gausovim metodom rexiti sistem linearnih jednaqina nad poljem R ax + (a + b)y + bz = 3a + 5b ax +

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

1 Svojstvo kompaktnosti

1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti 1 Svojstvo kompaktnosti U ovoj lekciji će se koristiti neka svojstva realnih brojeva sa kojima se čitalac već upoznao tokom kursa iz uvoda u analizu. Na primer, važi Kantorov princip:

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija 18.02006. Prvi razred A kategorija Dokazati da kruжnica koja sadrжi dva temena i ortocentar trougla ima isti polupreqnik kao i kruжnica opisana oko tog trougla. Na i najve i prirodan broj koji je maƭi

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

ODABRANA POGLAVLjA ALGEBARSKE TOPOLOGIJE (Doma i zadaci)

ODABRANA POGLAVLjA ALGEBARSKE TOPOLOGIJE (Doma i zadaci) ODABRANA POGLAVLjA ALGEBARSKE TOPOLOGIJE (Domai zadaci) 1. (a) Neka je {A α } familija Abelovih grupa, B Abelova grupa i f α : A α B, α A, homomorfizmi. Oznaqimo sa f α : ( ) A α B homomorfizam dat sa f

Διαβάστε περισσότερα

I Pismeni ispit iz matematike 1 I

I Pismeni ispit iz matematike 1 I I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIƒKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU. Borelovi skupovi

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIƒKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU. Borelovi skupovi UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIƒKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Nada Cvetkovi Borelovi skupovi -master rad- Mentor: prof. dr Milo² Kurili Novi Sad, 2014. Sadrºaj Predgovor................................

Διαβάστε περισσότερα

1 Pojam funkcije. f(x)

1 Pojam funkcije. f(x) Pojam funkcije f : X Y gde su X i Y neprazni skupovi (X - domen, Y - kodomen) je funkcija ako ( X)(! Y )f() =, (za svaki element iz domena taqno znamo u koji se element u kodomenu slika). Domen funkcije

Διαβάστε περισσότερα

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1.

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1. 09.0200 Prvi razred A kategorija Ako je n prirodan broj, dokazati da 3n 2 + 3n + 7 nije kub nijednog prirodnog broja. U trouglu ABC je ABC = 60. Neka su D i E redom preseqne taqke simetrala uglova CAB

Διαβάστε περισσότερα

DRŽAVNI UNIVERZITET U NOVOM PAZARU TOPOLOGIJA SA ODABRANIM ZADACIMA SKRIPTA NOVI PAZAR, 2014 (2011).

DRŽAVNI UNIVERZITET U NOVOM PAZARU TOPOLOGIJA SA ODABRANIM ZADACIMA SKRIPTA NOVI PAZAR, 2014 (2011). DRŽAVNI UNIVERZITET U NOVOM PAZARU dr. Dženis F. Pučić TOPOLOGIJA SA ODABRANIM ZADACIMA SKRIPTA NOVI PAZAR, 2014 (2011). Predgovor prvom izdanju Ova skripta nastala su kao rezultat potrebe da se studentima

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Osnove matematičke analize

Osnove matematičke analize Osnove matematičke analize prof.dr.sc. Nikola Koceić Bilan FPMOZ Sveučilište u Mostaru FPMOZ Sveučilište u Mostaru 1 / Sadržaj 1 Topološka i metrička struktura normiranog vektorskog prostora R n. Konvergencija

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Funkcije. Predstavljanje funkcija

Funkcije. Predstavljanje funkcija Funkcije narna relacija f je funkcionalna relacija ako važi: ( ) za svaki a postoji jedinstven element b takav da (a, b) f. Definicija. Funkcija 1 je uredjena trojka (,, f) gde f zadovoljava uslov: Činjenicu

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n :

k a k = a. Kao i u slučaju dimenzije n = 1 samo je jedan mogući limes niza u R n : 4 Nizovi u R n Neka je A R n. Niz u A je svaka funkcija a : N A. Označavamo ga s (a k ) k. Na primjer, jedan niz u R 2 je dan s ( 1 a k = k, 1 ) k 2, k N. Definicija 4.1. Za niz (a k ) k R n kažemo da

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

R ω s uniformnom topologijom i aksiomi prebrojivosti

R ω s uniformnom topologijom i aksiomi prebrojivosti Opća topologija 116 Opća topologija 118 Drugi aksiom prebrojivosti 4 AKSIOMI SEPARACIJE I PREBROJIVOSTI Aksiomi prebrojivosti Aksiomi separacije Normalni prostori Urysonova lema Urysonov teorem o metrizaciji

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

METRIČKI PROSTORI 0 METRIČKI PROSTORI. Literatura: S. Mardešić. Matematička analiza, 1. dio, Školska knjiga, Zagreb, 1974.

