ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ"

Transcript

1 3 ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ Α ΘΕΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ Βγγέλης Α Νικολκάκης Μθημτικός

2 ΛΙΓΑ ΛΟΓΙΑ Η προύσ εργσί μµου δε στοχεύει πλά στο κυήγι του 5,δηλδή τω μµοάδω του θέμµτος Α Φιλοδοξεί θέσει τις άσεις της σωστής γώσης κι επάληψης της θεωρίς,που είι πρίτητη γι τη τιμµετώπιση τω θεμµάτω Β-Γ-Δ Γι το λόγο υτό έχω προσθέσει κι σημµτικές επισημµάσεις θεωρίς,χωρίς το κείμµεο πλτιάζει κι πράλληλ ο όγκος της εργσίς είι σε λογικά πλίσι Πράλληλ δίει στο υποψήφιο τη δυτότητ υτοξιολογηθεί είτε πτώτς στις ερωτήσεις θεωρίς,είτε στις ερωτήσεις Σ-Λ που κολουθού Βγγέλης Νικολκάκης σημείωση Η σκιγράφηση πολλώ τύπω έγιε γι χρησιμµοποιείτι το πρώ κι σ τυπολόγιο Οι ποδείξεις θεωρίς είι σε σκιγρφημµέ πλίσι ΠΕΡΙΕΧΟΜΕΝΑ Α Ερωτήσεις μµε πτήσεις κι οι ποδείξεις θεωρίς ά κεφάλιο Β Ερωτήσεις θεωρίς προς πάτηση Γ Ερωτήσεις Σ-Λ που έχου δοθεί στις Πελλδικές τ έτη - Δ Ερωτήσεις Σ-Λ προς πάτηση

3 Α ΕΡΩΤΗΣΕΙΣ-ΑΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ Πότε δύο μιγδικοί ριθμοί i κι ισούτι με μηδέ ; Δύο μιγδικοί ριθμοί i γ δi ΜΙΓΑΔΙΚΟΙ i είι ίσοι κι πότε ές μιγδικός i κι γ δi είι ίσοι, κι μόο γ κι δ γ κι δ Δηλδή ισχύει: Επομέως, επειδή i, έχουμε : i κι Πως ορίζοτι οι πράξεις στους μιγδικούς ; Γι τη πρόσθεση τω Γι τη φίρεση τω i κι γ δi έχουμε: i γ δi γ δ i i κι γ δi, έχουμε: i γ δi γ δ i Γι το πολ/σμό δυο μιγδικώ έχουμε: i γ δi γ δ δ γ i Γι το πηλίκο i γ δi έχουμε: i γ δi γ δ γ δ i γ δ γ δ 3Πως ορίζετι η δύμη μιγδικού ; Ορίζουμε: z z Α z, ορίζουμε, z z z,, κι γεικά z z z, γι κάθε κέριο, με z, z z γι κάθε θετικό κέριο 3 Ισχύει : i, i i, i, i i i i Γεικά :, υ i, υ -, υ i, i i i i i i i i 4 Πως ερμηεύοτι γεωμετρικά η πρόσθεση κι η φίρεση μιγδικώ ; Α M, κι M γ,δ είι οι εικόες τω i κι γ δ i τιστοίχως στο μιγδικό επίπεδο, τότε το άθροισμ πριστάετι με το σημείο M γ, δ Επομέως, OM OM OM, δηλδή: i γ δ i γ δ i

4 Η διυσμτική κτί του θροίσμτος τω μιγδικώ i κι γ δi είι το άθροισμ τω διυσμτικώ κτίω τους Επίσης, η διφορά Μ γ,δ i γ δ i γ δ i πριστάετι με το σημείο N γ, δ Επομέως, ON OM OM, δηλδή: Ο Μ, Νγ,δ Μ 3 γ,δ Η διυσμτική κτί της διφοράς τω μιγδικώ i κι γ δi είι η διφορά τω διυσμτικώ κτίω τους 5-Α Τι οομάζουμε συζυγή εός μιγδικού ριθμού z i Συζυγή του μιγδικού ριθμού z i λέμε το ριθμό z i Ο συζυγής του z συμολίζετι επίσης κι με i Είι δηλδή : i i Επειδή είι κι i i, οι ριθμοί i, i λέγοτι συζυγείς μιγδικοί 5-ΒΠοιές είι οι ιδιότητες τω συζυγώ ; z z z z i 3 z z z z 4 z z z z 5 z z z z 6 z z z z 7 v v z z 5-Γ Ν εξηγήσετε τη συμμετρί που έχου οι εικόες τω συζυγώ, στο μιγδικό επίπεδο Mz Στο μιγδικό επίπεδο οι εικόες M, κι M, δύο συζυγώ μιγδικώ z i κι z i είι σημεί συμμετρικά ως προς το πργμτικό άξο Ο M z

5 6 Ποιές είι οι ρίζες εός τριωύμου Δ< ; Ποιές σχέσεις τις συδέου ; Οι λύσεις είι : z, i Δ, κι ισχύει : z z κι γ z z 7Πως ορίζετι το μέτρο μιγδικού ; Τι εκφράζει γεωμετρικά στο επίπεδο ; Έστω M, η εικό του μιγδικού z i στο μιγδικό επίπεδο Ορίζουμε ως μέτρο του z τη πόστση του M πό τη ρχή O, δηλδή z M, z OM Ο a Το μέτρο μιγδικού,δηλώει τη πόστση της εικός του πό τη ρχή τω ξόω 8Ποιες είι οι ιδιότητες του μέτρου ; z z z z z z 3 z z z 4 z z z z z 5 z z z z z z τριγωική ισότητ 6 M M z z, δηλδή : το μέτρο της διφοράς δύο μιγδικώ είι ίσο με τη πόστση τω εικόω τους 9Τι πριστάου γεωμετρικά οι εξισώσεις : z z ρ, ρ κι z z z ; z Η εξίσωση z z ρ, ρ πριστάει το κύκλο με κέτρο το σημείο K z κι κτί ρ, εώ η εξίσωση z z z z, τη μεσοκάθετο του τμήμτος με άκρ τ A z κι B z Α z κι z z z z z z z i γ δi γ δ i i είι δυο μµιγδικοί ριθμµοί, τότε: Απόδειξη γ δ i i γ δi z z Α z, z είι μιγδικοί ριθμοί, τότε : z z z z Απόδειξη Πράγμτι, έχουμε: z z z z z z z z z z z z z z z z z z z z z z z z κι, επειδή η τελευτί ισότητ ισχύει, θ ισχύει κι η ισοδύμη ρχική

6 ΣΥΝΑΡΤΗΣΕΙΣ Τι οομάζουμε συάρτηση ; Έστω Α έ υποσύολο του R Οομάζουμε πργμτική συάρτηση με πεδίο ορισμού το Α μι διδικσί, με τη οποί κάθε στοιχείο A τιστοιχίζετι σε έ μόο πργμτικό ριθμό Το οομάζετι τιμή της στο κι συμολίζετι με 3 Τι οομάζουμε σύολο τιμώ μις συάρτησης ; Το σύολο που έχει γι στοιχεί του τις τιμές της σε όλ τ κι συμολίζετι με A Είι δηλδή: A A, λέγετι σύολο τιμώ της γι κάποιο A} 4 Τι οομάζουμε γρφική πράστση συάρτησης Έστω συάρτηση με πεδίο ορισμού Α κι O έ σύστημ συτετγμέω στο επίπεδο Το σύολο τω σημείω M, γι τ οποί ισχύει, δηλδή το σύολο τω σημείω M,, A, λέγετι γρφική πράστση της κι συμολίζετι με C ΣΗΜΑΝΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΣΤΙΣ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ - Η γρφική πράστση της συμολίζετι συήθως με C - Η εξίσωση, λοιπό, επληθεύετι μόο πό τ σημεί της C Επομέως, η είι η εξίσωση της γρφικής πράστσης της - Οτ δίετι η γρφική πράστση C μις συάρτησης, τότε: Το πεδίο ορισμού της είι το σύολο Α τω τετμημέω τω σημείω της C Το σύολο τιμώ της είι το σύολο A τω τετγμέω τω σημείω της C γ Η τιμή της στο A είι η τετγμέη του σημείου τομής της ευθείς κι της C Σχ 8 = 8 C Α C C A, O Α O O γ - Ότ δίετι η γρφική πράστση C, μις συάρτησης μπορούμε, επίσης, σχεδιάσουμε κι τις γρφικές πρστάσεις τω συρτήσεω κι Η γρφική πράστσης της συάρτησης είι συμμετρική, ως προς το άξο, της γρφικής πράστσης της, γιτί ποτελείτι πό τ σημεί M, που είι συμμετρικά τω M,, ως προς το άξο Σχ 9 O Μ, Μ, 9 = =

7 Η γρφική πράστση της ποτελείτι πό τ τμήμτ της C που ρίσκοτι πάω πό το άξο κι πό τ συμμετρικά, ως προς το άξο, τω τμημάτω της C που ρίσκοτι κάτω πό το άξο υτό Σχ = O = 4-Α Ν χράξετε τις γρφικές πρστάσεις τω σικώ συρτήσεω, γ 3, δ, ε, g Οι γρφικές πρστάσεις φίοτι πρκάτω : Η πολυωυμική συάρτηση O O O a> a< a= Η πολυωυμική συάρτηση, O O > < γ Η πολυωυμική συάρτηση 3,

8 3 O O > < δ Η ρητή συάρτηση, 4 O O > < ε Οι συρτήσεις, g 5 O O 4-Β Ν χράξετε τις γρφικές πρστάσεις τω σικώ συρτήσεω, γ log, ημ, συ, εφ Οι γρφικές πρστάσεις φίοτι πρκάτω : Η εκθετική συάρτηση,

9 O O > << Οι τριγωικές συρτήσεις : ημ, συ, εφ O π π =ημ O π π =συ π/ O π/ 3π/ =εφ γ Υπεθυμίζουμε ότι, οι συρτήσεις ημ κι συ είι περιοδικές με περίοδο T π, εώ η συάρτηση εφ είι περιοδική με περίοδο T π 4-Γ Ν γράψετε τις ιδιότητες της εκθετικής κι της λογριθμικής συάρτησης Ιδιότητες εκθετικής Υπεθυμίζουμε ότι: Α, τότε: Α, τότε:

10 Ιδιότητες λογριθμικής Υπεθυμίζουμε ότι: log 4 log log log log log κι 5 log log log k 3 log κι log 6 log κlog 7 log log κι ln ln Προσοχή!! στη ύλη τω εξετάσεω είι μόο οι λογάριθμοι log, ln 5 Πότε δυο συρτήσεις λέγοτι ίσες; Δύο συρτήσεις κι g λέγοτι ίσες ότ έχου το ίδιο πεδίο ορισμού Α κι γι κάθε A ισχύει g 6 Πως ορίζοτι οι πράξεις μετξύ συρτήσεω ; Ορίζουμε ως άθροισμ, διφορά, γιόμεο κι πηλίκο, τίστοιχ, δύο συρτήσεω, g τις συρτήσεις με τύπους : g g, g g, g g, g g Το πεδίο ορισμού τω g, g κι g είι η τομή A B τω πεδίω ορισμού Α κι Β τω συρτήσεω κι g τιστοίχως, εώ το πεδίο ορισμού της είι το σύολο { A κι B, με g } g 7 Τι οομάζουμε σύθεση συρτήσεω ; Α, g είι δύο συρτήσεις με πεδίο ορισμού Α, Β τιστοίχως, τότε οομάζουμε σύθεση της με τη g, κι τη συμολίζουμε με go, τη συάρτηση με τύπο: go g ΣΗΜΑΝΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΣΤΗΝ ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ A B A gb g g g A Το πεδίο ορισμού της g ποτελείτι πό όλ τ στοιχεί του πεδίου ορισμού της γι τ οποί το ήκει στο πεδίο ορισμού της g Δηλδή είι το σύολο Είι φερό ότι η go ορίζετι, A { A } B A, δηλδή A B

