1. Skicirati sledeće površi i ispitati njihovu regularnost:

Σχετικά έγγραφα
1.1 Tangentna ravan i normala površi

Elementi spektralne teorije matrica

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

IZVODI ZADACI (I deo)

3.1 Granična vrednost funkcije u tački

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Geometrija 3, zadaci po kojima se drže vežbe

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

Analitička geometrija

Ispitivanje toka i skiciranje grafika funkcija

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

Matematka 1 Zadaci za drugi kolokvijum

Univerzitet u Nišu, Prirodno-matematički fakultet Prijemni ispit za upis OAS Matematika

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Osnovne teoreme diferencijalnog računa

SISTEMI NELINEARNIH JEDNAČINA

Zbirka rešenih zadataka iz Matematike I

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

4.7. Zadaci Formalizam diferenciranja (teorija na stranama ) 343. Znajući izvod funkcije x arctg x, odrediti izvod funkcije x arcctg x.

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

Zavrxni ispit iz Matematiqke analize 1

(a) Odrediti koeficijente prve, druge fundamentalne forme i Kristofelove simbole površi r.

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

5 Ispitivanje funkcija

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

Funkcije dviju varjabli (zadaci za vježbu)

Dužina luka i oskulatorna ravan

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

Računarska grafika. Rasterizacija linije

Sadrºaj. 1 Vektorska algebra 1. 2 Analiti ka geometrija 2. 3 Analiti ka geometrija u ravni 3

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

GEOMETRIJA 3 vebe xkolske 2012/13 godine M i N smer

Linearna algebra 2 prvi kolokvij,

Matematička analiza 1 dodatni zadaci

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

Dvanaesti praktikum iz Analize 1

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

1.4 Tangenta i normala

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

41. Jednačine koje se svode na kvadratne

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

dr Lidija Stefanović INTEGRALI: KRIVOLINIJSKI, DVOJNI, TROJNI, POVRŠINSKI ZA STUDENTE TEHNIČKIH FAKULTETA; II DEO SKC Niš, 2009.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

Računarska grafika. Rasterizacija linije

Zadatak 1 Dokazati da simetrala ugla u trouglu deli naspramnu stranu u odnosu susednih strana.

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Univerzitet u Nišu Prirodno matematički fakultet Departman za matematiku

ELEKTROTEHNIČKI ODJEL

Milan Merkle. (radni naslov) Verzija 0 ( ), novembar 2015

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

18. listopada listopada / 13

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

Slika 9: Izometrijske transformacije koordinata. Ovo razmatranje možemo sumirati sledećom teoremom

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

Deljivost. 1. Ispitati kada izraz (n 2) 3 + n 3 + (n + 2) 3,n N nije deljiv sa 18.

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

Trigonometrijske nejednačine

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

OTPORNOST MATERIJALA

1 Promjena baze vektora

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

Matematika 1 - vježbe. 11. prosinca 2015.

TEORIJA BETONSKIH KONSTRUKCIJA 79

5 Sistemi linearnih jednačina. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

Operacije s matricama

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

radni nerecenzirani materijal za predavanja

Numerička matematika 2. kolokvij (1. srpnja 2009.)

2.7 Primjene odredenih integrala

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

(y) = f (x). (x) log ϕ(x) + ψ(x) Izvodi parametarski definisane funkcije y = ψ(t)

I Pismeni ispit iz matematike 1 I

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

TRIGONOMETRIJA TROKUTA

Funkcije više promenljivih. Uvod u funkcije više promenljivih

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

Geometrija (I smer) deo 3: Analitička geometrija u ravni

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

INTEGRALI Zadaci sa kolokvijuma

Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.

Riješeni zadaci: Limes funkcije. Neprekidnost

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

Teorijske osnove informatike 1

Transcript:

Geometrija 3, drgi kolokvijm Prezime i ime, broj indeksa, grpa Skicirati sledeće površi i ispitati njihov reglarnost: a f, v sh cos v, sh sin v,,, v [ π, π]; b g, v, 3, v,, v R a b Rešenje a Iz oblika same parametrizacije lako se zakljčje da je pitanj rotaciona površ koja se dobija rotacijom krive x sh z, z xz ravni Parametar predstavlja parametar profilne krive sh,,, dok parametar v [ π, π] označava gao rotacije oko z ose Kako je f ch cos v, ch sin v,, f v sh sin v, sh cos v,, f f v sh cos v, sh sin v, sh ch, to je f f v sh + ch Kako je f f v samo za, dobijamo da je površ reglarna svim tačkama osim za Napomena U definiciji elementarne površi podrazmeva se otvoren skp U kome pripadaj parametri, v U prethodnom primer najveći takav skp je U, + π, π i f : U R 3 predstavlja reglarn parametrizacij skpa iz dela a, bez krive poddarne profilnoj, levoj xz polravni za v ±π, tj bez krive sh,, b Kako je g, v, 3, + v,,, pitanj je pravolinijska površ koja predstavlja nij pravih koje sadrže tačke krive y x 3 xy ravni i čiji je vektor pravca vektor,,, tj paralelne s z osi Lako se dobija g, 3,, g v,,, g g v 6,,,,, pa je data parametrizacija reglarna Površ je data jednačinom f, v cos v, sin v,, >, v, π Izračnati: a koeficijente I i II kvadratne forme; b Gasov, srednj i glavne krivine; c gao izmed krivih + v 3 i v Rešenje Data površ f : U, +, π je reglarna parametrizacija dela paraboloida x + y 4z kao rotacione površi Ona se dobija rotacijom profilne krive koja prestavlja deo parabole,,, >, oko z ose, gde je v, π gao rotacije, čime smo prekrili sve osim jednog meridijana paraboloida a normala f cos v, sin v,, f v sin v, cos v, f,,, f v sin v, cos v,, f vv cos v, sin v, f f v 4 cos v, 4 sin v, 4 n f f v f f v cos v, + + sin v, +

koeficijenti prve fndamentalne forme E f, f 4 + F f, f v G f v, f v 4 koeficijenti drge fndamentalne forme e n, f + f n, f v matrični zapis b Gasova krivina srednja krivina glavne krivine g n, f vv 4 + 4 H κ + I K eg f EG F 4 + 3 Eg + eg F f EG F κ Hκ + K κ, + ± 4 + + + + 4 + + κ + Naravno, glavne krivine mogće je izračnati i kao sopstvene vrednosti matrice II I + 4 + + + 4 + c Krive + v 3 i v predstavljaj prave karti U, parametrizovane sa α, 3 i βv v +, v, koje se sek tački, Odgovarajće krive na paraboloid s α f α i βv f βv Neka je φ traženi gao izmed krivih α i β Tada je pa je cos φ α, β α β α, β α, α β, β, α, β 6 α, α 6 β, β 6 cos φ 4 36 36 9, 4, 36, 36, φ arccos 9

3 Izračnati površin površi z x + y izmed ravni z i z Izračnati geodezijsk i normaln krivin krive presek površi i ravni z Rešenje Data površ je gornja polovina konsa Ovaj skp tačaka, bez jedne izvodnice konsa, možemo videti kao slik elementarne površi rρ, θ ρ cos θ, ρ sin θ, ρ, ρ, θ, +, π Iz lako dobijamo normal površi kao i matric prve fndamentalne forme r ρ cos θ, sin θ,, r θ ρ sin θ, ρ cos θ,, n cos θ, 6 6 sin θ, 6, 6 ρ Presek ravni z, odnosno z sa konsom s kržnice čije s projekcije na xy ravan date sa ρ, odnosno ρ Deo površi izmedj ravni z i z karti predstavlja kržni prsten D izmed pomentih kržnica, pa je tražena površina P EG F dρdθ D π 6πρ 4 6π 6ρdρdθ Presek ravni z sa konsom je kržnica γθ cos θ, sin θ,, θ, π Njena prirodna parametrizacija je s γs cos, sin s,, s, π Vektori brzine i brzanja s γ s T s sin s, cos s,, γ s cos s, sin s, Dž krive γ s θ vektori n, T i n T čine ortonormiran baz T je tangentni vektor, pri čem je Normalna krivina krive γ iznosi γ κ n n + κ g n T κ n γ, n 6, dok je geodezijska krivina κ g γ, n T [n, γ, γ ] 3 Kako je obična krivina krive γ jednaka, lako se proveri da zaista važi veza izmed krivina κ κ n + κ g Napomena Kriva γ iz zadatka, kao i svaka paralela na kons, nije ni asimptotska ni geodezijska linija Izvodnice konsa s, pak, i geodezijske i asimptotske linije

4 Dokazati da na paraboličkom cilindr r, v,, v važi: a v parametarske linije s geodezijske; b prirodno parametrizovana parametarska linija αs rs, v je geodezijska ako je + const Rešenje Parabolički cilindar r, v, x, v je pravolinijska površ koja se dobija od parabole y xy ravni, sa generatrisama paralelnim z osi Koeficijenti prve fndamentalne forme ove površi s E +, F, G Koristeći formle Γ GE F F + F E v EG F, Γ GE v F G EG F, Γ EF EE v F E EG F, Γ EG F E v EG F, Γ GF v GG F G v EG F, Γ EG v F F v + F G EG F, tj skraćenom oblik Γ E E, Γ E v G, Γ E v E, Γ G G, Γ G E, Γ G v G, dobijamo da je samo jedan Kristofelov simbol različit od nle Γ + Kriva γ : I R 3, γ γs je geodezijska na elementarnoj površi r : U R 3 akko fnkcije s i v vs date sa γs rs, vs zadovoljavaj sistem diferencijalnih jednačina + Γ + Γ v + Γ v, v + Γ + Γ v + Γ v U slčaj površi date zadatk, sistem se svodi na samo jedn diferencijaln jednačin + + Nije teško pokazati da je potreban slov da bi kriva γs bila geodezijska da parametar s bde proporcionalan prirodnom parametr a v parametarske linije const s prave βv,, v, v R Očigledno je parametar v ovih krivih jedno i prirodni parametar i važi v,, pa je jednačina zadovoljena Napomena Svaka prava koja leži na nekoj površi je geodezijska na toj površi, posmatrana sa odgovarajćom parametrizacijom b parametarske linije v v const s parabole αs rs, v s, s, v koje leže ravnima paralelnim xy ravni Jednačina je ekvivalentna jednačini + +, pa dobijamo odakle sledi zakljčak + const + + + 3 + +, Napomena Uslov + const važi čim je kriva αs rs, v prirodno parametrizovana, nezavisno od toga što je geodezijska Med tim, mi smo pravo pokazali da isti zakljčak važi i za sve odgovarajće parametrizovane geodezijske linije na površi r a ne samo za one parametrizovane prirodnim parametrom

Data je površ r, v 3 cos v, 3 sin v, v, >, v π, π a Odrediti asimptotske linije b Dokazati da s linije krivine date sa v ± ln3 + 9 + + const Rešenje Površ r :, + π, π R 3 data sa r, v 3 cos v, 3 sin v, v,, v + 3 cos v, 3 sin v, je beskonačni helikoid Koeficijenti prve i drge fndamentalne forme dati s sledećim matricama 9 3 9, I 9 + + 3 9 + a Kako s koeficijenti drge fndamentalne forme e g, f, jedine asimptotske krive s koordinatne krive zadatak sa vežbi Naime, jednačina e + f v + gv asimptotskih linija αs rs, vs na površi svodi se na odakle je ili v, tj const ili v const b Iz slova f v, v v E F G e f g koji zadovoljavaj glavne linije αs rs, vs na površi, dobijamo diferencijaln jednačin čija s ona rešenja Stavljajći s, tj v v, ov jednačin možemo eksplicitno rešiti po v: 9 9 + v dv 9 d 9 +, dv d ± 3 9 +, v ± 3 9 + d, v ± ln3 + 9 + + const Naravno, dovoljno je samo zamenom proveriti da data rešenja tekst zadatka zadovoljavaj jednačin