METRIČKI PROSTORI 0 METRIČKI PROSTORI. Literatura: S. Mardešić. Matematička analiza, 1. dio, Školska knjiga, Zagreb, 1974. METRIČKI PROSTORI 0 METRIČKI PROSTORI Šime Ungar http://www.mathos.unios.hr/~sime/ Literatura: S. Mardešić. Matematička analiza, 1. dio, Školska knjiga, Zagreb, 1974. Š. Ungar. Matematička analiza 3, PMF-Matematički

Διαβάστε περισσότερα

Baza topologije. Definicija. Familija B podskupova od X je baza neke topologije na X ako: Topološki prostori. Baza topologije. tj.

Baza topologije. Definicija. Familija B podskupova od X je baza neke topologije na X ako: Topološki prostori. Baza topologije. tj. Opća topologija 24 Opća topologija 26 13. Baza topologije Baza topologije 2 TOPOLOŠKI PROSTORI I NEPREKIDNE FUNKCIJE Topološki prostori Baza topologije Uređajna topologija Produktna topologija na X Y Topologija

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Linearna uređenja i GO prostori

Linearna uređenja i GO prostori UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Milijana Milovanović Linearna uređenja i GO prostori -Master rad- Mentor: dr Aleksandar Pavlović Novi Sad, 2015.

Διαβάστε περισσότερα

Prvi razred A kategorija

Prvi razred A kategorija Prvi razred A kategorija 1. Neka su A, B i C konaqni skupovi za koje vaжi Dokazati da tada vaжi A C + B C = A B. A B C A B. (Za skupove X i Y oznaqili smo X Y = (X \Y ) (Y \X), xto se naziva simetriqna

Διαβάστε περισσότερα

1. Topologija na euklidskom prostoru R n

1. Topologija na euklidskom prostoru R n 1 1. Topologija na euklidskom prostoru R n Euklidski prostor R n je okruženje u kojem ćemo izučavati realnu analizu. Kao skup R n se sastoji od svih uredenih n-torki realnih brojeva: R n = {(x 1,...,x

Διαβάστε περισσότερα

Matematička Analiza 3

Matematička Analiza 3 Sveučilište u Zagrebu Prirodoslovno-matematički fakultet MATEMATIČKI ODJEL Šime Ungar Matematička Analiza 3 Zagreb, 2002. Sveučilište u Zagrebu Prirodoslovno-matematički fakultet MATEMATIČKI ODJEL Šime

Διαβάστε περισσότερα

Teorema Kantor - Bendiksona i njene primene

Teorema Kantor - Bendiksona i njene primene UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Anika Njamcul Teorema Kantor - Bendiksona i njene primene Master rad Mentor: dr. Aleksandar Pavlović Novi Sad,

Διαβάστε περισσότερα

Metrički prostori i Riman-Stiltjesov integral

Metrički prostori i Riman-Stiltjesov integral Metrički prostori i Riman-Stiltjesov integral Dragan S. Djordjević Niš, 2009. 0 Sadržaj Predgovor 3 1 Metrički prostori 5 1.1 Primeri metričkih prostora................. 5 1.2 Konvergencija nizova i osobine

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

2. Konvergencija nizova

2. Konvergencija nizova 6 2. KONVERGENCIJA NIZOVA 2. Konvergencija nizova Niz u skupu X je svaka funkcija x : N X. Vrijednost x(k), k N, se zove opći ili k-ti član niza i obično se označava s x k. U skladu s tim, niz x : N X

Διαβάστε περισσότερα

Mur Smitova konvergencija

Mur Smitova konvergencija Master rad Mur Smitova konvergencija Autor: Jovana Obradović Mentor: prof. dr Miloš Kurilić Novi Sad, 2012. Sadržaj Predgovor................................ i 1 Uvod 1 1.1 Osnovne oznake i rezultati....................