11 Γεικά,, g είι δύο συρτήσεις κι ορίζοτι οι go κι og, τότε υτές δ ε ε ί ι υ π ο χ ρ ε ω τ ι κ ά ίσες Α, g, h είι τρεις συρτήσεις κι ορίζετι η ho go, τότε ορίζετι κι η hog o κι ισχύει ho go hog o Τη συάρτηση υτή τη λέμε σύθεση τω, g κι h κι τη συμολίζουμε με hogo Η σύθεση συρτήσεω γεικεύετι κι γι περισσότερες πό τρεις συρτήσεις 8 Πότε μι συάρτηση λέγετι γησίως ύξουσ κι πότε γησίως φθίουσ ; Μι συάρτηση λέγετι : γησίως ύξουσ σ έ διάστημ Δ του πεδίου ορισμού της, ότ γι οποιδήποτε, Δ με ισχύει: γησίως φθίουσ σ έ διάστημ Δ του πεδίου ορισμού της, ότ γι οποιδήποτε, Δ με ισχύει: 9 Πότε μι συάρτηση προυσιάζει μέγιστο κι πότε ελάχιστο ; Μι συάρτηση με πεδίο ορισμού Α θ λέμε ότι: Προυσιάζει στο A ολικό μέγιστο, το, ότ γι κάθε A Προυσιάζει στο A ολικό ελάχιστο, το, ότ γι κάθε A Πότε μι συάρτηση λέγετι ; Μι συάρτηση : A R λέγετι συάρτηση, ότ γι οποιδήποτε, A ισχύει η συεπγωγή:, τότε Ισοδύμος ορισμός: Μι συάρτηση : A R είι συάρτηση, κι μόο γι οποιδήποτε, A ισχύει :, τότε Τι οομάζουμε τίστροφη συάρτηση; Έστω μι συάρτηση : A R Tότε γι κάθε στοιχείο του συόλου τιμώ, A υπάρχει μοδικό στοιχείο του πεδίου ορισμού της Α γι το οποίο ισχύει Επομέως ορίζετι μι συάρτηση g : A R με τη οποί κάθε A τιστοιχίζετι στο μοδικό κι συμολίζετι με, της A γι το οποίο ισχύει H g λέγετι τίστροφη συάρτηση της Επομέως έχουμε ΣΗΜΑΝΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΣΤΗΝ - ΚΑΙ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Από το ορισμό προκύπτει ότι μι συάρτηση είι, κι μόο : Γι κάθε στοιχείο του συόλου τιμώ της η εξίσωση έχει κριώς μι λύση ως προς Δε υπάρχου σημεί της γρφικής της πράστσης με τη ίδι τετγμέη Αυτό σημίει ότι κάθε οριζότι ευθεί τέμει τη γρφική πράστση της το πολύ σε έ σημείο Α μι συάρτηση είι γησίως μοότοη, τότε είι συάρτηση " " Το τίστροφο γεικά δε ισχύει Υπάρχου δηλδή συρτήσεις που είι λλά δε είι γησίως μοότοες Α όμως η συάρτηση δε είι,τότε δε είι κι γήσι μοότοη

12 Από το ορισμό προκύπτει ότι κι Σημεί τομής Συμμετρίες,τω γρφικώ πρστάσεω C, C Οι γρφικές πρστάσεις τω C, C,είι συμμετρικές ως προς τη ευθεί Τ σημεί τομής υπάρχου,τω γρφικώ πρστάσεω C, C,είι είτε πάω στη ευθεί,είτε συμμετρικά ως προς υτή Α η συάρτηση είι γησίως ύξουσ,τότε κι η είι γησίως ύξουσ κι τ σημεί τομής υπάρχου,τω γρφικώ πρστάσεω C, C,είι πάω στη ευθεί Α η συάρτηση είι γησίως φθίουσ,τότε κι η είι γησίως φθίουσ κι κόμη η είι περιττή,τότε τ σημεί τομής υπάρχου,τω γρφικώ πρστάσεω C, C,είι πάω στη ευθεί ΟΡΙΑ - ΣΥΝΕΧΕΙΑ Ποιες είι οι άμεσες συέπειες του ορισμού του ορίου ; h h 3 Πως συδέετι το όριο με τ πλευρικά όρι ; Α μι συάρτηση είι ορισμέη σε έ σύολο της μορφής,,, τότε ισχύει η ισοδυμί: 4 Ποιες ισότητες ισχύου στ όρι ; όριο κι διάτξη Α, τότε εώ, τότε, κοτά στο Α οι συρτήσεις, g έχου όριο στο κι ισχύει g κοτά στο, τότε g 5 Ποιες είι οι ιδιότητες τω ορίω το χ τείει στο χ ; Α υπάρχου τ όρι τω συρτήσεω κι g στο, τότε: g g κ κ 3 g g 4, γι κάθε κ R, εφόσο g g g 5 6 k k, ότ κοτά στο 7 [ ], N *

13 6 Δείξετε ότι : P P Απόδειξη Έστω το πολυώυμο P κι Σύμφω με τις ιδιότητες τω ορίω έχουμε: P R P P P 7 Δείξετε ότι :, εφόσο Q Q Q Έστω η ρητή συάρτηση Q Τότε, Απόδειξη P, όπου P, Q πολυώυμ του κι Q P P P Q Q Q 8 Ν διτυπώσετε το κριτήριο πρεμολής R με Έστω οι συρτήσεις τότε, g, h Α h g κοτά στο κι h g, 9 Ποι είι τ σικά τριγωομετρικά όρι ; ημ συ συ συ γ ημ ημ δ 3 Πως υπολογίζουμε το όριο σύθετης συάρτησης ; Γι υπολογίσουμε το g, της σύθετης συάρτησης g στο σημείο, τότε εργζόμστε ως εξής: Θέτουμε u g κι υπολογίζουμε το u g κι το u υπάρχου Αποδεικύετι ότι, g u κοτά στο, τότε το ζητούμεο όριο είι ίσο με, δηλδή ισχύει: g u uu uu 3 Ποιες είι οι ιδιότητες τω ορίω το τείει στο ; Α Α Α, τότε, εώ, τότε κοτά στο, τότε, εώ, τότε ή, τότε

14 Α κι κοτά στο, τότε Α, τότε ή, τότε κι γεικά κι γεικά, δε υπάρχει στο μηδέ το όριο της κι *, εώ κι *,, εώ κοτά στο, τότε k, Οριο θροίσμτος κι γιομέου το όριο της είι: R R - - κι το όριο της g είι: * τότε το όριο της g είι: - - ; ; το όριο της είι: κι το όριο της g είι: τότε το όριο της g είι: > < > < ; ; κι, *, P, -, άρτιος περιττός κι P,, log, log κι, 3 Πότε η λέγετι συεχής στο ; Εστω μι συάρτηση κι έ σημείο του πεδίου ορισμού της Θ λέμε ότι η είι συεχής στο, ότ : 33 Πότε η λέγετι συεχής στο πεδίο ορισμού της ; Ότ η είι συεχής σε όλ τ σημεί του πεδίου ορισμού της Ειδικότερ : Μι συάρτηση θ λέμε ότι είι συεχής σε έ οικτό διάστημ,, ότ είι συεχής σε κάθε σημείο του, Μι συάρτηση θ λέμε ότι είι συεχής σε έ κλειστό διάστημ [, ], ότ είι συεχής σε κάθε σημείο του, κι επιπλέο : κι

15 34 Τι γωρίζετε γι τις πράξεις μετξύ συεχώ συρτήσεω; Α οι συρτήσεις κι g είι συεχείς στο, τότε είι συεχείς στο κι οι συρτήσεις: g, c, όπου c R, g,, κι g με τη προϋπόθεση ότι ορίζοτι σε έ διάστημ που περιέχει το Α η συάρτηση είι συεχής στο κι η συάρτηση g είι συεχής στο, τότε η σύθεσή τους go είι συεχής στο ΣΗΜΑΝΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΣΤΟΥΣ ΟΡΙΣΜΟΥΣ ΣΥΝΕΧΕΙΑΣ Σύμφω με το πρπάω ορισμό, μι συάρτηση δε είι συεχής σε έ σημείο του πεδίου ορισμού της ότ: i Δε υπάρχει το όριό της στο ή ii Υπάρχει το όριό της στο, λλά είι διφορετικό πό τη τιμή της,, στο σημείο Μί συάρτηση που είι συεχής σε όλ τ σημεί του πεδίου ορισμού της, θ λέγετι, συεχής συάρτηση γ Κάθε πολυωυμική συάρτηση Ρ είι συεχής, φού γι κάθε R ισχύει P P Κάθε ρητή συάρτηση της ισχύει P Q είι συεχής, φού γι κάθε του πεδίου ορισμού P Οι συρτήσεις ημ κι συ P Q Q ημ ημ κι Οι συρτήσεις κι log 35 Ν διτυπώσετε το θεώρημ Bolzano είι συεχείς, φού γι κάθε R ισχύει συ συ, είι συεχείς Έστω μι συάρτηση, ορισμέη σε έ κλειστό διάστημ [, ] Α η είι συεχής στο [, ] κι, επιπλέο, ισχύει, τότε υπάρχει έ, τουλάχιστο,, τέτοιο, ώστε 36 Ν διτυπώσετε το θεώρημ εδιμέσω τιμώ Έστω μι συάρτηση, η οποί είι ορισμέη σε έ κλειστό διάστημ [, ] Α: η είι συεχής στο [, ] κι τότε, γι κάθε ριθμό η μετξύ τω κι υπάρχει ές, τουλάχιστο, τέτοιος, ώστε η 37 Ν διτυπώσετε το Θεώρημ Μέγιστης - Ελάχιστης τιμής Α είι συεχής συάρτηση στο [, ], τότε η πίρει στο [, ] μι μέγιστη τιμή Μ κι μι ελάχιστη τιμή m

16 38 Ποιο είι το σύολο τιμώ μις συεχούς συάρτησης ορισμέης σε διάστημ ; A μι συάρτηση είι γησίως ύξουσ κι συεχής σε έ οικτό διάστημ,, τότε το σύολο τιμώ της στο διάστημ υτό είι το διάστημ Α, Β, όπου Α κι B Α, όμως, η είι γησίως φθίουσ κι συεχής στο,, τότε το σύολο τιμώ της στο διάστημ υτό είι το διάστημ B, A Αάλογ συμπεράσμτ έχουμε κι ότ μι συάρτηση είι συεχής κι γησίως μοότοη σε διστήμτ της μορφής [, ], [, κι, ] 39Έστω μµι συάρτηση, η οποί είι ορισμµέη σε έ κλειστό διάστημµ [, ] Α: η είι συεχής στο[, ] κι δείξετε ότι, γι κάθε ριθμµό η μµετξύ τω κι υπάρχει ές, τουλάχιστο,, ώστε Απόδειξη Ας υποθέσουμε ότι Τότε θ ισχύει η Α θεωρήσουμε τη συάρτηση g η, [, ], πρτηρούμε ότι: η g είι συεχής στο [, ] κι g g, φού g η κι g η Επομέως, σύμφω με το θεώρημ του Bolzano, υπάρχει, τέτοιο, ώστε g η, οπότε η Α ΣΗΜΑΝΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ-ΣΥΝΕΠΕΙΕΣ ΣΤΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΕΙΑΣ Β συέπειες του ΘBolzano είι τ πρκάτω Α μι συάρτηση είι συεχής σε έ διάστημ Δ κι δε μηδείζετι σ υτό, τότε υτή ή είι θετική γι κάθε Δ ή είι ρητική γι κάθε Δ, δηλδή διτηρεί πρόσημο στο διάστημ Δ Μι συεχής συάρτηση διτηρεί πρόσημο σε κθέ πό το διστήμτ στ οποί οι διδοχικές ρίζες της χωρίζου το πεδίο ορισμού της

17 Γ συέπειες του ΘΕδιμέσω Τιμώ είι τ πρκάτω Η εικό Δ εός διστήμτος Δ μέσω μις συεχούς κι μη στθερής συάρτησης είι διάστημ A μι συάρτηση είι γησίως ύξουσ κι συεχής σε έ οικτό διάστημ,, τότε το σύολο τιμώ της στο διάστημ υτό είι το διάστημ Α, Β, όπου Α κι B γ Α, όμως, η είι γησίως φθίουσ κι συεχής στο,, τότε το σύολο τιμώ της στο διάστημ υτό είι το διάστημ B, A Δ Ε ΣΤ Από το πρπάω θεώρημ ΘΜΕΤ κι το ΘΕΤ προκύπτει ότι το σύολο τιμώ μις συεχούς συάρτησης με πεδίο ορισμού το [, ] είι το κλειστό διάστημ [ m, M], όπου m η ελάχιστη τιμή κι Μ η μέγιστη τιμή της ΠΑΡΑΓΩΓΟΙ 4 Πως ορίζετι η εφπτομέη στο σημείο A, της C ; Έστω μι συάρτηση κι A, έ σημείο της C Α υπάρχει το κι είι ο πργμτικός ριθμός, τότε ορίζουμε ως εφπτομέη της Α, τη ευθεί ε που διέρχετι πό το Α κι έχει συτελεστή διεύθυσης λ= C στο σημείο της Επομέως, η εξίσωση της εφπτομέης στο σημείο A, είι '

18 4 Πότε μι συάρτηση λέγετι πργωγίσιμη στο χ κι τι οομάζουμε πράγωγο της στο χ ; Μι συάρτηση λέμε ότι είι πργωγίσιμη σ έ σημείο του πεδίου ορισμού της, υπάρχει το κι είι πργμτικός ριθμός Το όριο υτό οομάζετι πράγωγος της στο κι συμολίζετι με Δηλδή: ΣΗΜΑΝΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ-ΣΧΟΛΙΑ ΣΤΟΥΣ ΟΡΙΣΜΟΥΣ ΠΑΡΑΓΩΓΟΥ Η ύπρξη εφπτόμεης της πργώγου Α, τώρ, στη ισότητ C στο σημείο της A,,εξρτάτι πό τη ύπρξη της θέσουμε h, τότε έχουμε h h h γ Α το είι εσωτερικό σημείο εός διστήμτος του πεδίου ορισμού της, τότε: Η είι πργωγίσιμη στο, κι μόο υπάρχου στο R τ όρι, κι είι ίσ 4 Α η είι πργωγίσιμµη στο σημµείο, τότε είι κι συεχής σ υτό Απόδειξη Γι έχουμε, Οπότε [ ], φού η είι πργωγίσιμη στο Αρ,, δηλδή η είι συεχής στο Σχόλι Το τίστροφο του πρπάω θεωρήμτος δε ισχύει Ισχύει όμως ότι : Α μι συάρτηση δε είι συεχής σ έ σημείο, τότε, σύμφω με το προηγούμεο θεώρημ, δε μπορεί είι πργωγίσιμη στο 43 Πότε μι συάρτηση λέγετι πργωγίσιμη στο πεδίο ορισμού της ; Έστω μι συάρτηση με πεδίο ορισμού έ σύολο Α Θ λέμε ότι: H είι πργωγίσιμη στο Α ή, πλά, πργωγίσιμη, ότ είι πργωγίσιμη σε κάθε σημείο A Η είι πργωγίσιμη σε έ οικτό διάστημ, του πεδίου ορισμού της, ότ είι πργωγίσιμη σε κάθε σημείο,

19 Η είι πργωγίσιμη σε έ κλειστό διάστημ [, ] του πεδίου ορισμού της, ότ είι πργωγίσιμη στο, κι επιπλέο ισχύει R κι R 44 Τι είι η πράγωγος συάρτηση ; Έστω μι συάρτηση με πεδίο ορισμού Α κι A τo σύολο τω σημείω του Α στ οποί υτή είι πργωγίσιμη Ατιστοιχίζοτς κάθε A στο, ορίζουμε τη συάρτηση : A R, ωστε : η οποί οομάζετι πράγωγος της 45 Τι οομάζουμε ρυθμό μετολής του ως προς το ; Α δύο μετλητά μεγέθη, συδέοτι με τη σχέση, ότ είι μι συάρτηση πργωγίσιμη στο, τότε οομάζουμε ρυθμό μετολής του ως προς το στο σημείο τη πράγωγο 46 Πως πργωγίζετι μι σύθετη συάρτηση ; Α η συάρτηση g είι πργωγίσιμη στο κι η είι πργωγίσιμη στο g, τότε η συάρτηση g g g g είι πργωγίσιμη στο κι ισχύει 47 Ν γράψετε τους τύπους πργώγω τω συρτήσεω κι τ σύολ που ορίζοτι c ln, R, R, R, R, R,,, R, R- /, R- / e, R,, e

20 48 Εστω η στθερή συάρτηση, c c R, Δείξετε ότι η συάρτηση είι πργωγίσιμµη στο R κι ισχύει, δηλδή c Απόδειξη Πράγμτι, είι έ σημείο του R, τότε γι ισχύει: c c Επομέως,, δηλδή c 49 Έστω η συάρτηση Δείξετε ότι η συάρτηση είι πργωγίσιμµη στο R κι ισχύει, δηλδή Απόδειξη Πράγμτι, είι έ σημείο του R, τότε γι ισχύει: Επομέως,, δηλδή 5 Έστω η συάρτηση,, R Δείξετε ότι η συάρτηση είι πργωγίσιμµη στο R κι ισχύει, δηλδή Απόδειξη Πράγμτι, είι έ σημείο του R, τότε γι ισχύει:, οπότε:, δηλδή 5 Έστω Δείξετε ότι γι κάθε, ισχύει, δηλδή Απόδειξη Πράγμτι, είι έ σημείο του,, τότε γι ισχύει:, Οπότε, δηλδή h h h συ συ ημ Δηλδή, συ ημ

21 5 Α οι συρτήσεις, g είι πργωγίσιμµες στο, τότε η συάρτηση g είι πργωγίσιμµη στο κι ισχύει: g g Γι,ισχύει: g g Απόδειξη g g g g Επειδή οι συρτήσεις, g είι πργωγίσιμες στο, έχουμε: g g g g g, Δηλδή : g g 53 Έστω η συάρτηση στοr * κι ισχύει Πράγμτι, γι κάθε Είδμε, όμως, πιο πρι ότι τότε : κ κ κ *, Η συάρτηση είι πργωγίσιμµη, δηλδή * R έχουμε: Απόδειξη, γι κάθε φυσικό Επομέως, N {, }, 54 Έστω η συάρτήση εφ Η συάρτηση είι πργωγίσιμµη στο κι ισχύει D R { / συ }, δηλδή : εφ συ συ Απόδειξη ημ ημ συ ημσυ συσυ ημημ εφ συ συ συ συ ημ συ συ 55 Η συάρτηση, R Q είι πργωγίσιμµη στο, κι ισχύει, δηλδή Απόδειξη Πράγμτι, ln e κι θέσουμε u ln, τότε έχουμε u e u u ln e e u e Επομέως, 56 Η συάρτηση, είι πργωγίσιμµη στο R κι ισχύει ln, δηλδή : ln

22 Απόδειξη Πράγμτι, ln e κι θέσουμε u ln, τότε έχουμε u e Επομέως, u u ln e e u e ln ln 57 Η συάρτηση ln, ln * R είι πρ/μµη στο Απόδειξη * R κι ισχύει Πράγμτι :, τότε ln ln ln, εώ, τότε : ln, οπότε, θέσουμε ln κι u, έχουμε ln u Επομέως, ln u u κι άρ u ln 58 Ν διτυπώσετε το Θεώρημ Rolle Α μι συάρτηση είι συεχής στο κλειστό διάστημ [, ], πργωγίσιμη στο οικτό, κι τότε υπάρχει έ, τουλάχιστο, ξ, τέτοιο, ώστε: ξ 59 Ν ερμηεύσετε γεωμετρικά το Θεώρημ Rolle Το ΘR γεωμετρικά, σημίει ότι υπάρχει έ, τουλάχιστο, ξ, τέτοιο, ώστε η εφπτομέη της C στο M ξ, ξ είι πράλληλη στο άξο τω O Μξ,ξ Α, ξ ξ Β, 6 Ν διτυπώσετε το Θεώρημ Μέσης Τιμής Διφορικού Λογισμού ΘΜΤ Α μι συάρτηση είι: συεχής στο κλειστό διάστημ [, ] κι πργωγίσιμη στο οικτό διάστημ, τότε υπάρχει έ, τουλάχιστο, ξ, τέτοιο, ώστε: ξ 6 Ν ερμηεύσετε γεωμετρικά το Θεώρημ Μέσης Τιμής Mξ,ξ Β, Γεωμετρικά, το ΘΜΤ σημίει ότι υπάρχει έ, τουλάχιστο, ξ, τέτοιο, ώστε η εφπτομέη της γρφικής πράστσης της στο σημείο M ξ, ξ είι πράλληλη της ευθείς ΑΒ Ο a A, ξ ξ

