ELEKTRONIKA ZER DEN ETA NOLA KOKATZEN DEN HISTORIAN

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ELEKTRONIKA ZER DEN ETA NOLA KOKATZEN DEN HISTORIAN"

Transcript

1 1. DISPOSITIBOAK ELEKTRONIKA ZER DEN ETA NOLA KOKATZEN DEN HISTORIAN Gaurko hzteg entzklopedko batzuek azaltzen dutenez, elektronka elektro askeek esku hartuz jazotzen dren gertakarak aztertzen dtuen fskaren atala eta jakntza horren ondorozko teknologa da (Elhuyar). Beste entzklopeda batzuetan agertzen den defnzo honek doenez, elektronka gasetan, hutsean edo erderoaleetan gertatzen den kargen mugmenduar buruzko zentza eta teknologa da. Beraz, metaletako kargen mugmendua ez da sartzen elektronkan, elektrkan bazk. Bana metalak elektronkan ere erabltzen dra, nosk. Elektronka eta elektrka defnzo bakar batez bereztea ez da, beraz, erraza. Edonola ere, gaur egun, elektronka nformazoa garraatzen duten senale elektrkoak prozesatzeko behar dren sstema fskoekn lotzen da. Elektronkak, XIX mendearen azken urteetan eta XX. mendearen haseran egn ztuen lehenengo urratsak, gara hartako hanbat gertakzun nabarmenen btartez: elektroaren aurktzea (1897), lehenengo osaga elektronkoak fabrkatzea (zp katodkoen hoda , hutseko dodoa eta trodoa 1906-) eta elektronkaren han lotuta dagoen Irrat Dfusoaren sortzea (1922).

2 Bana gaur egungo elektronka ahalbdetzen duen aurrerapena XX. mendearen erdaldeko urteetan gertatu zen: egoera soldoko elektronka sortu zen, materal erderoaleen ezaugarretan onarrtuz. Gaurko elektronka guzten onarra den transstorea asmatzea (1947) zan zen mugarr nagusa. Hortk aurrera, dspostbo eta zrkutuen garapena oso azkarra zan bazen ere, zrkutu ntegratua (1958) zan zen hurrengo mugarr nagusa. Horrek onarr bakarrean osaga antz fabrkatzea eta trnkotasun espazal zugarra ekarrko dtu. Haren garapenean eznbestekoa zan zen plano bakarreko teknologa a berehala sortu zen, eta lehenengo zrkutu ntegratuak 1961an saldu zren. 70eko hamarkadan, elektronkak azken urrats kualtatboa egn zuen: INTEL etxeak lehenengo prozesadorea sortu zuen, transstore txp bakarrean ntegratuz. Ordutk hona, fabrkazo-teknologen garapena dela eta, ntegrazo eskala karagarrro handtu da: gaur egungo prozesadoreetan, 125 mlo transstore/cm 2 bano gehago eraktzen dra (eta urterako aurrekuspena mlo transstore/cm 2 da). ELEKTRONIKA TITULAZIOAN ETA TELEKOMUNIKAZIOETAKO INGENIARIAREN LANBIDEAN NON KOKATZEN DEN Telekomunkazoek elektronkarekn harreman estua zan dute bet, eta beren balabdeak, elektronkark gabe, pentsaeznak lrateke. Eta ez hor bakarrk: telekomunkazoa elektronkaren aplkazo (eta motbazo) nagusetakoa zan da. Hala, ngenar elektronkoa eta telekomunkazo-ngenara snonmoak zaten zren XX. mendearen azken laurdenerano. Gaur egun, telekomunkazo-ngenaren proflean, beste arlo berrago batzuk ere sartu dra (telematka eta senaleen prozesatzea, besteak beste), bana elektronkak ttulazoaren onarretako bat zaten jarratuko du. Testunguru horretan, Onarrzko Elektronkako Laborategarekn batera, Telekomunkazo Ingenartzako kasleek Elektronkarekn duten lehenengo harremana zaten da rakasga hau. Gero, beste hamar rakasga elektronko kasten dra nahtaez. Ganera, rakasga ez elektronko batzuek elektronkan garaturko kontzeptuak -eta zer esank ez, aparatu elektronkoak- erablko dtuzte. Lehenengo kasturteko rakasgaen artean, Zrkutuen Teora da rakasgark antzekoena, bana haren helburuak eta Dspostboen Elektronkarenak oso ezberdnak dra. Zrkutuen Teoran, osagaak nahko snpleak zaten dra eta konplexutasuna, normalean, zrkutuen ebazpenean datza. Bertan, besteak beste zrkutu abstraktuak ebazteko bdeak azaltzen dra. Dspostboen Elektronkan, aldz, osaga elektronko batzuen ezaugarrak ondoroztatuko dra, gero -Zrkutuen Teoran onarrtuz- zenbat zrkutu elektronko 2

3 analzatzeko asmoz. Elektronkaren onarrar eskanko dogu gure arreta, eta erderoaleen ezaugarrak, dodoa eta transstoreak analzatuko dtugu. Geroago etorrko dren kasga elektronkoetan, zrkutu analogko mamtsuak analzatuko dra: anplfkadore operazonala, elkadura turrak, oszladoreak, senalemodulatzaleak... eta, orobat, zrkutu eta osaga elektronko dgtal nteresgarrak : senaledgtalzatzaleak, mkroprozesadoreak, memorak, dspostbo logko programagarrak. Bde horretan, praktka ugar egngo dra, askotarko tresnera erablz. Lanbde batzuetan, aparatu elektronkoak erabltzeko, barneko funtzonamendua jaktea ez da beharrezkoa zaten. Eta nola dablen jakteko, osaga bakotzaren barneko egtura edo funtzonamendua zehazk ezagutzea ere ez da beharrezkoa zaten. Bana hor jaktea bet dra komengarrak. Azaleko erableran ez bagara geratzen eta, adbdez, zrkutu berrak dsenatzen badtugu, zehazk kontrolatu behar dugu osagaen erablera. Eta horrek onarr fskoak jaktea eskatu oh du. Zer esank ez dspostboen fabrkazoan, garapenean edo kerkuntzan lan egteko: orduan, barneko ezagutza hor, nahtaezko blakatzen da. 1.1 Onarrzko kontzeptuak SISTEMAK: SARRERA, IRTEERA ETA POLARIZAZIOA Ba zrkutu elektronko snpleenetan ba sstema konplexuetan, nformazo fluxuar dagokonez, zrkutuak funtzo-kutxen bdez ordezkatzen dra. Normalean, senalea ezkerraldetk sartzen da eta, prozesatu eta gero, ematza eskunaldetk rteten da. Sstema konplexuak funtzo jakneko kutxa multzo batez osatzen dra. Gure senaleek zaera elektrkoa zaten dute -tentso edo korronteak zaten dra-, bana bestelako txura ere har dezakete. Sstema batean senaleek egten duten blbdea nahko luzea eta koraplatsua gerta lteke, eta zaera ezberdnak har dtzake. Adbdez, telebsta-sstema batean, sarrera (sarrerako senalea) objektuen arga zango da. Gero, kamarak arg hor tentso blakatzen du eta, egoktu ondoren, transmsosstemak uhn elektromagnetkoaren formarekn gortzen du antenatk. Mendko errepkagaluak rsten zaon senalea handtu, prozesatu, eta etxeetarantz barreatzen du. Etxeko azp-sstemak uhn elektromagnetkoa antenatk jaso, senale elektrko bhurtu eta anplfkatzen du, eta, azkenean telebstara helarazten du. Bertan, arg blakatzen da prozesatzearen amaeran, eta, fotoek begetan senale nerbosoa eragn ondoren, burmunean sentsazo egoka sortzen da. Telekomunkazo-sstemaren rteera (rteerako senalea), kasu honetan, arga zango da (telebsta ruda). 3

