ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 2006

Σχετικά έγγραφα
ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

x y και να γίνει επαλήθευση. Βρείτε τη µερική λύση που για x=1 έχει κλίση 45 ο. Α τρόπος Η Ε γράφεται (1)

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

Ηλεκτρική και Μηχανική ταλάντωση στο ίδιο φαινόμενο

Σχολή E.Μ.Φ.Ε ΦΥΣΙΚΗ ΙΙΙ (ΚΥΜΑΤΙΚΗ) Κανονικές Εξετάσεις Χειµερινού εξαµήνου t (α) Αν το παραπάνω σύστηµα, ( m, s,

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ. Εφαπτοµένη ευθεία

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Ι Ι ΑΣΚΩΝ : ρ. Χρήστος Βοζίκης

Μάθηµα 8. , δέχεται εφαπτοµένη στο σηµείο της ( k, f ( k)), k D

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

ΘΕΩΡΙΑ: Έστω η οµογενής γραµµική διαφορική εξίσωση τάξης , (1)

Η f(x) y είναι συνεχής στο [0, 2α], σαν διαφορά των συνεχών f(x) και y = 8αx 8α 2

1.1. Διαφορική Εξίσωση και λύση αυτής

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

Μερικές Διαφορικές Εξισώσεις

ΑΣΚΗΣΕΙΣ. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης:

Σύνθεση ή σύζευξη ταλαντώσεων;

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

Φυσική για Μηχανικούς

5.15 Εφαρμογές της ομογενούς Δ.Ε. 2ης τάξης με σταθερούς συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

(2) Θεωρούµε µοναδιαία διανύσµατα α, β, γ R 3, για τα οποία γνωρίζουµε ότι το διάνυσµα

13 Μέθοδοι υπολογισµού ολοκληρωµάτων Riemann

Κεφάλαιο 6 Παράγωγος

(β) Από την έκφραση (22) και την απαίτηση (20) βλέπουμε ότι η συνάρτηση Green υπάρχει αρκεί η ομογενής εξίσωση. ( L z) ( x) 0

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

Ευκλείδειοι Χώροι. Ορίζουµε ως R n, όπου n N, το σύνολο όλων διατεταµένων n -άδων πραγµατικών αριθµών ( x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΛΥΣΕΙΣ 6 ης ΕΡΓΑΣΙΑΣ - ΠΛΗ 12,

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΦΥΕ14-5 η Εργασία Παράδοση

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x

ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΧΩΡΙΣ ΑΠΟΣΒΕΣΗ ΑΣΚΗΣΗ 6.1

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΗ ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 3 Ιουλίου 2010

ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ

Αρµονικοί ταλαντωτές

φ(rad) t (s) α. 4 m β. 5 m α. 2 m β. 1 m

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 2017

1. Μετάπτωση Larmor (γενικά)

Συνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

, όπου οι σταθερές προσδιορίζονται από τις αρχικές συνθήκες.

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

Να γίνουν οι γραφικές παραστάσεις των ακόλουθων συναρτήσεων σε χαρτί µιλιµετρέ αφού πρώτα φτιάξετε τους πίνακες των τιµών τους.

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι ΕΡΓΑΣΙΑ 6 ΛΥΣΕΙΣ

γ /ω=0.2 γ /ω=1 γ /ω= (ω /g) v. (ω 2 /g)(x-l 0 ) ωt. 2m.

ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ. Τμήμα Φαρμακευτικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λυμένες Ασκήσεις & Λυμένα Θέματα Εξετάσεων

Εισαγωγή στις Φυσικές Επιστήμες ( ) Ονοματεπώνυμο Τμήμα ΘΕΜΑ 1. x x. x x x ( ) + ( 20) + ( + 4) = ( + ) + ( 10 + ) + ( )

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

5 Γενική µορφή εξίσωσης ευθείας

Αρµονικοί ταλαντωτές

21/11/2013 ETY-202 ETY-202 ΎΛΗ & ΦΩΣ 06. Ο ΑΡΜΟΝΙΚΟΣ ΤΑΛΑΝΤΩΤΗΣ. 1396; office Δ013 ΙΤΕ. Στέλιος Τζωρτζάκης

ΜΑΘΗΜΑ ΣΥΝΑΡΤΗΣΕΙΣ Σύνολο τιµών Γραφική παράσταση συνάρτησης Βασικές συναρτήσεις Ισότητα συναρτήσεων Πράξεις µε συναρτήσεις

ΚΕΦΑΛΑΙΟ 11. Παγκόσµια έλξη

Εργασία 2. Παράδοση 20/1/08 Οι ασκήσεις είναι βαθμολογικά ισοδύναμες

Κεφάλαιο 1: Προβλήµατα τύπου Sturm-Liouville

max 0 Eκφράστε την διαφορά των δύο θετικών λύσεων ώς πολλαπλάσιο του ω 0, B . Αναλύοντας το Β σε σειρά άπειρων όρων ώς προς γ/ω 0 ( σειρά

Αρµονικοί ταλαντωτές

) z ) r 3. sin cos θ,

ΚΕΦΑΛΑΙΟ 6. Κεντρικές υνάµεις. 1. α) Αποδείξτε ότι η στροφορµή διατηρείται σε ένα πεδίο κεντρικών δυνάµεων και δείξτε ότι η κίνηση είναι επίπεδη.

Φυσική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 2: Θεωρία ταλαντώσεων (Συνοπτική περιγραφή) Αικατερίνη Σκουρολιάκου. Τμήμα Ενεργειακής Τεχνολογίας

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

!q j. = T ji Kάθε πίνακας µπορεί να γραφεί σαν άθροισµα ενός συµµετρικού και ενός αντι-συµµετρικού πίνακα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Μάθηµα 1. Κεφάλαιο 1o: Συστήµατα. γ R παριστάνει ευθεία και καλείται γραµµική εξίσωση µε δύο αγνώστους.

ΚΕΦΑΛΑΙΟ 7. Συστήµατα Υλικών Σηµείων

ΑΚΡΙΒΗ ΔΙΑΦΟΡΙΚΑ. u,υ / A ονομάζεται ακριβές διαφορικό όταν υπάρχει. df u x,y dx υ x,y dy. f u και. f y. 3 f. και

Κατηγορία 1 η. Σταθερή συνάρτηση Δίνεται παραγωγίσιμη συνάρτηση f : 0, f '( x) 0 για κάθε εσωτερικό σημείο x του Δ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΜΕΡΙΚΕΣ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

αx αx αx αx 2 αx = α e } 2 x x x dx καλείται η παραβολική συνάρτηση η οποία στο x

Thanasis Kehagias, 2009

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x)

2.3. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας. Να βρείτε την παράγωγο των συναρτήσεων

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ;

( y) ( x) ( 0) ( ) ( 0) ( y) ( ) ( ) ( ) Παραδείγµατα και εφαρµογές. 1)Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα 1

ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1

0.4 ιαφόριση συναρτήσεων

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ

Θέμα 1. με επαυξημένο 0 1 1/ 2. πίνακα. και κλιμακωτή μορφή αυτού

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Μηχανική του στερεού σώματος

3 + O. 1 + r r 0. 0r 3 cos 2 θ 1. r r0 M 0 R 4

Πολυβάθμια Συστήματα. (συνέχεια)

Transcript:

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Σεπτέµβριος 006 Θέµα ο. Για την διαφορική εξίσωση + ' =, > 0 α) Να δειχτεί ότι όλες οι λύσεις τέµνουν κάθετα την ευθεία =. β) Να βρεθεί η γενική λύση. γ) Να βρεθεί και να σχεδιαστεί η λύση που περνάει από το σηµείο (,)=(,). α) Η παράγωγος της ευθείας = είναι ( ) = ενώ η παράγωγος των λύσεων για = ευθ προκύπτει από τη διαφορική εξίσωση ( Ε) και είναι ( λυσ ) =. Άρα οι λύσεις τέµνουν κάθετα την ευθεία αφού ( ) λυσ ( ευθ ) =. β) Η Ε είναι πρώτης τάξης οµογενής * αφού γράφεται = + και εισάγοντας τη µεταβλητή z = / και ' = z + z η Ε γράφεται z zdz d z + z= + z z = = + z z + z Ολοκληρώνοντας την () έχουµε ln ln (ep) c + z = + c + z = () και αντικαθιστώντας το z=/ παίρνουµε τη ζητούµενη γενική λύση που γράφεται ως c + = 0 () γ) Αντικαθιστώντας στην () τις τιµές =, = βρίσκουµε c=4 και η ζητούµενη µερική λύση γράφεται ως 4 =± (4) Για την σχεδίαση της λύσης παρατηρούµε ότι γ) η λύση είναι συµµετρική ως προς τον οριζόντιο άξονα γ) lim =± 0 / γ) Η λύση τέµνει τον οριζόντιο άξονα =0 στο = 4 κάθετα (αυτό προκύπτει λόγω της γ και της συνέχειας της λύσης ή από τη Ε έχουµε για =0 είναι ' = γ4) η µερική λύση περνάει από το (,) και τέµνει κάθετα τη διαγώνιο =. () * Η Ε γράφεται ( + ) d + d =0, είναι πλήρης και µπορεί να λυθεί µε την αντίστοιχη µεθοδολογία