23 6 Έστω μµι συάρτηση ορισμµέη σε έ διάστημµ Α η είι συεχής στο κι γι κάθε εσωτερικό σημµείο του, τότε η είι στθερή σε όλο το διάστημµ Απόδειξη Αρκεί ποδείξουμε ότι γι οποιδήποτε, Δ ισχύει Πράγμτι Α, τότε προφώς Α, τότε στο διάστημ [, ] η ικοποιεί τις υποθέσεις του θεωρήμτος μέσης τιμής Επομέως, υπάρχει ξ, τέτοιο, ώστε ξ Επειδή το ξ είι εσωτερικό σημείο του Δ, ισχύει ξ, οπότε, λόγω της, είι Α, τότε ομοίως ποδεικύετι ότι Σε όλες, λοιπό, τις περιπτώσεις είι 63 Έστω δυο συρτήσεις, g ορισμµέες σε έ διάστημµ Α οι, g είι συεχείς στο κι g γι κάθε εσωτερικό σημµείο του, τότε υπάρχει στθερά c τέτοι, ώστε γι κάθε ισχύει: g c Απόδειξη Η συάρτηση g είι συεχής στο Δ κι γι κάθε εσωτερικό σημείο Δ ισχύει g g Επομέως, σύμφω με το προηγούμεο θεώρημ, η συάρτηση g είι στθερή στο Δ Άρ, υπάρχει στθερά C τέτοι, ώστε γι κάθε, οπότε g c Δ ισχύει g c =g+c =g O 63-Α σημτική πρότση χωρίς πόδειξη c Α γι μι συάρτηση ισχύει ότι γι κάθε R, τότε ce γι κάθε R g g c ce 64 Έστω μµι συάρτηση η οποί είι συεχής σε έ διάστημµ Α σε κάθε εσωτερικό σημµείο του, τότε η είι γ ύξουσ σε όλο το Α σε κάθε εσωτερικό σημµείο του, τότε η είι γ φθίουσ σε όλο το Απόδειξη

24 Αποδεικύουμε το θεώρημ στη περίπτωση που είι Έστω, Δ με Θ δείξουμε ότι Πράγμτι, στο διάστημ [, ] η ικοποιεί τις προϋποθέσεις του ΘΜΤ Επομέως, υπάρχει ξ, τέτοιο, ώστε ξ, οπότε έχουμε ξ Επειδή ξ κι, έχουμε, οπότε Στη περίπτωση που είι εργζόμστε λόγως Το τίστροφο του πρπάω θεωρήμτος δε ισχύει Δηλδή, η είι γησίως ύξουσ τιστοίχως γησίως φθίουσ στο Δ, η πράγωγός της δε είι υποχρεωτικά θετική τιστοίχως ρητική στο εσωτερικό του Δ 65 Τι οομάζουμε τοπικό μέγιστο κι τι τοπικό ελάχιστο της ; Μι συάρτηση, με πεδίο ορισμού Α, θ λέμε ότι προυσιάζει στο A τοπικό μέγιστο, ότ υπάρχει δ, τέτοιο ώστε : γι κάθε A δ, δ Το λέγετι θέση ή σημείο τοπικού μεγίστου, εώ το τοπικό μέγιστο της Μί συάρτηση, με πεδίο ορισμού Α, θ λέμε ότι προυσιάζει στο A τοπικό ελάχιστο, ότ υπάρχει δ, τέτοιο ώστε :, γι κάθε A δ, δ Το λέγετι θέση ή σημείο τοπικού ελχίστου, εώ το τοπικό ελάχιστο της Α μι συάρτηση προυσιάζει μέγιστο, τότε υτό θ είι το μεγλύτερο πό τ τοπικά μέγιστ, εώ προυσιάζει, ελάχιστο, τότε υτό θ είι το μικρότερο πό τ τοπικά ελάχιστ Το μεγλύτερο όμως πό τ τοπικά μέγιστ μίς συάρτησης δε είι πάτοτε μέγιστο υτής Επίσης το μικρότερο πό τ τοπικά ελάχιστ μίς συάρτησης δε είι πάτοτε ελάχιστο της συάρτησης Α μι συάρτηση είι συεχής κι έχει έ τοπικό κρόττο,τότε θ είι κι ολικό 66 Ν διτυπώσετε το Θεώρημ Fermat Έστω μι συάρτηση ορισμέη σ έ διάστημ Δ κι έ εσωτερικό σημείο του Δ Α η προυσιάζει τοπικό κρόττο στο κι είι πργωγίσιμη στο σημείο υτό, τότε: 67 Ποιες είι οι πιθές θέσεις τω τοπικώ κροτάτω μις συάρτησης ; Τ εσωτερικά σημεί του Δ στ οποί η πράγωγος της μηδείζετι Τ εσωτερικά σημεί του Δ στ οποί η δε πργωγίζετι Τ άκρ του Δ ήκου στο πεδίο ορισμού της Τ εσωτερικά σημεί του Δ στ οποί η δε πργωγίζετι ή η πράγωγός της είι ίση με το μηδέ, λέγοτι κρίσιμ σημεί της στο διάστημ Δ

25 68 Τι γωρίζετε γι τη πράγωγο συάρτησης στο σημείο που προυσιάζει κρόττο ; Έστω μι συάρτηση ορισμέη σ έ διάστημ Δ κι εσωτερικό σημείο του Δ Α η προυσιάζει τοπικό κρόττο στο κι είι πργωγίσιμη σ υτό, τότε: 69 Πως σχετίζετι το πρόσημο της με τ τοπικά κρόττ; Έστω μι συάρτηση πργωγίσιμη σ έ διάστημ,, με εξίρεση ίσως έ σημείο του, στο οποίο όμως η είι συεχής Α στο, κι στο,, τότε το είι τοπ μέγιστο της Α στο, κι στο,, τότε το είι τοπ ελάχιστο της A η διτηρεί πρόσημο στο,,, τότε το δε είι τοπικό κρόττο κι η είι γησίως μοότοη στο, 7 Έστω μµι συάρτηση ορισμµέη σ έ διάστημµ κι εσωτερικό σημµείο του Α η προυσιάζει τοπικό κρόττο στο υτό, τότε: Απόδειξη κι είι πργωγίσιμµη σ Ας υποθέσουμε ότι η προυσιάζει στο τοπικό μέγιστο Επειδή το είι εσωτερικό σημείο του Δ κι η προυσιάζει σ υτό τοπικό μέγιστο, υπάρχει δ τέτοιο, ώστε δ, δ Δ κι, γι κάθε δ, δ Επειδή, επιπλέο, η είι πργωγίσιμη στο, ισχύει Επομέως, δ,, τότε, λόγω της, θ είι, οπότε θ έχουμε, δ, τότε, λόγω της, θ είι, οπότε θ έχουμε Η πόδειξη γι τοπικό ελάχιστο είι άλογη 3 Έτσι, πό τις κι 3 έχουμε 7 Πώς ρίσκουμε τ ολικά κρόττ σε μι συεχή συάρτηση σε έ κλειστό διάστημ Γι τη εύρεση του μέγιστου κι ελάχιστου της συάρτησης σε έ κλειστό διάστημ εργζόμστε ως εξής: Βρίσκουμε τ κρίσιμ σημεί της Υπολογίζουμε τις τιμές της στ σημεί υτά κι στ άκρ τω διστημάτω Από υτές τις τιμές η μεγλύτερη είι το μέγιστο κι η μικρότερη το ελάχιστο της

26 7 Πότε μι συάρτηση οομάζετι κυρτή ή κοίλη ; Έστω μί συάρτηση συεχής σ έ διάστημ Δ κι πργωγίσιμη στο εσωτερικό του Δ Θ λέμε ότι: Η συάρτηση στρέφει τ κοίλ προς τ άω ή είι κυρτή στο Δ, η είι γησίως ύξουσ στο εσωτερικό του Δ Η συάρτηση στρέφει τ κοίλ προς τ κάτω ή είι κοίλη στο Δ, η είι γησίως φθίουσ στο εσωτερικό του Δ 73 Πως σχετίζετι το πρόσημο της δεύτερης πργώγου με τη κυρτότητ ; Εστω μι συάρτηση συεχής σ έ διάστημ Δ κι δυο φορές πργωγίσιμη στο εσωτερικό του Δ Α γι κάθε εσωτερικό σημείο του Δ, τότε η είι κυρτή στο Δ Α γι κάθε εσωτερικό σημείο του Δ, τότε η είι κοίλη στο Δ 74 Τι οομάζουμε σημείο κμπής της γπ μις συάρτησης ; Έστω μι συάρτηση πργωγίσιμη σ έ διάστημ,, με εξίρεση ίσως έ σημείο του Α η είι κυρτή στο, κι κοίλη στο,, ή τιστρόφως, κι η C έχει εφπτομέη στο σημείο A,, τότε το σημείο A, οομάζετι σημείο κμπής της γρφικής πράστσης της 75 Πως σχετίζετι η με το σημείο κμπής ; Α το A, είι σημείο κμπής της γρφικής πράστσης της κι η είι δυο φορές πργωγίσιμη, τότε Έστω μι συάρτηση oρισμέη σ έ διάστημ, κι, Α η λλάζει πρόσημο εκτέρωθε του κι ορίζετι εφπτομέη της τότε το A, είι σημείο κμπής, C στο A, Η συθήκη δε μς εξσφλίζει κτ άγκη,ότι το σημείο, Θ πρέπει η λλάζει πρόσημο εκτέρωθε του A,είι ΣΚ 76 Ποιες είι οι πιθές θέσεις σημείω κμπής ; Οι π ι θ έ ς θ έ σ ε ι ς σ η μ ε ί ω κ μ π ή ς μις συάρτησης σ έ διάστημ Δ είι: i Τ εσωτερικά σημεί του Δ στ οποί η μηδείζετι iiτ εσωτερικά σημεί του Δ στ οποί δε υπάρχει η 77 Τι οομάζουμε κτκόρυφη σύμπτωτη της γπ της ; Α έ τουλάχιστο πό τ όρι, λέγετι κτκόρυφη σύμπτωτη της γρφικής πράστσης της είι ή, τότε η ευθεί 78 Τι οομάζουμε οριζότι σύμπτωτη της γπ της ;

27 Α τιστοίχως, τότε η ευθεί λέγετι οριζότι σύμπτωτη της γρφικής πράστσης της στο τιστοίχως στο 79 Τι οομάζουμε σύμπτωτη πλάγι της γπ της ; Η ευθεί λ λέγετι σύμπτωτη της γρφικής πράστσης της στο, [ λ ] κι στο [ λ ] Η συθήκη δε μς εξσφλίζει κτ άγκη,ότι το σημείο, Θ πρέπει η λλάζει πρόσημο εκτέρωθε του A,είι ΣΚ 8 Ν γράψετε τους τύπους,με τους οποίους ρίσκουμε τις σύμπτωτες της μορφής Η ευθεί λ είι σύμπτωτη της γρφικής πράστσης της στο, τιστοίχως στο, κι μόο R κι [ ] R, τιστοίχως : R κι [ ] R ΣΗΜΑΝΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΣΤΗΝ ΕΥΡΕΣΗ ΑΣΥΜΠΤΩΤΩΝ Αποδεικύετι ότι: Οι πολυωυμικές συρτήσεις θμού μεγλύτερου ή ίσου του δε έχου σύμπτωτες Οι ρητές συρτήσεις P Q, με θμό του ριθμητή P μεγλύτερο τουλάχιστο κτά δύο του θμού του προομστή, δε έχου πλάγιες σύμπτωτες Σύμφω με τους πρπάω ορισμούς, σύμπτωτες της γρφικής πράστσης μις συάρτησης ζητούμε: Στ άκρ τω διστημάτω του πεδίου ορισμού της στ οποί η δε ορίζετι Στ σημεί του πεδίου ορισμού της, στ οποί η δε είι συεχής Στο,, εφόσο η συάρτηση είι ορισμέη σε διάστημ της μορφής,, τιστοίχως, 8 Ποιοι είι οι κόες De l Hospital ; oς Κός Α, g ή άπειρο, τότε:, R {, } κι υπάρχει το g g g πεπερσμέο