4 Igorlean, errepkagaluan, etxeko ssteman, telebstan,... a edonon, anplfkadoreak topatzen dtugu. Haen erableraren eskemark snpleena 1.1 Irudkoa da. Sarrera Anplfkadorea Irteera Elkadura 1.1 Iruda. Anplfkadore baten eskema Anplfkadorearen egnkzuna senalea handtzea da, eta, horretarako, onarra transstoreetan duten zrkutuak erabltzen dra. Bana rteera sarrera bano handagoa zateko (potentza edo energa gehago zateko) ez da nahkoa zrkutu anplfkadorea erdan jartzea: Zrkutu hor elkatu behar da, ohko ndar elektrkoaz, batera-sstema batez, gasolozko sorgalu batez edo sorgalu fotooltakoez. Egokro lan egteko, kanpotk jarr behar den energa turra, elkadura-turr edo elkadura zendatuko dugu. Sarrera: Sarrerako senalea sorgalu eta sereko npedantza (erresstentza) batez aderazten da normalean. Fskok sstema oso bat zan dateke, bana bata transduktore snple bat ere (tenperatura-sentsorea da transduktorearen adbde bat. Horrek, behn elkatuz gero, tenperaturarekko proportzonala den tentsoa ematen du; -adbdez, 10 mv/ºc-). Anplfkatze zrkutua eta polarzazoa: Sarrerak (transduktoreak, adbdez) ematen duen senalea oso txka zaten denez, erabl bano lehen anplfkatu behar zaten dugu. Horretarako erabltzen den zrkutu anplfkadorea era askotakoa zan dateke: transstore batez eta b erresstentzaz antola dezakegu, zrkutu ntegratuak erabl datezke, edo sstema nahko konplexu bat egn dateke. Lorturko anplfkatze-rabaza ngurukoa zan dateke, bana, edozen kasutan, zrkutua kanpotk elkatu beharko dugu. Zrkutua polarzatu behar dugu. Irteera: Irteerako senalea sarrerakoa bano egokagoa da lan egteko eta, adbdez, mkrokontrolagalu batera sartzeko prest legoke (nolabat, deskrbatzen ar garen rteera hau, hurrengo etaparen sarrera da) Irteerako senaleak aurktuko duen zrkutua (kasu honetan, mkrokontrolagalua) npedantza batez aderazten da. Inpedantza horr karga detzen dogu. 4

5 SEINALE JARRAITUAK ETA SEINALE ALTERNOAK Badra denboran zehar aldatzen ez dren senaleak. Senale hore jarratuak edo zuzenak dertze. Adbdez, 1.5 olteko pla baten b termnaletan edo tenperatura neurtzen duen sentsore baten rteeran dagoen tentsoa (oltmetroa jartzen badugu, neurketa gutx aldatzen da momentu batetk bestera). Aldz, ahotsar dagokon senalea (hau da, mkrofonotk lortzen den tentsoa), adbdez, oso azkar aldatzen da. Tentso edo korronte horr senale alterno detzen dogu. Senale baten batez besteko baloa nulua denean, berrz, alterno garba dertzogu Askotan, errazago lan egtearren, senale osoak onarrzko b osagatan deskonposatzen dtugu: batetk, jarratua (senalearen batez besteko baloa) eta, bestetk, alternoa (senale osoar batez bestekoa kenduz lortzen dena: forma bereko senalea, bana batez besteko balo hutsekoa). Informazoa, gehenetan, osaga alternoan ager da. Berezteko asmoz, senalearen osagaak honela aderazten dra: Jarratuko osagaak, letra larrz eta azp-ndze larrz. Alternoko osagaak, letra xehez eta azp-ndze xehez. Senale osoak, letra xehez eta azp-ndze larrz. 1.2 Irudko eskeman, sarrerako tentsoa ( ), senale alternoa da; polarzazokoa (V PP ), aldz, jarratua; eta rteerako senaleak b osaga dtu, jarratua eta alternoa (tentsoar dagokonez, V L zuzena- eta l alternoa-; korrontearen b osagaak I L zuzena- eta l alternoa-). Senale osoa L edo L da. L load (karga) htzetk dator, bana, batzuetan, O azpndzea erabltzen da (output htzetk). Sarrerako senaleetarako, I azp-ndzea (ngelesezko n htzetk) erabltzen da. Etxean erabltzen dtugun aparatuetan (ordenadorean, adbdez), jatorrzko elkadura 220 olteko tentso alternoa da (sare elektrkotk, entxufetk, jasotzen duguna, han zuzen ere). Aparatuen barneko zrkutu elektronkoetan elkadura gsa senale jarratuak erabl oh drenez (adbdez, ordenadorearen CPU delakoa edo dsko gogorra elkatzeko, 5 edo 3.5 olteko tentsoa erabl oh da), normalean,, tentso alternoa jarratu bhurtzeko bloke bat egoten da aparatuan sartu bezan laster. Bloke hor elkadura-turra da. 5

6 V LOAD LOAD (t) = V LOAD + load (t) V mean t V LOAD t load (t) t 1.2 Iruda. Senale jarratuak edo zuzenak eta alternoak. Htzartutako kurrak. 1.2 Dspostboen ereduak Azkenean, zrkutu batean dspostbo bat erabl behar badugu, gehen nteresatzen zaguna beraren portaera aurrekustea da. Eta portaera horren ezaugarr nagusak kanpoko termnal metalkoetan agertuko dren tentso eta korronteen arteko erlazoak dra. Erlazo horek matematkok edo grafkok (I-V kurben bdez) aderaz oh dra. Osaga elektronko baten funtzonamendua edo I-V kurbak zehaztasun osoz jakteko, ekuazo fskoetatk aba gatezke. Bana horen ebazpena latza da (ordenadorea behar zaten da, haren anals fskotk sortzen dren ekuazo multzoa ebaztea eznezkoa baltzateke bestela). I-V kurbak lortzeko beste bde bat, osagaa hartu eta zuzenean neurtzea da. Dspostboen deskrbapenk onena dra kurba espermental horek, eta fabrkatzaleek dspostbo-multzo bakotzar dagozkonak datu-lburuetan slatzen dtuzte. 6

7 Bana osagaa modelo lneal snple batez ordeztea edo modelatzea da erablgarrena. Snplea zank, eredua hurblketa bat besterk ez da zango (ez da zehatza zango), eta, zur ask, egoera oso berezetan ez da balagarra zango, bana gur nteresatzen zagun tartean gure lan-puntuan- dspostboaren portaera nahko ong deskrbatzen badu, erablgarra zango da. Modelo lnealera rsteko b bde dtugu (kus 1.3 Iruda): Ekuazo zehatz guztak planteatu ondoren, zenbat fenomeno edo ekuazo hutsrtzz, ekuazo snpleagoak lortuz eta ebatzz modelo lnealera, snplera, heltzea. Neurtutako kurbetatk zenbat hurblketa egnez, kurba horen ekuazo balokdeak sortzea. Kurba elektrkoen neurgalua Neurtuz I-V kurbak edo ezaugarr - kurbak Fabrkazoa Atalez atal lneal bhurtuz Dspostbo erreala Dspostboaren eredu snplea (lneala) Fska elektronka Ebatzz eta laburblduz Anals matematkoa Ebatzz Ekuazo konplexuetatk, ekuazo lnealetara 1.3 Iruda. Osagaen modelaketa eta I-V kurben erablera 7

8 Hala, dspostboen aderazpenak hru forma zan dtzake: Zrkutu-kurra: zrkutuetan osagaa rudkatzeko marrazka. Batzuetan, balo nomnala jartzen da ondoan. Ekuazo matematkoa: = () ( olt, anpere). Ezaugarr-kurbak edo dspostboaren kurba karakterstkoak: ekuazo matematkoen aderazpen grafkoa. Kurbak teorkoak zan datezke, bana erablgarragoak dra datu-lburuetako kurba espermentalak. 1.3 Dspostboen ezaugarr-kurbak: korronte-tentso eta transferentz kurbak ATE BAKARREKO OSAGAIAK: KORRONTE TENTSIOAREN EZAUGARRI KURBA Ate bakarreko dspostboetan b nodo edo termnal daudenez, tentso bakar bat eta korronte bakar bat ezar datezke. Beraz, b aldaga daude: I eta V. Dspostboen zaerak b aldagaen arteko erlazo bat (ekuazo bat) ematen dgu. Osagaa zrkutu batean sartzean, zrkutuak fnkatzen du korronte eta tentsoaren arteko bgarren erlazoa. Beraz, b ekuazoetatk b aldagaak ebatzz, I eta V jakngo dtugu. Jarraan, ate bakarreko dspostbo batzuen aderazpenak aurkeztuko dtugu. Erresstentza 1 = R R 1.4 Iruda. Erresstentzaren kurra, I-V kurba eta ekuazoa Hau da, R(Ω) baloko erresstentzan erortzen den tentsoa hura bera zeharkatzen duen korrontearekko proportzonala da, eta R da proportzoaren konstantea. 8