Θέµα ο. Για την διαφορική εξίσωση ης τάξης ( ) =, 0, > 0 α) Να βρεθεί η γενική της λύση β) Να βρεθεί η µερική λύση που παρουσιάζει ακρότατο στο σηµείο (,)=(,). α) Η Ε είναι ης τάξης, µη γραµµική, οµογενής βαθµού ως προς την άγνωστη συνάρτηση =() και τις παραγώγους της. Στη περίπτωση αυτή εισάγουµε τη συνάρτηση z=z() και χρησιµοποιούµε τις σχέσεις = e zd, = ze zd, = ze zd + z e zd Αντικαθιστώντας τις παραπάνω σχέσεις στην Ε, ο όρος e zd 0 απλοποιείται και παίρνουµε την παρακάτω διαφορική εξίσωση ης τάξης ως προς τη συνάρτηση z=z() που ολοκληρώνεται άµεσα z' = z = + c (6) Άρα η ζητούµενη =() θα είναι + c d c, = c e = e = e c = e ln + c+ c c (5) > 0 (7) *β τρόπος. Παρατηρούµε ότι =. Αντικαθιστώντας στη Ε παίρνουµε = και µε δύο διαδοχικές ολοκληρώσεις προκύπτει η λύση (7). β) Η ζητούµενη µερική λύση θα προκύψει από τις αρχικές συνθήκες ()= και ()=0 (ακρότατο στο =). Αντικαθιστώντας τις αρχικές συνθήκες στη λύση (7) και την παράγωγό της θα πάρουµε τις σχέσεις c c c = ce, 0= ce + cce c = και c e οπότε η ζητούµενη µερική λύση είναι η = ee, > 0 (8) Θέµα ο. Γράψτε την διαφορική εξίσωση του αρµονικού ταλαντωτή µε απόσβεση για κυκλική συχνότητα ω και συντελεστή απόσβεσης b. Αν σε κανονικοποιηµένες µονάδες είναι ω=, να βρεθεί η γενική λύση =() της διαφορικής εξίσωσης για b=4, b= και b=. (Σηµειώνουµε ότι οι θετικές σταθερές k=mω και γ=mb, όπου m η µάζα, αποτελούν τους συντελεστές αναλογίας της ελκτικής δύναµης των ταλαντώσεων και της αντίστασης αντίστοιχα, δηλ. F =kγ ) oλ

Η Ε του αρµονικού ταλαντωτή µε απόσβεση είναι η m =k γ m + bm + mω = 0 + b + ω = 0, δηλαδή µια γραµµική Ε ης τάξης οµογενής µε σταθερούς συντελεστές. (9) η περίπτωση ω=, b=4 H Ε γράφεται + 4 + = ρ + 4ρ + = 0 ρ = ± <0 (0) και σε αυτές αντιστοιχούν οι ανεξάρτητες λύσεις ( ) ( ) () e + =, () = e ( ) ( ) () ce + = + ce () Η () τείνει εκθετικά στο 0 καθώς (περίπτωση µεγάλης αντίστασης)., η περίπτωση ω=, b= H Ε γράφεται + + = ρ + ρ + = 0 ρ = (διπλη ) () και σε αυτή αντιστοιχούν οι ανεξάρτητες λύσεις () e =, () = e () = ce + ce () Η () τείνει εκθετικά στο 0 καθώς (περίπτωση κρίσιµης αντίστασης)., η περίπτωση ω=, b= H Ε γράφεται + + = ρ + ρ+ = 0 ρ, = ± i (4) και σε αυτές αντιστοιχούν οι ανεξάρτητες λύσεις / / () = e cos, () = e sin. / () = e ccos + csin (5) Η (5) περιγράφει αρµονικές ταλαντώσεις µε εκθετικά µειούµενο πλάτος (περίπτωση µικρής αντιστάσεως)

Θέµα 4 ο. Για µια οµογενή ράβδο, που ξεκινάει από το Ο και εκτείνεται κατά τον άξονα Ο, η ΕΜΠ που περιγράφει τη διάχυση της θερµοκρασίας θ=θ(,) είναι η θ θ k = 0 όπου k>0 η σταθερά διάχυσης. α) σε ποια κατηγορία ΕΜΠ εντάσσεται η παραπάνω διαφορική εξίσωση β) Αν για =0 η κατανοµή της θερµοκρασίας στη ράβδο είναι θ (,0) = 0e να βρεθεί µια λύση θ=θ(,) που να ικανοποιεί τη ΕΜΠ και την αρχική κατανοµή. α) Η ΕΜΠ είναι δεύτερης τάξης, γραµµική, µε σταθερούς συντελεστές, οµογενής Με τη βοήθεια του διαφορικού τελεστή D γράφεται Dθ kd θ = 0 ( D kd ) θ =0 και αφού το πολυώνυµο-τελεστής Π ( D, D) = D kd δεν µπορεί να γραφεί ως γινόµενο παραγόντων, η ΕΜΠ είναι µη αναγώγιµη. β) Στην περίπτωση των µη αναγώγιµων εξισώσεων θεωρούµε λύσεις της µορφής a+ b θ = e, a, b C (σταθ.) Αντικαθιστώντας την (6) στη ΕΜΠ παρατηρούµε ότι αυτή επαληθεύεται αν Π (, ) = = 0 = ab a kb a kb (6) (7) Έτσι η (6) γίνεται θ = e kb + b. Αφού η ΕΜΠ είναι γραµµική τότε και η kb + b θ = ce θα είναι λύση (καθώς και οποιοσδήποτε γραµµικός συνδυασµός των παραστάσεων (6) για αυθαίρετες διαφορετικές τιµές της σταθεράς b). Η παραπάνω λύση ικανοποιεί την αρχική κατανοµή (=0) αν c=0 και b=-. Άρα η ζητούµενη λύση είναι η (, ) 0 k θ = e (8) Θέµα 5 ο. Για τη ΕΜΠ z z ( z) + ( z ) = α) Να βρεθεί η γενική της λύση β) Να βρεθεί η µερική λύση που περνάει από την ευθεία z=, =0. α) Η δοσµένη ΕΜΠ είναι γραµµική ης τάξης µε σύστηµα βοηθητικών εξισώσεων d d dz = = ( = A) (9) z z Προσθέτοντας κατά µέλη τους αριθµητές και τους παρανοµαστές παίρνουµε

d + d + dz d + d + dz A= = d+ d+ dz = 0 + + z = c (0) z+ z + 0 Επίσης από την (9) παίρνουµε το ισοδύναµο σύστηµα d = d = zdz ( = A) () ( z) z ( ) z ( ) και προσθέτοντας κατά µέλη τους αριθµητές και τους παρανοµαστές παίρνουµε d + d + zdz d + d + zdz A = = d + d + zdz = 0 z + z + z z 0 + + z = c + + z =c () Άρα η γενική λύση της ΕΜΠ θα δίνεται από την σχέση Φ ( + + z, + + z ) = 0, όπου Φ αυθαίρετη συνάρτηση. () β) Αντικαθιστώντας τις αρχικές συνθήκες z=, =0 στις (0) και () έχουµε = c, 5 = c Άρα µεταξύ των σταθερών c και c θα πρέπει να ισχύει η σχέση 5 c / 9= cκαι αντικαθιστώντας τις c και c µε τις παραστάσεις (0) και () προκύπτει η ζητούµενη µερική λύση 5 ( ) η ( z z z ) 5( z z ) 0 9 + + = + + + + + + = (4)