28 oς Κός Α, g πεπερσμέο ή άπειρο, τότε:, R {, } κι υπάρχει το g g g ΟΛΟΚΛΗΡΩΜΑΤΑ 8 Τι οομάζουμε Αρχική συάρτηση ή πράγουσ της στο διάστημ Δ ; Έστω μι συάρτηση ορισμέη σε έ διάστημ Δ Αρχική συάρτηση ή πράγουσ της στο διάστημ Δ οομάζετι κάθε συάρτηση F που είι πργωγίσιμη στο Δ κι ισχύει F, γι κάθε Δ 83 Έστω μµι συάρτηση ορισμµέη σε έ διάστημµ Δ Α F είι μµι πράγουσ της στο Δ, τότε: όλες οι συρτήσεις της μµορφής G F c, c R είι πράγουσες της στο Δ κι κάθε άλλη πράγουσ G της στο Δ πίρει τη μµορφή G F c, c R Απόδειξη κάθε συάρτηση της μορφής G F c, όπου c R, είι μι πράγουσ της στο Δ, φού G F c F, γι κάθε Δ Έστω G είι μι άλλη πράγουσ της στο Δ Τότε γι κάθε G, οπότε G F, γι κάθε Δ Δ ισχύου F κι Άρ, σύμφω με το πόρισμ της 6, υπάρχει στθερά c τέτοι, ώστε G F c, γι κάθε Δ 84 Τι οομάζουμε ορισμέο ολοκλήρωμ της στο [,] ; Α η είι συεχής στο [,] τότε ορίζουμε : d Επίσης ορίζουμε : d d κι d

29 85 Ποιες είι οι ιδιότητες του ορισμέου ολοκληρώμτος ; Έστω, g συεχείς συρτήσεις στο [, ] κι λ, μ R Τότε ισχύου λ d λ d [ g ] d d γ [ μg ] d λ d μ λ g d g d δ Α η είι συεχής σε διάστημ Δ κι,,, τότε ισχύει : γ d d d γ ε Έστω μι συεχής συάρτηση σε έ διάστημ [, ] Α γι κάθε [, ] κι η συάρτηση δε είι πτού μηδέ στο διάστημ υτό, τότε d 86 Τι γωρίζετε γι τη συάρτηση F t dt ; Ποι είι η πράγωγος της ; Στη συέχει δώσετε τη γεωμετρική ερμηεί της πργώγου της Α είι μι συεχής συάρτηση σε έ διάστημ Δ κι είι έ σημείο του Δ, τότε η συάρτηση F t dt, Δ, είι μι πράγουσ της στο Δ Δηλδή ισχύει: F t dt, γι κάθε Δ Εποπτικά το συμπέρσμ του πρπάω θεωρήμτος προκύπτει ως εξής: h F h F t dt Εμδό του χωρίου Ω = h, γι μικρά h Άρ, γι μικρά h είι F h F F h F,οπότε F h h h O F 87 Έστω μµι συεχής συάρτηση σ έ διάστημµ [, ] Α G είι μµι πράγουσ της στο[, ], t dt G G Απόδειξη τότε Σύμφω με το προηγούμεο θεώρημ, η συάρτηση F t dt είι μι πράγουσ της στο [, ] Επειδή κι η G είι μι πράγουσ της στο [, ], θ υπάρχει c R τέτοιο, ώστε : G F c Από τη, γι, έχουμε G F c t dt c c, οπότε c G

30 Επομέως, G F G, οπότε, γι, έχουμε G F G t dt G κι άρ t dt G G 88 Ν γράψετε τους τύπους της πργοτικής ολοκλήρωσης κι της τικτάστσης γι το ορισμέο ολοκλήρωμ Ισχύει ότι : g d [ g] gd, όπου, g είι συεχείς συρτήσεις στο [, ] Ισχύει ότι : gg d udu, u u όπου, g είι συεχείς συρτήσεις, u g, du g d κι u g, u g ΣΗΜΑΝΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΣΤΗ ΣΥΝΑΡΤΗΣΗ ΟΛΟΚΛΗΡΩΜΑ Από το θεώρημ ύπρξης ρχικής συάρτησης πράγουσς κι το θεώρημ πργώγισης σύθετης συάρτησης προκύπτου τ πρκάτω : με τη προϋπόθεση ότι τ χρησιμοποιούμε σύμολ έχου όημ t dt t dt g g g t dt g g g g s t dt t dt t dt g g s s s Ότ η μετλητή,είι μέσ στο ολοκλήρωμ Η μετλητή μέσ στο ολοκλήρωμ θεωρείτι στθερά ως προς τη μετλητή ολοκλήρωσης t Προσοχή όμως γιτί στη πργώγιση είι μετλητή! Έτσι λοιπό έχουμε :

31 tdt tdt tdt t tdt Α η μετλητή μέσ στο ολοκλήρωμ ρίσκετι μέσ στο τύπο της συάρτησης,τότε η εξγωγή της πό το ολοκλήρωμ γίετι με τη μέθοδο της τικτάστσης Έτσι λοιπό έχουμε : t dt θέτουμε t u κλπ t dt θέτουμε t u κλπ 89 Α Ν γράψετε το τύπο που δίει το εμδό του χωρίου Ω που ορίζετι πό τη γρφική πράστση της, τις ευθείες, κι το άξο,ότ γι κάθε [, ] κι η συάρτηση είι συεχής Β Ν γράψετε το τύπο που δίει το εμδό του χωρίου Ω που περικλείετι πό τις γρφικές πρστάσεις τω, g κι τις ευθείες, Α Ισχύει : E d Β Ισχύει : E g d 9 Ν ποδείξετε ότι γι τις συρτήσεις, g είι g γι κάθε [, ], τότε το εμµδό του χωρίου Ω που περικλείετι πό τις γρφικές πρστάσεις τω, g κι τις ευθείες E g d, δίετι πό το τύπο : Απόδειξη Έστω, τώρ, δυο συρτήσεις κι g, συεχείς στο διάστημ [, ] με g γι κάθε [, ] κι Ω το χωρίο που περικλείετι πό τις γρφικές πρστάσεις τω, g κι τις ευθείες κι

32 = Πρτηρούμε ότι Ω d g d Ε Ω Ε Ω Ε Ω g d O =g Επομέως, E Ω g d ΣΗΜΑΝΤΙΚΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΣΤΟ ΕΜΒΑΔΟ ΧΩΡΙΟΥ Α Χωρίο που ορίζετι πό τη γρ πράστση της, το άξο χ χ, κι τις ευθείες = κι = Α, γι κάθε, τότε d Α, γι κάθε, τότε d 3Α η δε διτηρεί πρόσημο στο [, ] τότε το εμδό είι το άθροισμ τω εμδώ τω χωρίω στ διστήμτ που η είι θετική ή ρητική Ε Ω γ δ d+ -d+ d γ δ όπου γ,δ οι ρίζες της στο διάστημ [,] Β Χωρίο που ορίζετι πό τις γρ πρστάσεις τω,g, το άξο χ χ, κι τις ευθείες = κι = Ότ η διφορά g δε διτηρεί στθερό πρόσημο στο [, ], τότε το εμδό του χωρίου Ω που περικλείετι πό τις γρφικές πρστάσεις τω, g κι τις ευθείες κι είι ίσο με E g d

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj

Qwφιertyuiopasdfghjklzxερυυξnmηq σwωψerβνtyuςiopasdρfghjklzxcvbn mqwertyuiopasdfghjklzxcvbnφγιmλι qπςπζαwωeτrtνyuτioρνμpκaλsdfghςj Qwφιertuiopasdfghjklzερυυξnmηq σwωψertuςiopasdρfghjklzcvbn mqwertuiopasdfghjklzcvbnφγιmλι qπςπζwωeτrtuτioρμpκaλsdfghςj ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ klzcvλοπbnmqwertuiopasdfghjklz ΤΗΣ Γ ΛΥΚΕΙΟΥ ΑΠΟΔΕΙΞΕΙΣ

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Πως ορίζετι το σύολο C τω μιγδικώ ριθμώ; Το σύολο C τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου R τω

Διαβάστε περισσότερα

Ορισμοί των εννοιών και θεωρήματα χωρίς απόδειξη

Ορισμοί των εννοιών και θεωρήματα χωρίς απόδειξη ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ http://ddethr Ορισμοί τω εοιώ κι θεωρήμτ χωρίς πόδειξη ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Τι είι το σύολο τω μιγδικώ ριθμώ; Το σύολο τω μιγδικώ ριθμώ είι έ υπερσύολο του συόλου τω πργμτικώ

Διαβάστε περισσότερα

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αποδείξεις Θεωρίς Γ Λυκείου Κτεύθυσης Θέμ 1 ο [σελ 167 σχ. Βιβλίου] P 1 Έστω το πολυώυμο Έχουμε 1 1 1 lim P lim... AΠΟΔΕΙΞΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΦΟΡΙΚΟΣ ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2000-2008 1. ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ -8 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΘΕΜΑ Αν η συνάρτηση f είνι πργωγίσιμη σε έν σημείο του πεδίου ορισμού της, ν γρφεί η εξίσωση της εφπτομένης της γρφικής πράστσης της f στο σημείο Α(,f( ))

Διαβάστε περισσότερα

α β α < β ν θετικός ακέραιος.

α β α < β ν θετικός ακέραιος. Τυτότητες ( ± ) ± ( ± ) ± ± ( ± ) m (γ) γ γγ - (-)() - (-)( ) - (-)( - - - - ) Α. Βσικές γώσεις ()( - ) ()( - - - - - - ) ΜΟΝΟ ΓΙΑ ΠΕΡΙΤΤΟ. γ --γ-γ [(-) (-γ) (γ-) ] γ -γ (γ)[(-) (-γ) (γ-) ] Αισώσεις. Οι

Διαβάστε περισσότερα

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ

ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ (Επλήψεις Συμπληρώσεις) Εισγωγή Στο Γυμάσιο μάθμε ότι οι πργμτικοί ριθμοί ποτελούτι πό τους ρητούς κι τους άρρητους ριθμούς κι πριστάοτι με

Διαβάστε περισσότερα

Άλγεβρα και Στοιχεία Πιθανοτήτων Θεωρία & Σχόλια

Άλγεβρα και Στοιχεία Πιθανοτήτων Θεωρία & Σχόλια Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Άλγερ κι Στοιχεί Πιθοτήτω Θεωρί & Σχόλι 014 015 ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ 1 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β

π.χ. 2, 3, π=3,14... Αναλογία λέγεται κάθε ισότητα κλασµάτων και έχουµε τις παρακάτω ιδιότητες : α = 4) β = δ και δ γ β ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ) ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ Τ σύολ τω ριθµώ είι τ εξής : ) Οι φυσικοί ριθµοί : Ν {0,,,,... } ) Οι κέριοι ριθµοί : Ζ {...,,,, 0,,,,... } ) Οι ρητοί ριθµοί : Q ρ / κ ρ, κ Z, Z 0 4) Οι άρρητοι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους.