9 V ss baloko Tentso Sorgalu Independentea Sorgalu horrek V SS baloan mantentzen du tentsoa bet, eta, horretarako, zrkutuak eskatzen duen korrontea ematen do (edo hartu). = V SS = V DC = VSS = ac _ peak sn( wt) V SS 1.5 Iruda. Tentso Sorgalu Independentearen kurra, I-V kurba eta ekuazoa I ss baloko Korronte Zuzeneko Sorgalu Independentea: Osaga horrek I SS korrontea njektatzen du bet zrkutura, eta horretarako behar den tentsoa ematen du edo jasanten du. I SS S S = I = I SS SS = I = DC ac _ peak sn( wt) 1.6 Iruda. Korronte Sorgalu Independentearen kurra, I-V kurba eta ekuazoa Zrkutulaburra eta zrkutu reka Zrkutulaburra ON egoeran dagoen etengaluaren (edo kable baten) parekoa da. Erresstentza nuluko osagaa denez, = 0 beteko da bet. Kanpoko zrkutuak fnkatuko du korrontea. Beste kuspuntu batetk, zero baloko tentso-sorgalua ere bada. Zrkutu reka, OFF egoeran dagoen etengaluaren (edo erresstentza nfntu baten) parekoa da. Korrontea, pasabderk ez duenez, nulua da eta = 0 beteko da bet. Ganontzeko zrkutuek fnkatzen dute tentsoa. 9

10 Beraz, zero baloko korronte-sorgalutzat ere har dateke, nolabat. = 0 = Iruda. Zrkutulaburraren (ezk) eta zrkutu rekaren (esk) ezaugarr-kurbak, kurrak eta ekuazoak BI ATEKO DISPOSITIBOAK: SARRERA, IRTEERA ETA TRANSFERENTZIA KURBA KARAKTERISTIKOAK Dspostbo edo zrkutu askok b ate dtuzte kanpoaldearekn komunkatzeko. Ate horetako bat sarreratzat hartzen da eta bestea, rteeratzat. Ate bakotzean, b nodo edo termnal daude, eta batetk joaten den korrontea bestetk tzultzen da. Kutxaren barruan dagoena nah dugun bezan snplea edo konplkatua zan dateke. Sarrerako kanpoko zrkutua B ateko zrkutua 2 Irteerako kanpoko zrkutua Iruda. B ateko zrkutua 1.8 Irudan kusten denez, badaude lau aldaga ezagutzen ez dtugunak, eta zrkutuak haen arteko b erlazo ematen dzkgu. Kanpoko b zrkutuek ekuazo bana emanez, lau erlazo eta lau aldaga dtuen sstema ebazten da. Grafkok aderazteko, b erlazo zatea(?) nahkoa zan arren arren, normalean hru kurba aurkezten dra: sarrerako I-V kurba, rteerako I-V kurba eta sarreratk rteerarako transferentza-kurba. Zer da transfertzen (edo pasatzen) da? Batzuetan tentsoa, bestetan korrontea edo potentza, bana, azkenean, nformazoa. Ondoren, b ateko dspostbo batzuk aurkeztuko dtugu. 10

11 Tentsoaren bdez kontrolatutako tentso-sorgalua: Erlazoak honako hauek dra: 1 = 0 2 = μ = k 1 1 = k Iruda. Tentsoaren menpeko tentso-sorgalua: a) kurra b) sarrerako ezaugarra c) rteerako ezaugarra d) transferentza-kurba Sarrera eta rteera erlazonatzen dtuen konstantea (μ) transmtantza da. 1.9.c Irudan 2 korrontearen eta 2 tentsoaren arteko erlazoa aderazteko, 1 tentsoar balo jakn batzuk eman behar zazko. Korrontearen bdez kontrolatutako korronte-sorgalua: Erlazo analtkoak honako hauek dra: 1 = 0 2 = β 1 Irteera eta sarrera erlazonatzen dtuen konstantea (β) transmtantza da c Irudan 2 eta 2 aldagaen arteko erlazoa aderazteko, 1 parametro gsa erabltzen da. 11

12 1 1 1 = k = k Iruda. Korronte menpeko korronte-sorgalua. a) kurra b) sarrerako ezaugarra c) rteerako ezaugarra d) transferentz kurba B ateko beste dspostbo batzuk 1.11 Irudan, korrontez kontrolatutako tentso-sorgalua ( 1 = 0; 2 = r m x 1 ) eta tentsoz kontrolatutako korronte-sorgalua ( 1 = 0; 2 = g m x 1 ) rudkatu dra. a) b) 1.11 Iruda. Tentsoz kontrolatutako korronte-sorgalua (a) eta korrontez kontrolatutako tentso-sorgalua (b) 12

DINAMIKA. c Ugutz Garitaonaindia Antsoategi Ingeniaritza Mekanikoa Saila Gasteizko I.I.T. eta T.I.T.U.E. Euskal Herriko Unibertsitatea

DINAMIKA. c Ugutz Garitaonaindia Antsoategi Ingeniaritza Mekanikoa Saila Gasteizko I.I.T. eta T.I.T.U.E. Euskal Herriko Unibertsitatea DINAMIKA c Ugutz Gartaonanda Antsoateg Ingenartza Mekankoa Sala Gastezko I.I.T. eta T.I.T.U.E. Euskal Herrko Unbertstatea 2000/2001 kasturtea Índce 1. SARRERA 3 2. INDARRAK 3 3. ERREFERENTZIA SISTEMA DINAMIKAN.

Διαβάστε περισσότερα

OINARRIZKO KONTZEPTUAK

OINARRIZKO KONTZEPTUAK Onarrzko kontzeptuak OINARRIZKO KONTZEPTUAK Makromolekulak, polmeroak eta monomeroak Zuntzak, plastkoak, kautxuak eta elastomeroak makromolekulaz osaturk daude. Makromolekulak ohzko molekulak, hau da,

Διαβάστε περισσότερα

Bero-transmisioa. Jose Luis Ayastuy Arizti EUSKARAREN ARLOKO ERREKTOREORDETZAREN SARE ARGITALPENA

Bero-transmisioa. Jose Luis Ayastuy Arizti EUSKARAREN ARLOKO ERREKTOREORDETZAREN SARE ARGITALPENA Bero-transmsoa Jose Lus Ayastuy Arzt EUSKARAREN ARLOKO ERREKTOREORDETZAREN SARE ARGITALPENA ISBN: 978-84-9082-029-2 Lburu honek UPV/EHUko Euskararen Arloko Errektoreordetzaren drulaguntza jaso du aurkbdea

Διαβάστε περισσότερα

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x

Διαβάστε περισσότερα

= 32 eta β : z = 0 planoek osatzen duten angelua.

= 32 eta β : z = 0 planoek osatzen duten angelua. 1 ARIKETA Kalkulatu α : 4x+ 3y+ 10z = 32 eta β : z = 0 planoek osatzen duten angelua. Aurki ezazu α planoak eta PH-k osatzen duten angelua. A'' A' 27 A''1 Ariketa hau plano-aldaketa baten bidez ebatzi

Διαβάστε περισσότερα

DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( )

DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( ) DERIBAZIO-ERREGELAK.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. Izan bitez D multzo irekian definituriko f funtzio erreala eta puntuan deribagarria dela esaten da baldin f ( f ( D puntua. f zatidurak

Διαβάστε περισσότερα

7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i

7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i 7.GAIA. ESTATISTIKA DESKRIBATZAILEA 1. Osatu ondorengo maiztasun-taula: x i N i f i 1 4 0.08 2 4 3 16 0.16 4 7 0.14 5 5 28 6 38 7 7 45 0.14 8 2. Ondorengo banaketaren batezbesteko aritmetikoa 11.5 dela

Διαβάστε περισσότερα

1. Gaia: Mekanika Kuantikoaren Aurrekoak

1. Gaia: Mekanika Kuantikoaren Aurrekoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 12 Laburpena 1 Uhin-Partikula Dualtasuna 2 Trantsizio Atomikoak eta Espektroskopia Hidrogeno Atomoaren Espektroa Bohr-en Eredua 3 Argia: Partikula (Newton)

Διαβάστε περισσότερα

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK

INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK INDUSTRI TEKNOLOGIA I, ENERGIA ARIKETAK 1.-100 m 3 aire 33 Km/ordu-ko abiaduran mugitzen ari dira. Zenbateko energia zinetikoa dute? Datua: ρ airea = 1.225 Kg/m 3 2.-Zentral hidroelektriko batean ur Hm

Διαβάστε περισσότερα

9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko

9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko 9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomikoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 21 Laburpena 1 Espektroskopiaren Oinarriak 2 Hidrogeno Atomoa Espektroskopia Esperimentua

Διαβάστε περισσότερα

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea. Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia

Διαβάστε περισσότερα

GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK)

GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK) GAILU ETA ZIRKUITU ELEKTRONIKOAK. 2011/2015-eko AZTERKETEN BILDUMA (ENUNTZIATUAK ETA SOLUZIOAK) Recart Barañano, Federico Pérez Manzano, Lourdes Uriarte del Río, Susana Gutiérrez Serrano, Rubén EUSKARAREN

Διαβάστε περισσότερα

DBH3 MATEMATIKA ikasturtea Errepaso. Soluzioak 1. Aixerrota BHI MATEMATIKA SAILA

DBH3 MATEMATIKA ikasturtea Errepaso. Soluzioak 1. Aixerrota BHI MATEMATIKA SAILA DBH MATEMATIKA 009-010 ikasturtea Errepaso. Soluzioak 1 ALJEBRA EKUAZIOAK ETA EKUAZIO SISTEMAK. EBAZPENAK 1. Ebazpena: ( ) ( x + 1) ( )( ) x x 1 x+ 1 x 1 + 6 x + x+ 1 x x x 1+ 6 6x 6x x x 1 x + 1 6x x

Διαβάστε περισσότερα

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 AURKIBIDEA Or. I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 1.1. MAGNITUDEAK... 7 1.1.1. Karga elektrikoa (Q)... 7 1.1.2. Intentsitatea (I)... 7 1.1.3. Tentsioa ()... 8 1.1.4. Erresistentzia elektrikoa

Διαβάστε περισσότερα

Banaketa normala eta limitearen teorema zentrala

Banaketa normala eta limitearen teorema zentrala eta limitearen teorema zentrala Josemari Sarasola Estatistika enpresara aplikatua Josemari Sarasola Banaketa normala eta limitearen teorema zentrala 1 / 13 Estatistikan gehien erabiltzen den banakuntza

Διαβάστε περισσότερα

ERREAKZIOAK. Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea

ERREAKZIOAK. Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea ERREAKZIAK Adizio elektrozaleak Erredukzio erreakzioak Karbenoen adizioa Adizio oxidatzaileak Alkenoen hausketa oxidatzailea ADIZI ELEKTRZALEK ERREAKZIAK idrogeno halurozko adizioak Alkenoen hidratazioa

Διαβάστε περισσότερα

Solido zurruna 2: dinamika eta estatika

Solido zurruna 2: dinamika eta estatika Solido zurruna 2: dinamika eta estatika Gaien Aurkibidea 1 Solido zurrunaren dinamikaren ekuazioak 1 1.1 Masa-zentroarekiko ekuazioak.................... 3 2 Solido zurrunaren biraketaren dinamika 4 2.1

Διαβάστε περισσότερα

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu)

1-A eta 1-8 ariketen artean bat aukeratu (2.5 puntu) UNIBERTSITATERA SARTZEKO HAUTAPROBAK 2004ko EKAINA ELEKTROTEKNIA PRUEBAS DE ACCESO A LA UNIVERSIDAD JUNIO 2004 ELECTROTECNIA 1-A eta 1-8 ariketen artean bat aukeratu (2.5 1-A ARIKETA Zirkuitu elektriko

Διαβάστε περισσότερα

1. jarduera. Zer eragin du erresistentzia batek zirkuitu batean?

1. jarduera. Zer eragin du erresistentzia batek zirkuitu batean? 1. jarduera Zer eragin du erresistentzia batek zirkuitu batean? 1. Hastapeneko intentsitatearen neurketa Egin dezagun muntaia bat, generadore bat, anperemetro bat eta lanpa bat seriean lotuz. 2. Erresistentzia

Διαβάστε περισσότερα

Hirukiak,1. Inskribatutako zirkunferentzia. Zirkunskribatutako zirkunferentzia. Aldekidea. Isoszelea. Marraztu 53mm-ko aldedun hiruki aldekidea

Hirukiak,1. Inskribatutako zirkunferentzia. Zirkunskribatutako zirkunferentzia. Aldekidea. Isoszelea. Marraztu 53mm-ko aldedun hiruki aldekidea Hirukiak, Poligonoa: elkar ebakitzen diren zuzenen bidez mugatutako planoaren zatia da. Hirukia: hiru aldeko poligonoa da. Hiruki baten zuzen bakoitza beste biren batuketa baino txiakiago da eta beste

Διαβάστε περισσότερα

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa

LANBIDE EKIMENA. Proiektuaren bultzatzaileak. Laguntzaileak. Hizkuntz koordinazioa Elektroteknia: Ariketa ebatzien bilduma LANBDE EKMENA LANBDE EKMENA LANBDE EKMENA roiektuaren bultzatzaileak Laguntzaileak Hizkuntz koordinazioa Egilea(k): JAO AAGA, Oscar. Ondarroa-Lekeitio BH, Ondarroa

Διαβάστε περισσότερα

1 Aljebra trukakorraren oinarriak

1 Aljebra trukakorraren oinarriak 1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,

Διαβάστε περισσότερα

15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA

15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA 15. EREMU EFEKTUKO TRANSISTOREAK I: SAILKAPENA ETA MOSFETA KONTZEPTUA Eremu-efektuko transistorea (Field Effect Transistor, FET) zirkuitu analogiko eta digitaletan maiz erabiltzen den transistore mota

Διαβάστε περισσότερα

EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA

EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA AIXERROTA BHI EREMU GRABITATORIOA ETA UNIBERTSOKO GRABITAZIOA 2012 uztaila P1. Urtebete behar du Lurrak Eguzkiaren inguruko bira oso bat emateko, eta 149 milioi km ditu orbita horren batez besteko erradioak.

Διαβάστε περισσότερα

Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra

Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra Solido zurruna 1: biraketa, inertzia-momentua eta momentu angeluarra Gaien Aurkibidea 1 Definizioa 1 2 Solido zurrunaren zinematika: translazioa eta biraketa 3 2.1 Translazio hutsa...........................

Διαβάστε περισσότερα

3. KOADERNOA: Aldagai anitzeko funtzioak. Eugenio Mijangos

3. KOADERNOA: Aldagai anitzeko funtzioak. Eugenio Mijangos 3. KOADERNOA: Aldagai anitzeko funtzioak Eugenio Mijangos 3. KOADERNOA: ALDAGAI ANITZEKO FUNTZIOAK Eugenio Mijangos Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saila Zientzia eta Teknologia

Διαβάστε περισσότερα

Zinematika 2: Higidura zirkular eta erlatiboa

Zinematika 2: Higidura zirkular eta erlatiboa Zinematika 2: Higidura zirkular eta erlatiboa Gaien Aurkibidea 1 Higidura zirkularra 1 1.1 Azelerazioaren osagai intrintsekoak higidura zirkularrean..... 3 1.2 Kasu partikularrak..........................

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,

Διαβάστε περισσότερα

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa.

Elementu baten ezaugarriak mantentzen dituen partikularik txikiena da atomoa. Atomoa 1 1.1. MATERIAREN EGITURA Elektrizitatea eta elektronika ulertzeko gorputzen egitura ezagutu behar da; hau da, gorputz bakun guztiak hainbat partikula txikik osatzen dituztela kontuan hartu behar

Διαβάστε περισσότερα

FISIKA ETA KIMIKA 4 DBH Higidurak

FISIKA ETA KIMIKA 4 DBH Higidurak 1 HASTEKO ESKEMA INTERNET Edukien eskema Erreferentzia-sistemak Posizioa Ibibidea eta lekualdaketa Higidura motak Abiadura Abiadura eta segurtasun tartea Batez besteko abiadura eta aldiuneko abiadura Higidura

Διαβάστε περισσότερα

1 GEOMETRIA DESKRIBATZAILEA...

1 GEOMETRIA DESKRIBATZAILEA... Aurkibidea 1 GEOMETRIA DESKRIBATZAILEA... 1 1.1 Proiekzioa. Proiekzio motak... 3 1.2 Sistema diedrikoaren oinarriak... 5 1.3 Marrazketarako hitzarmenak. Notazioak... 10 1.4 Puntuaren, zuzenaren eta planoaren

Διαβάστε περισσότερα

Aldagai Anitzeko Funtzioak

Aldagai Anitzeko Funtzioak Aldagai Anitzeko Funtzioak Bi aldagaiko funtzioak Funtzio hauen balioak bi aldagai independenteen menpekoak dira: 1. Adibidea: x eta y aldeetako laukizuzenaren azalera, S, honela kalkulatzen da: S = x

Διαβάστε περισσότερα

Poisson prozesuak eta loturiko banaketak

Poisson prozesuak eta loturiko banaketak Gizapedia Poisson banaketa Poisson banaketak epe batean (minutu batean, ordu batean, egun batean) gertaera puntualen kopuru bat (matxura kopurua, istripu kopurua, igarotzen den ibilgailu kopurua, webgune

Διαβάστε περισσότερα

1. praktika Elikadura-iturria eta polimetroaren maneiua. Oinarrizko neurketak: erresistentzia, tentsioa eta korrontea.

1. praktika Elikadura-iturria eta polimetroaren maneiua. Oinarrizko neurketak: erresistentzia, tentsioa eta korrontea. eman ta zabal zazu Informatika Fakultatea, EHU Konputagailuen Arkitektura eta Teknologia Saila ktl'2001 KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA 1. zatia: Instrumentazioa (I) 1. praktika Elikadura-iturria

Διαβάστε περισσότερα

OREKA KIMIKOA GAIEN ZERRENDA

OREKA KIMIKOA GAIEN ZERRENDA GAIEN ZERRENDA Nola lortzen da oreka kimikoa? Oreka konstantearen formulazioa Kc eta Kp-ren arteko erlazioa Disoziazio-gradua Frakzio molarrak eta presio partzialak Oreka kimikoaren noranzkoa Le Chatelier-en

Διαβάστε περισσότερα

9. K a p itu lu a. Ekuazio d iferen tzial arrun tak

9. K a p itu lu a. Ekuazio d iferen tzial arrun tak 9. K a p itu lu a Ekuazio d iferen tzial arrun tak 27 28 9. K A P IT U L U A E K U A Z IO D IF E R E N T Z IA L A R R U N T A K UEP D o n o stia M ate m atik a A p lik atu a S aila 29 Oharra: iku rra rekin

Διαβάστε περισσότερα

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK

4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK 4. GAIA MASAREN IRAUPENAREN LEGEA: MASA BALANTZEAK GAI HAU IKASTEAN GAITASUN HAUEK LORTU BEHARKO DITUZU:. Sistema ireki eta itxien artea bereiztea. 2. Masa balantze sinpleak egitea.. Taula estekiometrikoa

Διαβάστε περισσότερα

Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35; 0,32; 0,32; 2,2 atm; 2,03 atm; 2.03 atm c) 1,86; 0,043

Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35; 0,32; 0,32; 2,2 atm; 2,03 atm; 2.03 atm c) 1,86; 0,043 KIMIKA OREKA KIMIKOA UZTAILA 2017 AP1 Emaitzak: a) 0,618; b) 0,029; 1,2 EKAINA 2017 AP1 Emaitzak:a) 0,165; 0,165; 1,17 mol b) 50 c) 8,89 atm UZTAILA 2016 BP1 Emaitzak: a) 0,148 mol; 6,35 atm; b) 0,35;

Διαβάστε περισσότερα

GIZA GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA I BINOMIALA ETA NORMALA 1

GIZA GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA I BINOMIALA ETA NORMALA 1 BINOMIALA ETA NORMALA 1 PROBABILITATEA Maiztasu erlatiboa: fr i = f i haditze bada, maiztasuak egokortzera joko dira, p zebaki batera hurbilduz. Probabilitatea p zebakia da. Probabilitateak maiztasue idealizazioak

Διαβάστε περισσότερα

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9

Magnetismoa. Ferromagnetikoak... 7 Paramagnetikoak... 7 Diamagnetikoak Elektroimana... 8 Unitate magnetikoak... 9 Magnetismoa manak eta imanen teoriak... 2 manaren definizioa:... 2 manen arteko interakzioak (elkarrekintzak)... 4 manen teoria molekularra... 4 man artifizialak... 6 Material ferromagnetikoak, paramagnetikoak

Διαβάστε περισσότερα

Oinarrizko Elektronika Laborategia I PRAKTIKAK

Oinarrizko Elektronika Laborategia I PRAKTIKAK Oinarrizko Elektronika Laborategia I PRAKTIKAK I. PRAKTIKA - Osziloskopioa I. Alternoko voltimetroa. Karga efektua. Helburuak Osziloskopioaren aginteen erabilpenean trebatzea. Neurgailuek zirkuituan eragiten

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren

Διαβάστε περισσότερα

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2

Fisika. Jenaro Guisasola Ane Leniz Oier Azula. Irakaslearen gidaliburua BATXILERGOA 2 Fisika BATXILEGOA Irakaslearen gidaliburua Jenaro Guisasola Ane Leniz Oier Azula Obra honen edozein erreprodukzio modu, banaketa, komunikazio publiko edo aldaketa egiteko, nahitaezkoa da jabeen baimena,

Διαβάστε περισσότερα

Proba parametrikoak. Josemari Sarasola. Gizapedia. Josemari Sarasola Proba parametrikoak 1 / 20

Proba parametrikoak. Josemari Sarasola. Gizapedia. Josemari Sarasola Proba parametrikoak 1 / 20 Josemari Sarasola Gizapedia Josemari Sarasola Proba parametrikoak 1 / 20 Zer den proba parametrikoa Proba parametrikoak hipotesi parametrikoak (hau da parametro batek hartzen duen balioari buruzkoak) frogatzen

Διαβάστε περισσότερα

(1)σ (2)σ (3)σ (a)σ n

(1)σ (2)σ (3)σ (a)σ n 5 Gaia 5 Determinanteak 1 51 Talde Simetrikoa Gogoratu, X = {1,, n} bada, X-tik X-rako aplikazio bijektiboen multzoa taldea dela konposizioarekiko Talde hau, n mailako talde simetrikoa deitzen da eta S

Διαβάστε περισσότερα

Diamanteak osatzeko beharrezkoak diren baldintzak dira:

Diamanteak osatzeko beharrezkoak diren baldintzak dira: 1 Diamanteak osatzeko beharrezkoak diren baldintzak dira: T= 2,000 C eta P= 50,000 a 100,000 atmosfera baldintza hauek bakarrik ematen dira sakonera 160 Km-koa denean eta beharrezkoak dira miloika eta

Διαβάστε περισσότερα

4. GAIA: Ekuazio diferenzialak

4. GAIA: Ekuazio diferenzialak 4. GAIA: Ekuazio diferenzialak Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saila Zientzia eta Teknologia Fakultatea Euskal Herriko Unibertsitatea Aurkibidea 4. Ekuazio diferentzialak......................................

Διαβάστε περισσότερα

Gailuen elektronika Azterketen bilduma ( )

Gailuen elektronika Azterketen bilduma ( ) Gailuen elektronika Azterketen bilduma (1999-2009) Federico Recart Barañano Susana Uriarte del Río Rubén Gutiérrez Serrano Iñigo Kortabarria Iparragirre Eneko Fernández Martín EUSKARA ETA ELEANIZTASUNEKO

Διαβάστε περισσότερα

LAUGARREN MULTZOA: EREMU EFEKTUKO TRANSISTOREA

LAUGARREN MULTZOA: EREMU EFEKTUKO TRANSISTOREA LAUGARREN MULZOA: EREMU EFEKUKO RANSSOREA 15. EREMU EFEKUKO RANSSOREAK : SALKAPENA EA MOSFEA 59 15.1 MOSFE transistorearen oinarria: MOS egitura 61 15.1.1 Metal-Oxido-Erdieroale egitura orekan 61 15.1.

Διαβάστε περισσότερα

1. Oinarrizko kontzeptuak

1. Oinarrizko kontzeptuak 1. Oinarrizko kontzeptuak Sarrera Ingeniaritza Termikoa deritzen ikasketetan hasi berri den edozein ikaslerentzat, funtsezkoa suertatzen da lehenik eta behin, seguru aski sarritan entzun edota erabili

Διαβάστε περισσότερα

1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP]

1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP] Ariketak Liburukoak (78-79 or): 1,2,3,4,7,8,9,10,11 Osagarriak 1. Ur-ponpa batek 200 W-eko potentzia badu, kalkulatu zenbat ZP dira [0,27 ZP] 2. Gorputz bat altxatzeko behar izan den energia 1,3 kwh-koa

Διαβάστε περισσότερα

I. ebazkizuna (1.75 puntu)

I. ebazkizuna (1.75 puntu) ESTATISTIKA ENPRESARA APLIKATUA Irakaslea: Josemari Sarasola Data: 2017ko uztailaren 7a, 15:00 Iraupena: Ordu t erdi. 1.75: 1.5: 1.25: 1.5: 2: I. ebazkizuna (1.75 puntu) Bi finantza-inbertsio hauek dituzu

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 1. (2015/2016) 20 cm-ko tarteak bereizten ditu bi karga puntual q 1 eta q 2. Bi kargek sortzen duten eremu elektrikoa q 1 kargatik 5 cm-ra dagoen A puntuan deuseztatu

Διαβάστε περισσότερα

3. Ikasgaia. MOLEKULA ORGANIKOEN GEOMETRIA: ORBITALEN HIBRIDAZIOA ISOMERIA ESPAZIALA:

3. Ikasgaia. MOLEKULA ORGANIKOEN GEOMETRIA: ORBITALEN HIBRIDAZIOA ISOMERIA ESPAZIALA: 3. Ikasgaia. MLEKULA RGAIKE GEMETRIA: RBITALE IBRIDAZIA KARB DERIBATUE ISMERIA ESPAZIALA Vant off eta LeBel-en proposamena RBITAL ATMIKE IBRIDAZIA ibridaio tetragonala ibridaio digonala Beste hibridaioak

Διαβάστε περισσότερα

Atal honetan, laborategiko zirkuituetan oinarrizkoak diren osagai pasibo nagusiak analizatuko ditugu: erresistentziak, kondentsadoreak eta harilak.

Atal honetan, laborategiko zirkuituetan oinarrizkoak diren osagai pasibo nagusiak analizatuko ditugu: erresistentziak, kondentsadoreak eta harilak. 1. SARRERA Atal honetan, laborategiko zirkuituetan oinarrizkoak diren osagai pasibo nagusiak analizatuko ditugu: erresistentziak, kondentsadoreak eta harilak. Horien artean interesgarrienak diren erresistentziak

Διαβάστε περισσότερα

0.Gaia: Fisikarako sarrera. ARIKETAK

0.Gaia: Fisikarako sarrera. ARIKETAK 1. Zein da A gorputzaren gainean egin behar dugun indarraren balioa pausagunean dagoen B-gorputza eskuinalderantz 2 m desplazatzeko 4 s-tan. Kalkula itzazu 1 eta 2 soken tentsioak. (Iturria: IES Nicolas

Διαβάστε περισσότερα

Inekuazioak. Helburuak. 1. Ezezagun bateko lehen orria 74 mailako inekuazioak Definizioak Inekuazio baliokideak Ebazpena Inekuazio-sistemak

Inekuazioak. Helburuak. 1. Ezezagun bateko lehen orria 74 mailako inekuazioak Definizioak Inekuazio baliokideak Ebazpena Inekuazio-sistemak 5 Inekuazioak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Ezezagun bateko lehen eta bigarren mailako inekuazioak ebazten. Ezezagun bateko ekuaziosistemak ebazten. Modu grafikoan bi ezezaguneko lehen

Διαβάστε περισσότερα

Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean

Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean Pablo Mínguez Elektrika eta Elektronika Saila Euskal Herriko Unibertsitatea/Zientzi Fakultatea 644 P.K., 48080 BILBAO Laburpena: Atomo baten

Διαβάστε περισσότερα

Mikel Lizeaga 1 XII/12/06

Mikel Lizeaga 1 XII/12/06 0. Sarrera 1. X izpiak eta erradiazioa 2. Nukleoaren osaketa. Isotopoak 3. Nukleoaren egonkortasuna. Naturako oinarrizko interakzioak 4. Masa-defektua eta lotura-energia 5. Erradioaktibitatea 6. Zergatik

Διαβάστε περισσότερα

2. ERDIEROALEEN EZAUGARRIAK

2. ERDIEROALEEN EZAUGARRIAK 2. ERDIEROALEEN EZAUGARRIAK Gaur egun, dispositibo elektroniko gehienak erdieroale izeneko materialez fabrikatzen dira eta horien ezaugarri elektrikoak dispositiboen funtzionamenduaren oinarriak dira.

Διαβάστε περισσότερα

1. MATERIALEN EZAUGARRIAK

1. MATERIALEN EZAUGARRIAK 1. MATERIALEN EZAUGARRIAK Materialek dituzten ezaugarri kimiko, fisiko eta mekanikoek oso eragin handia dute edozein soldadura-lanetan. Hori guztia, hainbat prozesu erabiliz, metal desberdinen soldadura

Διαβάστε περισσότερα

ekaia Soinua, zarata, musika: argi al daude mugak? Sound, noise, music: are the boundaries clear? Marta Urdanpilleta Landaribar*

ekaia Soinua, zarata, musika: argi al daude mugak? Sound, noise, music: are the boundaries clear? Marta Urdanpilleta Landaribar* Ekaia, 2019, 35, 277-290 https://doi.org/10.1387/ekaia.20041 ekaia ZIENTZIA eta TEKNOLOGIA ALDIZKARIA ISSN 0214-9001 eissn 2444-3255 Soinua, zarata, musika: argi al daude mugak? Sound, noise, music: are

Διαβάστε περισσότερα

I. KAPITULUA Zenbakia. Aldagaia. Funtzioa

I. KAPITULUA Zenbakia. Aldagaia. Funtzioa I. KAPITULUA Zenbakia. Aldagaia. Funtzioa 1. ZENBAKI ERREALAK. ZENBAKI ERREALEN ADIERAZPENA ZENBAKIZKO ARDATZEKO PUNTUEN BIDEZ Matematikaren oinarrizko kontzeptuetariko bat zenbakia da. Zenbakiaren kontzeptua

Διαβάστε περισσότερα

du = 0 dela. Ibilbide-funtzioekin, ordea, dq 0 eta dw 0 direla dugu. 2. TERMODINAMIKAREN LEHENENGO PRINTZIPIOA ETA BIGARREN PRINTZIPIOA

du = 0 dela. Ibilbide-funtzioekin, ordea, dq 0 eta dw 0 direla dugu. 2. TERMODINAMIKAREN LEHENENGO PRINTZIPIOA ETA BIGARREN PRINTZIPIOA . TERMODINAMIKAREN LEHENENGO PRINTZIPIOA ETA BIGARREN PRINTZIPIOA.. TERMODINAMIKAREN LAN-ARLOA Energi eraldaketak aztertzen dituen jakintza-adarra termodinamika da. Materia tarteko den prozesuetan, natural

Διαβάστε περισσότερα

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma)

Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Termodinamika Gaiari lotutako EDUKIAK (127/2016 Dekretua, Batxilergoko curriculuma) Erreakzio kimikoetako transformazio energetikoak. Espontaneotasuna 1. Energia eta erreakzio kimikoa. Prozesu exotermikoak

Διαβάστε περισσότερα

4. Hipotesiak eta kontraste probak.

4. Hipotesiak eta kontraste probak. 1 4. Hipotesiak eta kontraste probak. GAITASUNAK Gai hau bukatzerako ikaslea gai izango da ikerketa baten: - Helburua adierazteko. - Hipotesia adierazteko - Hipotesi nulua adierazteko - Hipotesi nulu estatistikoa

Διαβάστε περισσότερα

KANTEN ETIKA. Etika unibertsal baten bila. Gizaki guztientzat balioko zuen etika bat.

KANTEN ETIKA. Etika unibertsal baten bila. Gizaki guztientzat balioko zuen etika bat. EN ETIKA Etika unibertsal baten bila. Gizaki guztientzat balioko zuen etika bat. Kantek esan zuen bera baino lehenagoko etikak etika materialak zirela 1 etika materialak Etika haiei material esaten zaie,

Διαβάστε περισσότερα

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du.

Elementu honek elektrizitatea sortzen du, hau da, bi punturen artean potentzial-diferentzia mantentzen du. Korronte zuzena 1 1.1. ZIRKUITU ELEKTRIKOA Instalazio elektrikoetan, elektroiak sorgailuaren borne batetik irten eta beste bornera joaten dira. Beraz, elektroiek desplazatzeko egiten duten bidea da zirkuitu

Διαβάστε περισσότερα

Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK

Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK SINUA KOSINUA TANGENTEA ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK sin α + cos α = sin α cos α = tg α 0º, º ETA 60º-KO ANGELUEN ARRAZOI TRIGONOMETRIKOAK

Διαβάστε περισσότερα

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena

Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 AGOITZ. Lan Proposamena Agoitz DBHI Unitatea: JOKU ELEKTRIKOA Orria: 1 1. AKTIBITATEA Lan Proposamena ARAZOA Zurezko oinarri baten gainean joko elektriko bat eraiki. Modu honetan jokoan asmatzen dugunean eta ukitzen dugunean

Διαβάστε περισσότερα

Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa

Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa 1 Zenbaki errealak Helburuak Hamabostaldi honetan hau ikasiko duzu: Zenbaki errealak arrazional eta irrazionaletan sailkatzen. Zenbaki hamartarrak emandako ordena bateraino hurbiltzen. Hurbilketa baten

Διαβάστε περισσότερα

ARRAZOI TRIGONOMETRIKOAK

ARRAZOI TRIGONOMETRIKOAK ARRAZOI TRIGONOMETRIKOAK 1.- LEHEN DEFINIZIOAK Jatorri edo erpin berdina duten bi zuzenerdien artean gelditzen den plano zatiari, angelua planoan deitzen zaio. Zirkunferentziaren zentroan erpina duten

Διαβάστε περισσότερα

EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA

EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA EUSKARA ERREKTOREORDETZAREN SARE ARGITALPENA 1.1. Topologia.. 1.. Aldagai anitzeko funtzio errealak. Definizioa. Adierazpen grafikoa... 5 1.3. Limitea. 6 1.4. Jarraitutasuna.. 9 11 14.1. Lehen mailako

Διαβάστε περισσότερα

Ekuazioak eta sistemak

Ekuazioak eta sistemak 4 Ekuazioak eta sistemak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Bigarren mailako ekuazio osoak eta osatugabeak ebazten. Ekuazio bikarratuak eta bigarren mailako batera murriztu daitezkeen beste

Διαβάστε περισσότερα

3. K a p itu lu a. Aldagai errealek o fu n tzio errealak

3. K a p itu lu a. Aldagai errealek o fu n tzio errealak 3. K a p itu lu a Aldagai errealek o fu n tzio errealak 49 50 3. K AP IT U L U A AL D AG AI E R R E AL E K O F U N T Z IO E R R E AL AK UEP D o n o stia M ate m atik a A p lik atu a S aila 3.1. ARAZOAREN

Διαβάστε περισσότερα

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA

UNITATE DIDAKTIKOA ELEKTRIZITATEA D.B.H JARDUERA. KORRONTE ELEKTRIKOA. Helio atomoa ASKATASUNA BHI 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA 1. JARDUERA. KORRONTE ELEKTRIKOA. 1 1.- ATOMOAK ETA KORRONTE ELEKTRIKOA Material guztiak atomo deitzen diegun partikula oso ttipiez osatzen dira. Atomoen erdigunea positiboki kargatua egon ohi da eta tinkoa

Διαβάστε περισσότερα

EREDU ATOMIKOAK.- ZENBAKI KUANTIKOAK.- KONFIGURAZIO ELEKTRONIKOA EREDU ATOMIKOAK

EREDU ATOMIKOAK.- ZENBAKI KUANTIKOAK.- KONFIGURAZIO ELEKTRONIKOA EREDU ATOMIKOAK EREDU ATOMIKOAK Historian zehar, atomoari buruzko eredu desberdinak sortu dira. Teknologia hobetzen duen neurrian datu gehiago lortzen ziren atomoaren izaera ezagutzeko, Beraz, beharrezkoa da aztertzea,

Διαβάστε περισσότερα

2. ELEKTRONIKA-LABORATEGIKO TEGIKO TRESNERIA 2.1 POLIMETROA Ω. 100 Ω. 10 Ω Analogikoa OINARRIZKO ELEKTRONIKA

2. ELEKTRONIKA-LABORATEGIKO TEGIKO TRESNERIA 2.1 POLIMETROA Ω. 100 Ω. 10 Ω Analogikoa OINARRIZKO ELEKTRONIKA 2. ELEKTRONIKA-LABORATEGIKO TEGIKO TRESNERIA Elektronikan adituak bere lana ondo burutzeko behar dituen tresnak honakoak dira:.- Polimetro analogikoa edo digitala..- Elikatze-iturria..- Behe-maiztasuneko

Διαβάστε περισσότερα

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA

KONPUTAGAILUEN TEKNOLOGIAKO LABORATEGIA eman ta zabal zazu Euskal Herriko Unibertsitatea Informatika Fakultatea Konputagailuen rkitektura eta Teknologia saila KONPUTGILUEN TEKNOLOGIKO LBORTEGI KTL'000-00 Bigarren parteko dokumentazioa: Sistema

Διαβάστε περισσότερα

1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra.

1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra. 1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra. 2. Higidura harmoniko sinplearen ekuazioa. Grafikoak. 3. Abiadura eta azelerazioa hhs-an. Grafikoak. 4. Malguki baten oszilazioa. Osziladore

Διαβάστε περισσότερα

ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi

ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi ESTATISTIKA ENPRESARA APLIKATUA (Bigarren zatia: praktika). Irakaslea: Josemari Sarasola Data: 2016ko maiatzaren 12a - Iraupena: Ordu t erdi I. ebazkizuna (2.25 puntu) Poisson, esponentziala, LTZ Zentral

Διαβάστε περισσότερα

2. PROGRAMEN ESPEZIFIKAZIOA

2. PROGRAMEN ESPEZIFIKAZIOA 2. PROGRAMEN ESPEZIFIKAZIOA 2.1. Asertzioak: egoera-multzoak adierazteko formulak. 2.2. Aurre-ondoetako espezifikazio formala. - 1 - 2.1. Asertzioak: egoera-multzoak adierazteko formulak. Programa baten

Διαβάστε περισσότερα

ANTIMATERIA FIKZIOA OTE?

ANTIMATERIA FIKZIOA OTE? ANTIMATERIA FIKZIOA OTE? Jose Antonio Legarreta Jakina denez XX. mendearen hasiera aldean AL- BERT EINSTEINek Erlatibitate Teoria-ren bere "Teoria Berezia" (1905) eta "Teoria Orokorra" (1916) izeneko ikerlanak

Διαβάστε περισσότερα

Jose Miguel Campillo Robles. Ur-erlojuak

Jose Miguel Campillo Robles. Ur-erlojuak HIDRODINAMIKA Hidrodinamikako zenbait kontzeptu garrantzitsu Fluidoen garraioa Fluxua 3 Lerroak eta hodiak Jarraitasunaren ekuazioa 3 Momentuaren ekuazioa 4 Bernouilli-ren ekuazioa 4 Dedukzioa 4 Aplikazioak

Διαβάστε περισσότερα

9. GAIA: ZELULAREN KITZIKAKORTASUNA

9. GAIA: ZELULAREN KITZIKAKORTASUNA 9. GAIA: ZELULAREN KITZIKAKORTASUNA OHARRA: Zelula kitzikatzea zelula horretan, kinada egokiaren bidez, ekintza-potentziala sortaraztea da. Beraz, zelula kitzikatua egongo da ekintza-potentziala gertatzen

Διαβάστε περισσότερα

Uhin guztien iturburua, argiarena, soinuarena, edo dena delakoarena bibratzen duen zerbait da.

Uhin guztien iturburua, argiarena, soinuarena, edo dena delakoarena bibratzen duen zerbait da. 1. Sarrera.. Uhin elastikoak 3. Uhin-higidura 4. Uhin-higiduraren ekuazioa 5. Energia eta intentsitatea uhin-higiduran 6. Uhinen arteko interferentziak. Gainezarmen printzipioa 7. Uhin geldikorrak 8. Huyghens-Fresnelen

Διαβάστε περισσότερα

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin:

1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1.- Hiru puntutatik konmutaturiko lanpara: 2.- Motore baten bira noranzkoaren aldaketa konmutadore baten bitartez: 3.- Praktika diodoekin: 1 Tentsio gorakada edo pikoa errele batean: Ikertu behar dugu

Διαβάστε περισσότερα

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA

EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA EREMU NAGNETIKOA ETA INDUKZIO ELEKTROMAGNETIKOA Datu orokorrak: Elektroiaren masa: 9,10 10-31 Kg, Protoiaren masa: 1,67 x 10-27 Kg Elektroiaren karga e = - 1,60 x 10-19 C µ ο = 4π 10-7 T m/ampere edo 4π

Διαβάστε περισσότερα

TEKNIKA ESPERIMENTALAK - I Fisikako laborategiko praktikak

TEKNIKA ESPERIMENTALAK - I Fisikako laborategiko praktikak TEKNIKA ESPERIMENTALAK - I Fisikako laborategiko praktikak Fisikako Gradua Ingeniaritza Elektronikoko Gradua Fisikan eta Ingeniaritza Elektronikoan Gradu Bikoitza 1. maila 2014/15 Ikasturtea Saila Universidad

Διαβάστε περισσότερα

Deixia. Anafora edota katafora deritze halako deixi-elementuei,

Deixia. Anafora edota katafora deritze halako deixi-elementuei, Deixia Jardunera edo gogora ekarritako erreferente bat (izaki, leku zein denbora) seinalatzen duen elementu linguistiko bat da deixia. Perpausaren ia osagai guztiek dute nolabaiteko deixia: Orduan etxe

Διαβάστε περισσότερα

Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c

Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c ntzekotasuna NTZEKOTSUN IRUI NTZEKOK NTZEKOTSUN- RRZOI NTZEKO IRUIK EGITE TLESEN TEOREM TRINGELUEN NTZEKOTSUN-IRIZPIEK LEHEN IRIZPIE $ = $' ; $ = $' IGRREN IRIZPIE a b c = = a' b' c' HIRUGRREN IRIZPIE

Διαβάστε περισσότερα

7.1 Oreka egonkorra eta osziladore harmonikoa

7.1 Oreka egonkorra eta osziladore harmonikoa 7. GAIA Oszilazioak 7.1 IRUDIA Milurtekoaren zubia: Norman Foster-ek Londresen egin zuen zubi hau zabaldu bezain laster, ia bi urtez itxi behar izan zuten, egiten zituen oszilazio handiegiak zuzendu arte.

Διαβάστε περισσότερα

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia

1.2. Teoria ekonomikoa, mikroekonomia eta makroekonomia 1. MAKROEKONOMIA: KONTZEPTUAK ETA TRESNAK. 1.1. Sarrera Lehenengo atal honetan, geroago erabili behar ditugun oinarrizko kontzeptu batzuk gainbegiratuko ditugu, gauzak nola eta zergatik egiten ditugun

Διαβάστε περισσότερα

(5,3-x)/1 (7,94-x)/1 2x/1. Orekan 9,52 mol HI dago; 2x, hain zuzen ere. Hortik x askatuko dugu, x = 9,52/2 = 4,76 mol

(5,3-x)/1 (7,94-x)/1 2x/1. Orekan 9,52 mol HI dago; 2x, hain zuzen ere. Hortik x askatuko dugu, x = 9,52/2 = 4,76 mol KIMIKA 007 Ekaina A-1.- Litro bateko gas-nahasketa bat, hasiera batean 7,94 mol hidrogenok eta 5,30 mol iodok osatzen dutena, 445 C-an berotzen da eta 9,5 mol Hl osatzen dira orekan, erreakzio honen arabera:

Διαβάστε περισσότερα

5. GAIA Solido zurruna

5. GAIA Solido zurruna 5. GAIA Solido zurruna 5.1 IRUDIA Giroskopioaren prezesioa. 161 162 5 Solido zurruna Solido zurruna partikula-sistema errazenetakoa dugu. Definizioak (hau da, puntuen arteko distantziak konstanteak izateak)

Διαβάστε περισσότερα

2. GAIA Higidura erlatiboa

2. GAIA Higidura erlatiboa 2. GAIA Higidura erlatiboa 2.1 IRUDIA Foucault-en pendulua Pariseko Panteoian 1851n eta 2003an. 53 54 2 Higidura erlatiboa Bi erreferentzia-sistema inertzialen arteko erlazio zinematikoa 1.2.1 ataleko

Διαβάστε περισσότερα

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA

SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA SELEKTIBITATEKO ARIKETAK: EREMU ELEKTRIKOA 95i 10 cm-ko aldea duen karratu baten lau erpinetako hirutan, 5 μc-eko karga bat dago. Kalkula itzazu: a) Eremuaren intentsitatea laugarren erpinean. 8,63.10

Διαβάστε περισσότερα

EIB sistemaren oinarriak 1

EIB sistemaren oinarriak 1 EIB sistemaren oinarriak 1 1.1. Sarrera 1.2. Ezaugarri orokorrak 1.3. Transmisio teknologia 1.4. Elikatze-sistema 1.5. Datuen eta elikatzearen arteko isolamendua 5 Instalazio automatizatuak: EIB bus-sistema

Διαβάστε περισσότερα

I. ikasgaia: Probabilitateen kalkulua

I. ikasgaia: Probabilitateen kalkulua I. ikasgaia: Probabilitateen kalkulua 1 Eranskina: Konbinatoria 2 Probabilitate kontzeptua 2.1 Laplaceren erregela 2.2 Maiztasun-ikuspuntua 2.3 Ikuspuntu subjektiboa 3 Gertakizunen aljebra 3.1 Aurkako

Διαβάστε περισσότερα

1. SARRERA. 2. OSZILOSKOPIO ANALOGIKOA 2.1 Funtzionamenduaren oinarriak

1. SARRERA. 2. OSZILOSKOPIO ANALOGIKOA 2.1 Funtzionamenduaren oinarriak 1. SARRERA Osziloskopioa, tentsio batek denborarekin duen aldaketa irudikatzeko tresna da. v(t) ADIBIDEZ Y Ardatza (adib.): 1 dibisio = 1 V X Ardatza (adib.): 1 dibisio = 1 ms t 4.1 Irudia. Osziloskopioaren

Διαβάστε περισσότερα