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

Zadaci iz Analize za d(x, y) 0 (ako je d(x, y) = 0 onda je x = y pa oqigledno vai nejednakost

Zadaci iz Analize za d(x, y) 0 (ako je d(x, y) = 0 onda je x = y pa oqigledno vai nejednakost 1 Zadaci iz Analize Kako vreme prolazi to u i nasumiqno rexavati ove zadatke. Do tada, savetujem da sami uradite xto vixe moete. Sve vas pozdrav a vax asistent Milan Lazarevi. 1. Neka je (X, d) metriqki

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. imaju istu vrednost.

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. imaju istu vrednost. 00200 Prvi razred A kategorija Neka su a 1 < a 2 < < a n dati realni brojevi. Na i sve realne brojeve x za koje je izraz x a 1 + x a 2 + + x a n najmanji. Na i sve trojke međusobno razliqitih dekadnih cifara

Διαβάστε περισσότερα

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 5. mart 2016.

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije DRЖAVNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 5. mart 2016. Prvi razred A kategorija 1. Neka je operacija,, na skupu G = {1, 2, 3,..., 2016} zadata donjom tablicom. 1 2 3 4 2016 1 5 5 5 5 5 2 1 2 5 5 5 3 4 3 5 5 5 4 5 5 5 5 5......... 2016 5 5 5 5 5 (Unutar tablice

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije OKRUЖNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA

Ministarstvo prosvete, nauke i tehnoloxkog razvoja Druxtvo matematiqara Srbije OKRUЖNO TAKMIQENjE IZ MATEMATIKE UQENIKA SREDNjIH XKOLA 8.201 Prvi razred A kategorija Aca, Branka, Vera i Goran su od nastavnika matematike dobili zadatak da izraqunaju koliqnik dva pozitivna realna broja, i to: Aca da izraquna a 1 : a 2, Branka da izraquna

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA

ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA Sveučilište u Zagrebu PMF-Matematički odsjek Franka Miriam Brückler, Vedran Čačić, Marko Doko, Mladen Vuković ZBIRKA ZADATAKA IZ TEORIJE SKUPOVA Zagreb, 2009. Sadržaj 1 Osnovno o skupovima, relacijama

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ

LINEARNA ALGEBRA 1, ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ, VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ LINEARNA ALGEBRA 1 ZIMSKI SEMESTAR 2007/2008 PREDAVANJA: NENAD BAKIĆ VJEŽBE: LUKA GRUBIŠIĆ I MAJA STARČEVIĆ 2. VEKTORSKI PROSTORI - LINEARNA (NE)ZAVISNOST SISTEM IZVODNICA BAZA Definicija 1. Neka je F

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE

ELEMENTARNE FUNKCIJE 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva neprazna skupa. Funkcija f iz skupa X u skup Y je pridruživanje

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f}

Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa. f 1 = {(b, a) B A (a, b) f} Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f} nazivamo inverznom korespondencijom korespondencije f. A f B A f 1 B

Διαβάστε περισσότερα

Matematiqka gimnazija u Beogradu Dodatna nastava iz matematike Inverzija. Milivoje Luki

Matematiqka gimnazija u Beogradu Dodatna nastava iz matematike Inverzija. Milivoje Luki Matematiqka gimnazija u Beogradu Dodatna nastava iz matematike 10.12.2005. Inverzija Milivoje Luki milivoje.lukic@gmail.com Inverzija sa centrom O i polupreqnikom r je preslikavanje ψ O,r : E 2 \{O} E 2

Διαβάστε περισσότερα

FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo

FUNKCIJE - 2. deo. Logika i teorija skupova. 1 Logika FUNKCIJE - 2. deo FUNKCIJE - 2. deo Logika i teorija skupova 1 Logika FUNKCIJE - 2. deo Inverzna korespondencija Neka je data korespondencija f A B. Tada korespondenciju f 1 B A definisanu sa f 1 = {(b, a) B A (a, b) f}

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

ELEMENTARNA MATEMATIKA 1

ELEMENTARNA MATEMATIKA 1 Na kolokviju nije dozvoljeno koristiti ni²ta osim pribora za pisanje. Zadatak 1. Ispitajte odnos skupova: C \ (A B) i (A C) (C \ B). Rje²enje: Neka je x C \ (A B). Tada imamo x C i x / A B = (A B) \ (A

Διαβάστε περισσότερα