ΚΕΦΑΛΑΙΟ 1 ο. 1.1. Οι πράξεις πρόσθεση και πολλαπλασιασµός και οι ιδιότητές τους. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ - - ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ ο.. Οι πράξεις πρόσθεση κι πολλπλσισµός κι οι ιδιότητές τους. Πρόσθεση Πολλπλσισµός Ιδιότητ.. Ατιµετθετική (γ)()γ (γ)()γ Προσετιρική (γ)γ Επιµεριστική 0. Ουδέτερο

Διαβάστε περισσότερα

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ

ΠΕΡΙΚΛΗΣ Γ. ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΟΡΟΣΗΜΟ ΖΩΓΡΑΦΟΥ ΠΕΡΙΚΛΗΣ Γ ΚΑΤΣΙΜΑΓΚΛΗΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΟ ΠΡΩΤΟ ΘΕΜΑ ΕΚΔΟΣΕΙΣ ΚΕΝΤΡΙΚΗ ΔΙΑΘΕΣΗ Τρυλντώνη 8, 577 Ζωγράφου Τηλ: 747344 747395 email:info@orosimoeu wwworosimoeu ISBN: 978-68-873--4 ΕΚΔΟΣΕΙΣ

Διαβάστε περισσότερα

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ

Φροντιστήρια 2001-ΟΡΟΣΗΜΟ Φροτιστήρι -ΟΡΟΣΗΜΟ ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Επιμέλει: Σεμσίρης Αριστείδης -- Φροτιστήρι -ΟΡΟΣΗΜΟ - - Φροτιστήρι -ΟΡΟΣΗΜΟ Άλγεβρ Β Λυκείου Περιέχει Συοπτική Θεωρί Μεθοδολογί Ασκήσεω Λυμέες Ασκήσεις Λυμέ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΩΡΗΜΑΤΑ ΠΡΟΤΑΣΕΙΣ µε ΑΠΟ ΕΙΞΕΙΣ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ µε ΑΠΑΝΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Αιστάι 30 Αµφιάλη 43890-43

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β

ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: Η ΣΥΝΑΡΤΗΣΗ. F(x) = f(t)dt Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β ΚΕΦΑΛΑΙΟ 4ο: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : Η ΣΥΝΑΡΤΗΣΗ F( = (d [Kεφ:.5 H Συνάρτηση F( = (d Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Πράδειγμ. lim e d. Ν υπολογίσετε το όριο: ( Έχουμε ( e d

Διαβάστε περισσότερα

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx

Λογάριθμοι. Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έννοια του λογάριθμου Έστω η εξίσωση αx Λογάριθμοι Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Η έοι του λογάριθμου Έστω η εξίσωση θ, 0, θ 0. Η εξίσωση υτή έχει μοδική λύση φού η εκθετική συάρτηση f είι γησίως μοότοη κι το θ ήκει στο σύολο τιμώ της. Τη μοδική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004)

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (27 /5/ 2004) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ' ΛΥΚΕΙΟΥ (7 /5/ 4) ΘΕΜΑ ο Α. Έστω μι συνάρτηση f ορισμένη σ' έν διάστημ Δ κι έν εσωτερικό σημείο του Δ. Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιμη

Διαβάστε περισσότερα

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ

ΣΑΜΑΡΑΣ ΚΩΝΣΤΑΝΤΙΝΟΣ ΚΩΣΤΑΚΗΣ ΛΑΜΠΡΟΣ Ρίζες πργμτικώ ριθμώ Τετργωική ρίζ πργμτικού ριθμού Ορισμός: Η τετργωική ρίζ εός μη ρητικού ριθμού είι ο μη ρητικός ριθμός β που ότ υψωθεί στο τετράγωο μς δίει το, δηλδή: = β β =,, β Πρτήρηση: Η ορίζετι

Διαβάστε περισσότερα

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto.

Τα παρακάτω είναι τα κυριότερα θεωρήματα και ορισμοί από το σχολικό βιβλίο ακολουθούμενα από δικά μας σχόλια. 1 ο ΠΡΩΤΟ. www.1proto.gr. www.1proto. 1 Τ πρκάτω είνι τ κυριότερ θεωρήμτ κι ορισμοί πό το σχολικό βιβλίο κολουθούμεν πό δικά μς σχόλι. 1 ο ΠΡΩΤΟ 2 Συνρτήσεις Γνησίως μονότονη συνάρτηση Μι γνησίως ύξουσ ή γνησίως φθίνουσ συνάρτηση λέμε ότι

Διαβάστε περισσότερα

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ

ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ - ΣΕΙΡΕΣ Το ορισμένο ολοκλήρωμ ή ολοκλήρωμ Riema μις πργμτικής συνάρτησης f με διάστημ ολοκλήρωσης το πεπερσμένο διάστημ [, ], υπάρχει ότν: η f είνι συνεχής στο διάστημ υτό, κθώς

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2009. ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 9. ΘΕΜΑ ο Α. Έστω, Δ. Δικρίνουμε τις περιπτώσεις: Αν =, τότε f( ) = f( ). Αν

Διαβάστε περισσότερα

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I

ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ I Σε κθεµιά πό τις πρκάτω περιπτώσεις ν κυκλώσετε το γράµµ Α, ν ο ισχυρισµός είνι ληθής κι το γράµµ Ψ, ν ο ισχυρισµός είνι ψευδής δικιολογώντς συγχρόνως την πάντησή

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΚΑΛΟΚΑΙΡΙΝΟ ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΕΜΕ ΛΕΠΤΟΚΑΡΥΑ ΠΙΕΡΙΑΣ 0 ΣΗΜΕΙΩΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Αργύρης Φελλούρης Απληρωτής Κθηγητής ΕΜΠ ΚΕΦΑΛΑΙΟ Ι ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Στο Κεφάλιο υτό θεωρούμε γωστές τις σικές

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Θεωρία ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Μαθηματικά Γ Λυκείου Θεωρία ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχλγικής Κτεύθυσης Μθημτικά Γ Λυκείυ Θεωρί ΣΤΕΦΑΝΟΣ ΗΛΙΑΣΚΟΣ e-mail: inf@iliasks.gr www.iliasks.gr Τ σύλ C τω μιγδικώ ριθμώ Τ σύλ C τω

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1 ΘΕΩΡΗΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 1. ) Πότε µι συνάρτηση µε Πεδίο ορισµού το Α ονοµάζετι περιοδική; β) Ποιο είνι το πεδίο ορισµού κι η περίοδος των συνρτήσεων ηµx, συνx, εφx κι σφx;. Περιοδική ονοµάζετι

Διαβάστε περισσότερα

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στo μάθημα ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ δυδικό η εξετστική περίοδος πό 9/0/5 έως 9/04/5 γρπτή εξέτση στo μάθημ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ ΛΥΚΕΙΟΥ Τμήμ: Βθμός: Ονομτεπώνυμο: Κθηγητές: Θ Ε Μ Α Α Α. Έστω μι συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική & Τεχνολογική Κατεύθυνση

ΜΑΘΗΜΑΤΙΚΑ. Γ Τάξης Ενιαίου Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΜΑΘΗΜΑΤΙΚΑ Γ Τάξης Ειίου Λυκείου Θετική & Τεχολογική Κτεύθυση ΣΥΓΓΡΑΦΕΙΣ Αδρεδάκης Στυλιός Κτσργύρης Βσίλειος Μέτης Στέφος Μπρουχούτς Κω/ος Ππστυρίδης Στύρος Πολύζος Γεώργιος Κθηγητής Πεπιστημίου Αθηώ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑο Α Έστω µι συνάρτηση f ορισµένη σ' έν διάστηµ κι έν εσωτερικό σηµείο του Αν η f προυσιάζει τοπικό κρόττο στο κι είνι πργωγίσιµη στο σηµείο

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ ΜΑΪΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµ 1ο Α. Έστω µι συνεχής συνάρτηση f ορισµένη σε έν διάστηµ.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β]

ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΗΜΑ BOLZANO. και επιπλέον. Αν μία συνάρτηση f είναι ορισμένη σε ένα κλειστό διάστημα [α,β] η f είναι συνεχής στο [α,β] ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

www.fr-anodos.gr (, )

www.fr-anodos.gr (, ) ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Το lim f ( ) έχει όηµα σε γειτοικά σηµεία µε το δηλαδή ότα ( a, ) (, β ) a. Δε µε εδιαφέρει α το ίδιο το αήκει η όχι στο πεδίο ορισµού της f αλλά µε εδιαφέρει α υπάρχου στο πεδίο ορισµού

Διαβάστε περισσότερα

ΟΡΙΑ. 0 : Παραγοντοποιώ αριθµητή και παρονοµαστή και διώχνω τους παράγοντες x, x 0 που προκύπτουν.

ΟΡΙΑ. 0 : Παραγοντοποιώ αριθµητή και παρονοµαστή και διώχνω τους παράγοντες x, x 0 που προκύπτουν. ΟΡΙΑ Πηλίκα πολυωυµικώ µε µορφή 0 0 : Παραγοτοποιώ αριθµητή και παροοµαστή και διώχω τους παράγοτες, 0 που προκύπτου Περιπτώσεις µε ρίζες µορφής 0 0 Περιπτώσεις στις οποίες χρειάζεται α πολλαπλασιάσω µε

Διαβάστε περισσότερα

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΛΗ Η ΘΕΩΡΙΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΟΡΙΣΜΟΙ ΑΠΟΔΕΙΞΕΙΣ ΕΡΩΤΗΣΕΙΣ : ΣΩΣΤΟ ΛΑΘΟΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ : ΜΙΓΑΔΙΚΟΙ

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 30 ΜΑΪΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 3 ΜΑΪΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A. Έστω µι συνεχής συνάρτηση σ' έν διάστηµ [, ]. Αν G είνι µι πράγουσ

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση

ΕΚΘΕΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f (x)=α x,α>0 και α 1 λέγεται εκθετική συνάρτηση ΔΥΝΑΜΕΙΣ ΜΕ ΕΚΘΕΤΗ ΡΗΤΟ - ΑΡΡΗΤΟ Αν >0, μ κέριος κι ν θετικός κέριος, τότε ορίζουμε: Επιπλέον, ν μ,ν θετικοί κέριοι, ορίζουμε: 0 =0. Πρδείγμτ: 4 4,, 5 5, 4 0 =0. Γενικότερ μπορούμε ν ορίσουμε δυνάμεις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΜΑΤΑ ΠΡΟΤΑΣΕΙΣ µε ΑΠΟ ΕΙΞΕΙΣ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ µε ΑΠΑΝΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΚΑΙ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Αιστάι 3 Αµφιάλη 4389-43

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι

Ίσα Τρίγωνα όχι, Ψευδοΐσα ναι Ίσ Τρίω όχι Ψευδοΐσ ι ημοσιεύτηε στο περιοδιό «φ» τ.5 008 ημ. Ι. Μπουάης Σχ. Σύμουλος Μθημτιώ Οι ερωτήσεις τω μθητώ μς είι σφλώς πάτ ευπρόσδετες λλά πρέπει ι τις εθρρύουμε με άθε τρόπο. Όχι μόο ιτί ζωτεύου

Διαβάστε περισσότερα

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Ταυτότητες ΤΑΥΤΟΤΗΤΕΣ

Δ/νση Β /θµιας Εκπ/σης Φλώρινας Κέντρο ΠΛΗ.ΝΕ.Τ. Ταυτότητες ΤΑΥΤΟΤΗΤΕΣ Δ/ση Β /θµις Εκπ/σης Φλώρις Κέτρο ΠΛΗ.ΝΕ.Τ. Τυτότητες ΤΑΥΤΟΤΗΤΕΣ Τυτότητ ποκλείτι η ισότητ άµεσ σε δύο λγερικές πρστάσεις, η οποί ληθεύει γι όλες τις τιµές τω µετλητώ πό τις οποίες ε- ξρτώτι οι λγερικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ. Ενότητα 6 ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ ΜΙΓΑ ΙΚΟΙ Ενότητ 6 ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΟΛΟΚΛΗΡΩΜΑΤΩΝ Ορισµό ΑΟΡΙΣΤΟ ΟΛΟΚΛΗΡΩΜΑ Έστω f µί συνάρτηση ορισµένη σε έν διάστηµ. Αρχιή συνάρτηση ή πράουσ f στο ονοµάζετι άθε συνάρτηση F που είνι πρωίσιµη στο ι ισχύει

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά;

ΘΕΜΑ Α Α1. Τι ονομάζεται διάμεσος δ ενός δείγματος ν παρατηρήσεων που έχουν διαταχθεί σε αύξουσα σειρά; ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΕΜΠΤΗ 4 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ι ΗΜΕΡΗΣΙΑ ΘΕΜΑ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα

ΚΕΦΑΛΑΙΟ 1 Αόριστο & Ορισμένο Ολοκλήρωμα Ορισμό ΚΕΦΑΛΑΙΟ Αόριστ & Ορισμέν Ολκλήρωμ Αρχική-Πράγυσ Πράγυσ ή Αρχική ή Αντιπράγωγ μι συνάρτηση f, σε έν διάστημ Δ νμάζετι η πργωγίσιμη συνάρτηση F γι την πί ισχύει F ( ) = f ( ) γι κάθε Ξ D π.χ. π.χ.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Έστω η πργωγίσιμη συνάρτηση f: (, + ) R γι την οποί ισχύει η σχέση f() yf(y) = yf + y y γι κάθε, y (, + ) i. Ν δειχθεί ότι η f είνι στθερή στο (, + ). ii. Εάν iii.

Διαβάστε περισσότερα

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ

ΚΑΡΑΓΕΩΡΓΟΣ ΒΑΣΙΛΗΣ - ΜΑΥΡΑΓΑΝΗΣ ΣΤΑΘΗΣ ΚΑΡΑΓΕΩΡΓΟ ΒΑΙΗ - ΜΑΥΡΑΓΑΝΗ ΤΑΘΗ ΠΑΝΕΗΝΙΕ ΕΞΕΤΑΕΙ 5 - - Οι πρκάτω σημειώσεις βσίστηκν στ έντυπ του Κ.Ε.Ε. (999 ) κι στη θεμτοδοσί των Πνελλδικών Εξετάσεων στ Μθημτικά Κτεύθυνσης της Γ υκείου. τις επόμενες

Διαβάστε περισσότερα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα

Θέμα: Ολοκληρώματα. Υπολογισμός ολοκληρωμάτων. Μέθοδοι ολοκλήρωσης. Εμβαδά. Η συνάρτηση που ορίζεται από ολοκλήρωμα Θέμ: Ολοκληρώμτ Υολογισμός ολοκληρωμάτων Μέθοδοι ολοκλήρωσης Εμβδά Η συνάρτηση ου ορίζετι ό ολοκλήρωμ Ενλητικές σκήσεις ολοκληρωμάτων ΥΠΟΛΟΓΙΣΜΟΣ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΜΕ ΕΥΡΕΣΗ ΤΗΣ ΑΡΧΙΚΗΣ ή ΠΑΡΑΓΟΥΣΑΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ

Επαναληπτικό Διαγώνισµα Μαθηµατικών Γ Λυκείου ΕΠΑΛ ΘΕΜΑ Α Επνληπτικό Διγώνισµ Μθηµτικών Γ Λυκείου ΕΠΑΛ Α. Ν δώσετε τον ορισµό της συχνότητς κι της σχετικής συχνότητς µις πρτήρησης x i. (7 Μονάδες) Α. Ν χρκτηρίσετε τις προτάσεις που κολουθούν, γράφοντς

Διαβάστε περισσότερα

ΔΟΚΙΜΙΑ ΔΙΔΑΚΤΙΚΗΣ ΜΕ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ Η συμβολή των γεωμετρικών αναπαραστάσεων στην απόδειξη μαθηματικών προτάσεων

ΔΟΚΙΜΙΑ ΔΙΔΑΚΤΙΚΗΣ ΜΕ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ Η συμβολή των γεωμετρικών αναπαραστάσεων στην απόδειξη μαθηματικών προτάσεων y y=e y= ð 3 e Ä Ã Å 2 y = ln lnð 1 O A Â 1 lnð 2 e 3 ð 4 Δημήτρης Α. Ντρίζος Σχολ. Σύμ. Μθημτικών ΔΟΚΙΜΙΑ ΔΙΔΑΚΤΙΚΗΣ ΜΕ ΘΕΜΑΤΑ ΑΝΑΛΥΣΗΣ Η συμολή των γεωμετρικών νπρστάσεων στην πόδειξη μθημτικών προτάσεων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΕΚΘΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ. Δίνετι η εκθετική συνάρτηση: f a Γι ποιες τιμές του η ) γνησίως ύξουσ; β) γνησίως φθίνουσ; ( ) είνι:. Δίνοντι οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Έστω η πργωγίσιμη συνάρτηση f: (, + ) R γι την οποί ισχύει η σχέση f() yf(y) = yf + y y γι κάθε, y (, + ) i. Ν δειχθεί ότι η f είνι στθερή στο (, + ). ii. Εάν iii.

Διαβάστε περισσότερα

αριθμών Ιδιότητες της διάταξης

αριθμών Ιδιότητες της διάταξης Ανισότητες Διάτξη πργμτικών ριθμών Ιδιότητες της διάτξης Διάτξη (σύγκριση) δύο ριθμών. Πώς μπορούμε ν συγκρίνουμε δύο ριθμούς κι ; Απάντηση Ο ριθμός είνι μεγλύτερος του (συμολικά > ), ότν η διφορά είνι

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ

ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΕΠΑΝΑΛΗΨΗ - ΤΥΠΟΛΟΓΙΟ ΚΕΦΑΛΑΙΟ Ο : ΙΑΝΥΣΜΑΤΑ Ιδιότητες πρόσθεσης δινυσµάτων () + = + () ( + ) + γ = + ( + γ) (3) + = (4) + ( ) =. Αν Ο είνι έν σηµείο νφοράς, τότε γι κάθε διάνυσµ ΑΒ έχουµε: AB = OB OA

Διαβάστε περισσότερα

f(x) dx ή f(x) dx f(x) dx

f(x) dx ή f(x) dx f(x) dx ΓΕΝΙΚΕΥΜΕΝΑ ΟΛΟΚΛΗΡΩΜΑΤΑ Ορισμός. Αν η f είνι ολοκληρώσιμη στο διάστημ [ a, ) ή στο διάστημ (,], τότε ονομάζουμε γενικευμένο ολοκλήρωμ είδους το ολοκλήρωμ της μορφής f() d ή - f() d Ορισμός. Το σημείο

Διαβάστε περισσότερα

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους

Πραγματικοί αριθμοί Οι πράξεις & οι ιδιότητες τους 0 Πργμτικοί ριθμοί Οι πράξεις & οι ιιότητες τους Βρέντζου Τίν Φυσικός Μετπτυχικός τίτλος ΜEd: «Σπουές στην εκπίευση» 0 1 Πργμτικοί ριθμοί : Αποτελούντι πό τους ρητούς ριθμούς κι τους άρρητους ριθμούς.

Διαβάστε περισσότερα

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x)

a lim x 1.7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( x ) ΒΑΣΙΚΑ ΟΡΙΑ , a R * ΠΑΡΑΤΗΡΗΣΗ : Ενώ αν f(x) < g(x) κοντά στο x 0, τότε lim f(x) lim g(x) 7 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ ( ) ΒΑΣΙΚΑ ΟΡΙΑ + - - a v α άρτιος α περιττός 0 ar * ΠΑΡΑΤΗΡΗΣΗ : Εώ α f() < g() κοτά στο 0 τότε f() g() ότα + εώ f()

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ

ΑΛΓΕΒΡΑ. Για να βρούµε την δύναµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωνα µε την ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ ο ΜΙΓΑΔΙΚΟΙ - ΜΕΘΟΔΟΛΟΓΙΑ κ Για α βρούµε τη δύαµη i (όπου κ ακέραιος), διαιρούµε το κ µε το 4 και σύµφωα µε τη ταυτότητα της διαίρεσης ισχύει κ=4ρ+υ όπου ρ Ζ και υ = 0,,, οπότε i κ 4ρ+

Διαβάστε περισσότερα

Για παραγγελίες των βιβλίων 2310610920

Για παραγγελίες των βιβλίων 2310610920 Για παραγγελίες των βιβλίων 369 Θέματα Προσομοίωσης Πανελλαδικών D.A.T. ΘΕΜΑ o ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 3 ΑΠΡΙΛΙΟΥ 8 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ

ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΣΩΣΤΟ - ΛΑΘΟΥΣ 1 01 Θετικοί ριθοί λέοτι οι ριθοί που έχου προστά τους το πρόσηο () 02 Αρητικοί ριθοί λέοτι οι ριθοί που έχου προστά τους το πρόσηο () 03 Το ηδέ είι θετικός ριθός. 04 Οόσηοι

Διαβάστε περισσότερα

Σημειωση Αν καποια προταση απο τις επομενες χρησιμοποιηθει χρειαζεται αποδειξη. Εξαιρεση αποτελουν οι(3),(13),(21)

Σημειωση Αν καποια προταση απο τις επομενες χρησιμοποιηθει χρειαζεται αποδειξη. Εξαιρεση αποτελουν οι(3),(13),(21) È Ö Ñ Ø Ä Ó Ù Ð ËÕÓÐ ËÑ ÖÒ ¾½ÆÓ Ñ ÖÓÙ¾¼¼ È Ö ØÛÔ Ö Ð Ñ ÒÓÒØ Ñ Ö ÔÖÓØ Ñ Ö Ð ÑÑ Ø ÕÖ Ñ È ÖÐ Ý Ø Ü Ø ØÓÑ Ñ Ø ÙÒ Ø ³ÄÙ ÓÙº Σημειωση Αν κποι προτση πο τις επομενες χρησιμοποιηθει χρειζετι ποδειξη. Εξιρεση ποτελουν

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ η ΜΟΡΦΗ ΑΣΚΗΣΕΩΝ: Μς ζητούν ν βρούμε την εξίσωση ενός κύκλου Ν βρεθεί η εξίσωση του κύκλου που έχει κέντρο το σημείο: Κ (3, 3) κι τέμνει πό την ευθεί

Διαβάστε περισσότερα

Μαθηματικά θετικής & τεχνολογικής κατεύθυνσης

Μαθηματικά θετικής & τεχνολογικής κατεύθυνσης ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 5 Μθημτικά θετικής & τεχνολογικής κτεύθυνσης Α. Σχολικό βιβλίο, σελ: 94 ΘΕΜΑ Α Α. Σχολικό βιβλίο, σελ: 88 Α. Σχολικό βιβλίο, σελ: 59 Α4. ) ΛΑΘΟΣ β) ΣΩΣΤΟ γ) ΛΑΘΟΣ δ) ΣΩΣΤΟ ε) ΣΩΣΤΟ

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ

ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ ΟΡΙΣΜΟΣ ΕΦΑΠΤΟΜΕΝΗΣ ΟΡΙΣΜΟΣ ΠΑΡΑΓΩΓΟΥ. Mια συνάρτηση λέμε ότι είναι παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού ( της, αν υπάρει το lim και είναι πραγματικός αριθμός. Το όριο αυτό λέγεται παράγωγος της στο και συμβολίζεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 24 ΜΑΪΟΥ 202 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

3x 2x 1 dx. x dx. x x x dx.

3x 2x 1 dx. x dx. x x x dx. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση (Υολογισμός του f () d Βσιζόμενος σε Ιδιότητες Ή στην Αρχική της f, η οοί Βρίσκετι ό Κνόνες Πργώγισης) Ν υολογίσετε το ολοκλήρωμ ( + ) d (Θέμ Β) Άσκηση (Υολογισμός του f () d

Διαβάστε περισσότερα

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012

Μαθηματικά Γ Λυκείου. Έκδοση Α. 120 Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων. Αθήνα 2012 (λίγο πριν τις εκλογές) 5/5/2012 Μαθηματικά Γ Λυκείου Ασκήσεις προσδοκούν να προαχθούν σε θέµατα εξετάσεων 5/5/ Έκδοση Α Θετική και Τεχνολογική Κατεύθυνση ( mac964@gmail.com) Αθήνα (λίγο πριν τις εκλογές) Επαναληπτικές ασκήσεις που φιλοδοξούν

Διαβάστε περισσότερα

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( )

Ορισμένο ολοκλήρωμα συνάρτησης Η συνάρτηση F( x ) = ( ) 9 Ορισμένο ολοκλήρωμ συνάρτησης Η συνάρτηση F( = f t dt Θεωρούμε τη συνεχή συνάρτηση f:a R με A = [,] Χωρίζουμε το [,] σε ν ισομήκη υοδιστήμτ ου το κθέν έχει μήκος Δ = Σε κάθε υοδιάστημ ου σχημτίζετι ν

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. Δύο μηχνικά κύμτ ίδις συχνότητς διδίδοντι σε ελστική χορδή. Αν λ 1 κι λ 2 τ μήκη κύμτος υτών των κυμάτων ισχύει: ) λ 1 λ 2 γ) λ 1 =λ 2 Δικιολογήστε την πάντησή

Διαβάστε περισσότερα

β± β 4αγ 2 x1,2 x 0.

β± β 4αγ 2 x1,2 x 0. Ορισµοί, ισότητα, µέτρο, άθροισµα µιγαδικώ αριθµώ Μιγαδικό επίπεδο Γεωµετρική παράσταση του αθροίσµατος µιγαδικώ αριθµώ ax 3 + β x + γ x+ δ = 0 Η προσπάθεια επιλύσεως εξισώσεω 3 ου βαθµού ( ) και δευτεροβαθµίω

Διαβάστε περισσότερα

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου

ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. Περιέχει την ύλη που διδάσκεται στα Μαθηματικά της Κατεύθυνσης στη Γ Λυκείου ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ Περιέχει την ύλη που διδάσκετι στ Μθημτικά της Κτεύθυνσης στη Γ Λυκείου Στους δσκάλους μου με ευγνωμοσύνη Στους μθητές μου με ελπίδ Κάθε γνήσιο ντίτυπο έχει την ιδιόχειρη υπογρφή του συγγρφέ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mαρτίου 2011 ΘΕΜΑ: «Ι ΑΚΤΙΚΟ ΥΛΙΚΟ Γ ΛΥΚΕΙΟΥ Μ. Κ.: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ»

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mαρτίου 2011 ΘΕΜΑ: «Ι ΑΚΤΙΚΟ ΥΛΙΚΟ Γ ΛΥΚΕΙΟΥ Μ. Κ.: ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ» ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Ηράκλειο, 3 Mρτίου Aρ. πρ. 66 ΠΕΡΙΦΕΡΕΙΑΚΗ /ΝΣΗ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ. Ε. Ν. ΗΡΑΚΛΕΙΟΥ ηµήτριος Ι. Μπουνάκης Σχολικός Σύµουλος Μθηµτικών Τχ. /νση

Διαβάστε περισσότερα

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2

Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ = Γ. β1 = β2 Α. ΕΞΙΣΩΣΕΙΣ ΣΥΣΤΗΜΑΤΑ ΕΙΔΗ ΕΞΙΣΩΣΗΣ ( ΔΙΕΡΕΥΝΗΣΗ ΕΞΙΣΩΣΗΣ): i. αχ=β µε α 0 έχει µία λύση ii. 0χ=β µε β 0 αδύατη εξίσωση ( καµία λύση ) iii. 0χ=0 αόριστη εξίσωση ( άπειρες λύσεις ) ΕΙΔΗ ΣΥΣΤΗΜΑΤΟΣ (ΔΙΕΡΕΥΝΗΣΗ

Διαβάστε περισσότερα

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1

lim f(x) =, τότε f(x)<0 κοντά στο x Επιμέλεια : Ταμπούρης Αχιλλέας M.Sc. Mαθηματικός 1 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 8 ΜΑΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΤΕΣΣΕΡΙΣ (4) ΘΕΜΑ Α Α.

Διαβάστε περισσότερα

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x,

Θέματα. Α1. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του x, Θέμα Α Θέματα Α. Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα (, ), με εξαίρεση ίσως ένα σημείο του, στο οποίο όμως η f είναι συνεχής. Να αποδείξετε ότι αν η f() διατηρεί πρόσημο στο (, ) (, ), τότε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤEΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο A. Έστω µια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΤΡΙΤΗ 3 IOYNIOY 04 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

στους μιγαδικούς αριθμούς

στους μιγαδικούς αριθμούς Πράξεις στους μιγαδικούς αριθμούς Πρόσθεση μιγαδικώ αριθμώ Βασικές ασκήσεις Βασική θεωρία α) ) Πώς γίεται η πρόσθεση δύο μιγαδικώ αριθμώ; ) Ποια είαι η γεωμετρική ερμηεία του αθροίσματος δύο μιγαδικώ;

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ κυρία ΦΟΥΝΤΟΥΛΑΚΗ ΑΓΓΕΛΙΚΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Ν ρεθεί η εξίσωση του κύκλου σε κθεµιά πό τις πρκάτω περιπτώσεις: ) έχει κέντρο την ρχή των ξόνων κι κτίν ) έχει κέντρο το σηµείο (3, - 1) κι κτίν 5 γ) έχει κέντρο το σηµείο (-, 1) κι διέρχετι πό το

Διαβάστε περισσότερα

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ. Αόριστο ολοκλήρωμα. Ερωτήσεις θεωρίας

ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ. Αόριστο ολοκλήρωμα. Ερωτήσεις θεωρίας ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ Αόριστο ολοκλήρωμ Ερωτήσεις θεωρίς Ποι ρολήμτ οδήγησν στην νάγκη ορισμού της ρχικής συνάρτησης ; Δώστε τον ορισμό της ρχικής συνάρτησης ή ράγουσς f στο Δ κι έν ράδειγμ Πολλές φορές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 )

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( 2001 2011 ) ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( 2003 2011 ) ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ( & ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΕΙΣ Ο.Ε.Φ.Ε. ( Επιμέλεια Συρραφή Θεμάτων Ζαχαριάδης Λάζαρος - Μαθηματικός ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΑΠΟ ΕΩΣ ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ

Διαβάστε περισσότερα

+ + = + + α ( β γ) ( )

+ + = + + α ( β γ) ( ) ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ Αριθµητική παράσταση Αριθµητική παράσταση λέγεται µια σειρά αριθµώ που συδέοται µεταξύ τους µε πράξεις. Η σειρά τω πράξεω σε µια αριθµητική παράσταση είαι η εξής: 1. Υπολογίζουµε

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÁÍÅËÉÎÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Μ. Τρίτη 3 Απριλίου 3 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ Α. Σχολικό βιβλίο,

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 3 Μ Α Θ Η Μ Α Τ Ι Κ Α Κ Α T E Y Θ Υ Ν Σ Η Σ Ε ι μ ε λ ε ι : Τ κ η ς Τ σ κ λ κ ο ς o ΘΕΜΑ Π ν ε λ λ δ ι κ ε ς Ε ξ ε τ σ ε ι ς ( 3 ) A. Εστω f μι συνεχης συνρτηση σε εν διστημ [, β].

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Γενικής Παιδείας Γ Λυκείου Επνληπτικό Διγώνισμ Μθημτικών Γενικής Πιδείς Γ Λυκείου Θέμ A Α. Ν ποδείξετε ότι η πράγωγος της συνάρτησης f(x)=x ισούτι με x, δηλδή(x ) =x. (6 μονάδες) A. Ν δώσετε τον ορισμό:. του ξιωμτικού ορισμού της

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ II ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ II ΕΠΑΛ (ΟΜΑ Α Β ) ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις της µορφής G() F() + c, c

Διαβάστε περισσότερα

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ

ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ «Αρχή σοφίς φόος Κυρίου» ( Ψλµός 110, 10.) ΓΥΜΝΑΣΙΟ: ΤΑΞΗ : Γ ΓΥΜΝΑΣΙΟΥ ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ: ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ Ι ΑΚΤΙΚΟΙ ΣΤΟΧΟΙ ΟΙ ΜΑΘΗΤΕΣ ΠΡΕΠΕΙ: Ν γνωρίζουν πότε µι ισότητ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0

16 Ασύμπτωτες. όπως φαίνεται στα παρακάτω σχήματα. 1. Κατακόρυφη ασύμπτωτη. Η ευθεία x = x0 6 Ασύμπτωτες Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορίζουμε μια ευθεία ( ε ) ως ασύμπτωτη της γραφικής παράστασης της αν η απόσταση ενός μεταβλητού σημείου Ρ της γραφικής παράστασης από την ευθεία ( ε ) γίνεται

Διαβάστε περισσότερα

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015

Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 2000-2015 Θέµατα Εξετάσεων Γ Λυκείου Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης 000-05 Περιεχόµενα Θέµατα Επαναληπτικών 05............................................. 3 Θέµατα 05......................................................

Διαβάστε περισσότερα

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση.

που έχει αρχή την αρχική θέση του κινητού και τέλος την τελική θέση. . Εθύγρµµη κίνηση - - ο ΓΕΛ Πετρούπολης. Χρονική στιγμή t κι χρονική διάρκει Δt Χρονική στιγμή t είνι η μέτρηση το χρόνο κι δείχνει πότε σμβίνει έν γεγονός. Χρονική διάρκει Δt είνι η διφορά δύο χρονικών

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE ΚΕΦΑΛΑΙΟ ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Πηγή: KEE 1. Το σηµείο Μ (-, ) νήκει στη γρµµή µε εξίσωση Α. = = - Γ. = 1. ( ) ( - ) = 1 Ε. = -. Το κέντρο του κύκλου που έχει διάµετρο ΑΒ µε Α

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Ν γράψετε στο τετράδιό σς τον ριθμό κθεμιάς πό τις πρκάτω ερωτήσεις - 4 κι δίπλ το γράμμ που ντιστοιχεί στη σωστή πάντηση.. Η ρχή της επλληλίς

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα