y = f(m) ili y = f(x 1, x 2,...,x n ). (1.1)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "y = f(m) ili y = f(x 1, x 2,...,x n ). (1.1)"

Transcript

1 Glava 1 Teorija polja U matematičkoj teoriji polja 1 ne izučava se fizički smisao neke veličine koja je zadata u datom polju. Izučavaju se samo opšta svojstva polja koja se kasnije, u fizici i drugim oblastima, primenjuje na konkretna fizička polja. Konkretna polja izučavaju se u različitim delovima fizike, dok će se u ovoj knjizi navesti samo neki primeri da bi (ilustrovali) pomogli u razumevanju izložene teorije. 1.1 Skalarno polje Posmatrajmo skup D tačaka n dimenzionalnog Euklikog prostora E n. Ako se svakoj tački M(x 1, x 2,...,x n ) D, prema odre - denom zakonu, dodeli (korespondira) jedan broj (realan ili kompleksan) y, tada kažemo da je odre - dena (definisana) skalarna (realna ili kompleksna) funkcija y od n nezavisno promenljivih i pišemo: y f(m) ili y f(x 1, x 2,...,x n ). (1.1) Koordinate (x 1, x 2,..., x n ) tačke M zovemo nezavisno promenljive, a skup D oblast definisanosti (domen) funkcije tačke f. Me - dutim, u fizici i nekim prirodnim naukama, kao i u tehnici, koristi se pojam polje - da označi deo prostora (oblast) u kome se posmatra ( oseća ) neka fizička pojava. Dakle, pod pojmom skalarno polje, matematički govoreći, podrazumevamo oblast definisanosti skalarne funkcije. U daljem tekstu koristićemo pojam polje umesto - domen, pa prethodno možemo da izrazimo i na sledeći način: ako funkcija f pridružuje svakoj tački iz D skalar (realni ili kompleksni broj), tada kažemo da je skalarno polje dato u D. Napomenimo da vrednost funkcije zavisi samo od tačaka u prostoru, a ne i od posebno izabranog koordinatnog sistema. Treba, dakle, imati stalno na umu da vrednost funkcije f u bilo kojoj tački M D ne zavisi od posebno izabranog koordinatnog sistema. Da bismo istakli tu činjenicu, tako - de je uobičajeno označavanje f(m) umesto f(x 1,...,x n ), što je i iskorišćeno pri pisanju relacije (1.1). Kada je funkcija izražena preko koordinata, kažemo da je data u analitičkom obliku. Kao primere skalarnih polja navedimo sledeće: temperatura, masa, gustina mase, električno naelektrisanje, pritisak, itd. Kako jedna od promenljivih može da bude i vreme t, to ćemo ono skalarno polje koje ne zavisi (eksplicitno) od vremena nazivati stacionarno polje. 1 U matematici se pojam polje koristi i za algebarsku strukturu koju čine skup i dve operacije sa odre - denim osobinama, kao što je na primer skup realnih brojeva sa operacijama sabiranje i množenje. 1

2 Definicija. Geometrijsko mesto tačaka u kojima funkcija f(m) f(x 1, x 2, x 3 ) ima konstantnu vrednost C: f(m) f(x 1, x 2, x 3 ) C, (1.2) zovemo ekviskalarna površ skalarnog polja. Definicija. Geometrijsko mesto tačaka u kojima funkcija f(m) f(x 1, x 2 ) ima konstantnu vrednost C: f(m) f(x 1, x 2 ) C, (1.3) zovemo ekviskalarna linija skalarnog polja Izvod funkcije u pravcu. Gradijent Primena matematičke analize na proučavanje skalarnog polja f(m) omogućava da se opišu njegove lokalne osobine, tj. promene f(m) pri prelasku od tačke M u njoj blisku tačku N. Posmatrajmo neko skalarno polje zadato funkcijom f(x, y, z) f(m), u odnosu na pravougli Dekartov koordinatni sistem. Poznato je da prvi parcijalni izvod skalarne funkcije f pretavlja brzinu njene promene u pravcima koordinatnih osa. Me - dutim, neprirodno je ograničiti se samo na ta tri (u 3 D prostoru) pravca. Proširenje te ideje na promenu u bilo kom pravcu dovodi do uvo - denja pojma: izvod (skalarne) funkcije u pravcu. Da bismo našli ovaj izvod, posmatrajmo neku tačku M prostora i pravac, kroz ovu tačku, odre - den jediničnim vektorom e. Neka je C zrak od tačke M, u pravcu e i neka je N tačka na zraku C, pri čemu je rastojanje izme - du M i N označeno sa s (sl. 1.1) a razlika funkcije f u tačkama M i N sa f f(n) f(m). MN se, (1.4) Slika 1.1: Definicija. Ako limes: f(n) f(m) f lim lim s 0 s s 0 s, (1.5) postoji, tad ga zovemo izvod funkcije f, u tački M, u pravcu e, i označavamo sa De f df. 2

3 Jasno je da on pretavlja brzinu promene funkcije f, u tački M, u pravcu e. Obe oznake, De f ili df/, su uobičajene, mada je De f pogodnija, jer ukazuje na pravac promene. Izvod funkcije u pravcu, kao što se vidi iz definicije (1.5), ne zavisi od izbora koordinatnog sistema. Me - dutim, da bismo izračunali konkretne vrednosti tih izvoda, posmatraćemo ih u odnosu na, recimo Dekartov pravougli koordinatni sistem i pretavićemo f(m) kao funkciju f(x, y, z). U tom cilju potražićemo promenu funkcije f pri prelasku iz tačke M(x, y, z), koja pripada tom polju, u blisku tačku N(x + x, y + y, z + z) istog polja, a sa pravca e. Dalje, na osnovu definicije parcijalnog izvoda skalarne funkcije, recimo po x, imamo: f x lim f(x + x, y, z) f(x, y, z) f x lim x 0 x x 0 x, (1.6) odakle, za diferencijabilnu funkciju, možemo da napišemo: f x f x x + δ x x, gde δ x 0 kada x 0. (1.7) Na isti način dobijamo i za preostala dva priraštaja f y i f z, pa ukupan priraštaj funkcije f možemo da napišemo u obliku: f f(n) f(m) f f f x + y + x y z z + δ x x + δ y y + δ z z. (1.8) Dalje, kako je s, u pravouglim Dekartovim koordinatama: s x 2 + y 2 + z 2, (1.9) to s 0, kada istovremeno x 0, y 0 i z 0. Odavde, prema slici 1.2, imamo: x s cosα, Slika 1.2: y s cosβ, i po analogiji z cosγ, (1.10) s gde su α, β i γ uglovi koje vektor MN zaklapa sa pozitivnim smerovima koordinatnih osa x, y i z, respektivno. 3

4 Dakle, izvod skalarne funkcije f u pravcu e, može da se pretavi i na sledeći način df lim f s 0 lim s 0 f x s f x f f x + y + y z z + δ x x + δ y y + δ z z s f f cosα + cosβ + y z cosγ. (1.11) Napomenimo da se u literaturi koristi i oznaka f za ovaj izvod. s Do izvoda u pravcu može da se dode - i na sledeći način. Ako je M(a, b, c) tačka u kojoj tražimo izvod, a N(x, y, z) bilo koja tačka na pravcu e, a r M i r vektori položaja tačaka M i N, respektivno, i (sl. 1.3) s MN, r r M + s e, onda je x a + s cosα, y b + s cosβ, z c + s cosγ. (1.12) Tada za izvod u pravcu e imamo Slika 1.3: Def df lim f(n) f(m) N M s f(r) f(r M ) lim s 0 s lim s 0 f(r M + se) f(r M ). s Razvijajući u red funkciju f(n), u okolini tačke M(a, b, c) i koristeći (1.12), dobijamo: f(n) f(x, y, z) f(a + s cosα, b + s cosβ, c + s cosγ) (1.13) f(m) + 1 f 1! x cosα + f M y cosβ + f ) M z cosγ s + δ(n) s, M pri čemu je lim N M δ(n) 0, odakle sledi: f(n) f(m) s (1.14) f x cosα + f M y cosβ + f M z cosγ + δ(n), M 4

5 odnosno: Def df lim f(n) f(m) s 0 s f x f f cosα + cosβ + y z cosγ f x cosα + f y cosβ + f z cosγ. (1.15) Dakle, isto kao i relacija (1.11). Kako kroz neku tačku prolazi beskonačno pravaca, to možemo da na - demo beskonačan broj izvoda u tim pravcima. Me - dutim, ako posmatramo neki koordinatni sistem, recimo pravougli Dekartov, možemo bilo koji od tih izvoda da izrazimo preko prvih parcijalnih izvoda funkcije f u tački M i na sledeći način. Neka je tačka M odre - dena vektorom položaja r M i pretpostavimo da je e jedinični vektor. Neka kroz tačku M prolazi linija C, koju možemo da pretavimo u sledećem obliku: r(s) x(s)i + y(s)j + z(s)k r M + se (s 0, e 1), (1.16) gde je r(s) vektor položaja, koji zavisi od parametra s (dužina luka). Posmatrajmo izvod funkcije f duž krive C, tada je De f df izvod funkcije f[x(s), y(s), z(s)] koji zavisi od dužine luka s. Slika 1.4: Prema tome, pretpostavljajući da f ima neprekidne prve parcijalne izvode, a primenom pravila o izvodu složene funkcije, dobijamo: De f df f x dx + f y dy + f z dz gde ( ) označava izvod po parametru s. Diferencirajući vektorsku funkciju r(s), iz (1.16) dobijamo 2 : 2 Neka je kriva C data u parametarskom obliku gde luk krive s pretavlja parametar. Tada je f x x + f x y + f x z, (1.17) r dr x i + y j + z k e( t). (1.18) r(s) x(s)i + y(s)j + z(s)k, dr dx i + dy j + dy k t( e) gde je t vektor pravca tangente u tački na krivoj C, jediničnog intenziteta, jer je ( ) dr dx 2 ( ) dy 2 ( ) dz 2 t dx 2 + dy 2 + dz

6 Dakle, u ovom slučaju e ima pravac tangente kao što je poznato iz diferencijalne geometrije. Definicija. Relacije (1.17) i (1.18) navode nas da uvedemo vektor definisan relacijom: koji se naziva gradijent skalarne funkcije f. gradf f x i + f y j + f k. (1.19) z Kako je gradijent skalarne funkcije vektorska veličina, to je za ovaj vektor: ( f ) 2 ( ) 2 ( ) 2 f f intenzitet: gradf + +, (1.20) x y z pravac: cosα f/ x f/ y f/ z, cosβ, cosγ gradf gradf gradf. (1.21) Sada možemo izvod u pravcu da pretavimo u obliku skalarnog (unutrašnjeg) proizvoda: odnosno projekciju gradijenta na vektor e De f df e gradf. (1.22) df proj e gradf gradf cosϕ, (1.23) gde je ϕ ugao izme - du gradf i e. Iz ove definicije sledi da je df/ maksimalno kada je cosϕ 1 ϕ 0. Dakle, skalarno polje najbrže se menja u pravcu gradijenta, tj. gradijent odre - duje pravac u kome se skalarno polje najbrže menja. Slika 1.5: U specijalnom slučaju, kada se izvod traži u pravcu +Ox ose, tade je ei, dobijamo: f D i f i gradf i x i + f y j + f ) z k f f i i x x, (1.24) jer je i ji k0. Teorema 1 Neka je f(m) f(x, y, z) skalarna funkcija, čiji su prvi parcijalni izvodi neprekidne funkcije. Tada postoji vektor grad f čiji intenzitet i pravac ne zavise od izbora koordinatnog sistema u prostoru. Ako u tački M gradf nije jednak nuli, tada on ima pravac maksimalnog povećanja funkcije f u tački M. 6

7 Ovu teoremu ćemo da dokažemo kasnije. Slika 1.6: Teorema 2 Neka je gradijent funkcije u f(x, y, z), u tački M različit od nule. Tada je on upravan 3 na svaku liniju s, koja prolazi kroz tačku M, a leži u ekviskalarnoj površi f const. Dokaz. Posmatrajmo liniju s, koja prolazi kroz tačku M, a leži na površi f const. (sl. 1.6). Kako funkcija ne menja svoju vrednost, kada se tačka kreće duž krive s (jer leži na f const.), to je df 0. Kako je, s druge strane, izvod funkcije duž luka s (1.23) D e f df e gradf gradf cos(gradf,e) 0, to, uz pretpostavku da je gradf 0, dobijamo cosϕ 0 (sl. 1.5). Dakle, kako je e jedinični vektor tangente, sledi da je gradijent upravan na ekviskalarnu površ. Izvod funkcije f u pravcu tangente t (t je jedinični vektor tangente na krivu C, u tački M) po definiciji je, prema (1.23): Odavde dobijamo: ( dx dy dz i + j + k D t f df t gradf (1.25) ) ( ) f f f i + j + x y z k dr gradf. df dr gradf. (1.26) Dakle, kada je skalarna funkcija diferencijabilna, tada je njen totalni diferencijal jednak skalarnom proizvodu gradijenta funkcije i diferencijala vektora položaja. Ovo nam ukazuje na jedan od načina kako da izračunamo gradijent funkcije. Naime, kada diferencijal funkcije može da se pretavi kao skalarni proizvod dva vektora, od kojih je jedan dr, tada je drugi činilac jednak gradijentu funkcije Parcijalni gradijent skalarne funkcije Posmatrajmo neku skalarnu funkciju f koja zavisi od dva vektora u i v: f f(u, v), (1.27) 3 Pod upravan na liniju u tački M podrazumevamo da je upravan na tangentnu ravan, koja prolazi kroz M. 7

8 pri čemu ova dva vektora možemo da pretavimo, u odnosu na pravougli Dekartov koordinatni sistem, u obliku: u u 1 e 1 + u 2 e 2 + u 3 e 3, v v 1 e 1 + v 2 e 2 + v 3 e 3. Polje ove funkcije odre - deno je tačkama U i V, koje pretavljaju krajeve vektora u i v. Pretpostavimo da je vektor v konstantan i potražimo gradijent ovako dobijene funkcije, prema (1.19) grad u f(u, v) f u 1 e 1 + f u 2 e 2 + f u 3 e 3, (1.28) koji se zove parcijalni (delimični) gradijent skalarne funkcije f, po vektoru u. Na sličan način definišemo parcijalni gradijent i po drugom vektoru. Tako - de, ovu definiciju možemo da proširimo i na proizvoljan, ali konačan, broj vektora. U tom slučaju bi se uzeli za konstantne svi vektori, osim jednog Osobine gradijenta a) grad C 0 (C const.), b) grad (U+V )grad U+grad V, gde je U U(M), V V (M), c) grad (U V )V grad U+U grad V, d) grad (CU)C grad U, Cconst., e) grad (U/V )(1/V 2 )(V grad U-U grad V ), f) grad f(u) f U grad U. Dokaz. Na osnovu ovih osobina vidimo da važi: grad(c 1 U 1 + C 2 U 2 ) C 1 gradu 1 + C 2 gradu 2. (1.29) Operatore koji imaju ovu osobinu, zovemo linearni operator. Dakle, gradijent je linearan operator. a) b) gradc z k C C x i + C y j + C z k grad(u + V ) z k (U + V ) (U + V ) x U x i + U i + (U + V ) y y j + U z k + V x i + y j + z k gradu + gradv. j + (U + V ) k z x i + V y j + V ) U + z k x i + y j + z k ) V 8

9 c) grad(u V ) z k (U V ) (U V ) x U i + (U V ) y j + (U V ) k z V j V + U V i V + U x x i + U y z k U V + U gradu V + U gradv. Za vežbu pokazati da važe i preostale tri osobina gradijenta Nabla operator ili Hamiltonov operator y j + U V k V + U z z k z k V Uvodeći diferencijalni operator, koji nazivamo nabla 4 ili Hamiltonov 5, definisan sa gradijent funkcije f može da se pretavi u obliku x i + y j + k, (1.30) z gradf f f x i + f y j + f z Oznaka f, za gradijent, koristi se veoma često u tehnici. Osobine nabla operatora k. (1.31) Neka su f i g skalarne funkcije, a a i b vektorske funkcije, tada osobine nabla operatora možemo da izrazimo na sledeći način: a) (f g) g f + f g, b) (fa) ( f) a + f ( a), c) (fa) ( f) a + f ( a), d) (a b) a ( b) + b ( a), e) (a b) a ( b) + b ( a) + (a )b + (b )a. 6 f) (a b) (b )a b( a) (a )b + a( b). 4 Po hebrejskom slovu koje se koristi kao oznaka za ovaj operator. 5 William Rowan Hamilton ( ), irski matematičar, poznat po svom radu u dinamici. 6 Napomenimo da je a a x x + ay y + az z 9

10 1.1.5 Laplasov ili delta operator Definišimo sada operator, skalarne prirode, na sledeći način: 2 z k z k (1.32) 2 x y z 2. Simbol - - delta, zovemo Laplasov operator 7 ili Laplasijan. 7 Pierre Simon Marquis De Laplace ( ), veliki francuski matematičar. Postavio je osnove teorije potencijala i dao je veliki doprinos u mehanici, astronomiji, kao i u oblasti specijalnih funkcija i teoriji verovatnoće. Interesantno je napomenuti da je njegov učenik bio i Napoleon Bonaparta, jednu godinu. 10

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x. 4.7. ZADACI 87 4.7. Zadaci 4.7.. Formalizam diferenciranja teorija na stranama 4-46) 340. Znajući izvod funkcije arcsin, odrediti izvod funkcije arccos. Rešenje. Polazeći od jednakosti arcsin + arccos

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Geometrija (I smer) deo 1: Vektori

Geometrija (I smer) deo 1: Vektori Geometrija (I smer) deo 1: Vektori Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Vektori i linearne operacije sa vektorima Definicija Vektor je klasa ekvivalencije usmerenih duži. Kažemo

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

8 Funkcije više promenljivih

8 Funkcije više promenljivih 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Teorija polja. Glava Vektorsko polje Vektorska funkcija. Vektorsko polje

Teorija polja. Glava Vektorsko polje Vektorska funkcija. Vektorsko polje Glava 1 Teorija polja 1.1 ektorsko polje 1.1.1 ektorska funkcija. ektorsko polje Neka se svakoj tački M, oblasti D, po odre - denom zakonu, dodeli jedna vrednost nekog vektora v, tada kažemo da je definisana

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

4 Izvodi i diferencijali

4 Izvodi i diferencijali 4 Izvodi i diferencijali 8 4 Izvodi i diferencijali Neka je funkcija f() definisana u intervalu (a, b), i neka je 0 0 + (a, b). Tada se izraz (a, b) i f( 0 + ) f( 0 ) () zove srednja brzina promene funkcije

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

Vektorska algebra i analiza

Vektorska algebra i analiza Glava 1 Vektorska algebra i analiza Uvod U prostoru oko nas susrećemo se sa raznim pojavama. Da bismo ih opisali, definišemo pojmove koji ih karakterišu. Me - dutim, primećeno je da i različite pojave

Διαβάστε περισσότερα

Diferencijabilnost funkcije više promenljivih

Diferencijabilnost funkcije više promenljivih Matematiči faultet Beograd novembar 005 godine Diferencijabilnost funcije više promenljivih 1 Osnovne definicije i teoreme, primeri Diferencijabilnost je jedan od centralnih pojmova u matematičoj analizi

Διαβάστε περισσότερα

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta. auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

Navedimo neke primere potencijalnih polja koja su od posebnog interesa u raznim oblastima fizike i tehnike. F = γ m m 0. r, (1.1)

Navedimo neke primere potencijalnih polja koja su od posebnog interesa u raznim oblastima fizike i tehnike. F = γ m m 0. r, (1.1) Glava 1 Teorija polja 1.1 Primeri nekih polja od interesa za fiziku i tehniku Navedimo neke primere potencijalnih polja koja su od posebnog interesa u raznim oblastima fizike i tehnike. Privlačenje dve

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)

(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t) Izvodi Definicija. Neka je funkcija f definisana i neprekidna u okolini tačke a. Prvi izvod funkcije f u tački a je Prvi izvod funkcije f u tački : f f fa a lim. a a f lim 0 Izvodi višeg reda funkcije

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

Analitička geometrija

Analitička geometrija 1 Analitička geometrija Neka su dati vektori a = a 1 i + a j + a 3 k = (a 1, a, a 3 ), b = b 1 i + b j + b 3 k = (b 1, b, b 3 ) i c = c 1 i + c j + c 3 k = (c 1, c, c 3 ). Skalarni proizvod vektora a i

Διαβάστε περισσότερα

PREDAVANJA IZ ANALIZE 2. Jelena Aleksić

PREDAVANJA IZ ANALIZE 2. Jelena Aleksić PREDAVANJA IZ ANALIZE 2 Jelena Aleksić January 8, 2015 Copyright c 2012 by author All rights reserved. ISBN...... Publications Predgovor Analiza 2 (M231) je kurs na drugoj godini studija primenjene matematike

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana. Zadatak 2 Dokazati da se visine trougla seku u jednoj tački ortocentar. 1 Dvostruki vektorski proizvod Važi

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Matematička teorija polja

Matematička teorija polja Matematička teorija polja Skalarna i vektorska polja U nauci i tehnici često se posmatra određena fizička veličina u trodimenzionom euklidskom prostoru R 3.Najčešče je to posmatranje ograničeno na neku

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

Vektorska analiza doc. dr. Edin Berberović.

Vektorska analiza doc. dr. Edin Berberović. Vektorska analiza doc. dr. Edin Berberović eberberovic@mf.unze.ba Vektorska analiza Vektorska algebra (ponavljanje) Vektorske funkcije (funkcije sa vektorima) Jednostavna analiza (diferenciranje) Učenje

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Zbirka rešenih zadataka iz Matematike I

Zbirka rešenih zadataka iz Matematike I UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA Tatjana Grbić Silvia Likavec Tibor Lukić Jovanka Pantović Nataša Sladoje Ljiljana Teofanov Zbirka rešenih zadataka iz Matematike I Novi Sad, 009. god.

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

1 Funkcije više promenljivih: uvodni pojmovi

1 Funkcije više promenljivih: uvodni pojmovi i Sadržaj 1 Funkcije više promenljivih: uvodni pojmovi 1 1.1 Prostor R n................................. 1. Realna funkcija više realnih promenljivih................ 5 1..1 Površ u R 3.............................

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Dužina luka i oskulatorna ravan

Dužina luka i oskulatorna ravan Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA.   Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije a + b + c je parabola. Najpre ćemo naučiti kako izgleda

Διαβάστε περισσότερα

3.1. Granične vrednosti funkcija

3.1. Granične vrednosti funkcija 98 3. FUNKCIJE: GRANIČNE VREDNOSTI I NEPREKIDNOST 3.1. Granične vrednosti funkcija 3.1.1. Definicija i osnovne osobine Da bismo motivisali definiciju granične vrednosti funkcija, dajemo dva primera. Posmatrajmo

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš

ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš 1 1. Osnovni pojmovi ELEMENTARNE FUNKCIJE dr Jelena Manojlović Prirodno-matematički fakultet, Niš Jedan od najvažnijih pojmova u matematici predstavlja pojam funkcije. Definicija 1.1. Neka su X i Y dva

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

PRVI IZVOD. f x0 x f x0. y x. ) lim lim ( ) ( ) x. Neka je y f(x) funkcija definisana na intervalu [a,b], x 0

PRVI IZVOD. f x0 x f x0. y x. ) lim lim ( ) ( ) x. Neka je y f(x) funkcija definisana na intervalu [a,b], x 0 . y PRVI IZVOD Neka je y f() funkcija definisana na intervalu [a,b], 0 unutrašnja tačka tog intervala, Δ ( 0) priraštaj argumenta i Δy odgovarajući priraštaj funkcije. Ako postoji granična vrijednost količnika

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo Najpre da se podsetimo tablice i osnovnih pravila:. C0.. (. ( n n n-. (a a lna 6. (e e 7. (log a 8. (ln ln a (>0 9. ( 0 0. (>0 (ovde je >0 i a >0. (cos. (cos - π. (tg kπ cos. (ctg

Διαβάστε περισσότερα

Drugi deo (uvoda) Vektori

Drugi deo (uvoda) Vektori Drugi deo (uvoda) Vektori Vektori i skalari Skalar je običan broj. Vektor je lista (uređena n-torka) skalara (komponente vektora). Pomeranje (recimo, 10 koraka prema zapadu) izražavamo vektorom. Rastojanje

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

VEKTORI. Opera u Sidneju, Australija

VEKTORI. Opera u Sidneju, Australija VEKTORI Ciljevi poglavlja Sabiranje i razlaganje vektora na komponente, množenje i deljenje vektora skalarom Predstavljanje vektora u Dekartovom koordinatnom sistemu i operacije sa vektorima koji su izraženi

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα