1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3"

Transcript

1 1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! Reflexión e refracción. Leis de Snell! Laminas plano-paralelas! Prisma óptico! Dispersión de la luz! Criterios de signos! Sistemas ópticos! Dioptrio esférico! Dioptrio plano! Espello esférico! Espello plano! Formación de imaxes! Dioptrio esférico! Espello esférico! Lentes delgadas! Tipos de lentes:! Formación de imaxes.! Aberraciones! Instrumentos ópticos! 13 1

2 1.- Evolución das ideas acerca da natureza da luz!! A controversia sobre a natureza da luz é unha das máis interesantes da historia da ciencia. Newton foi defensor da teoría corpuscular, na que a luz se consideraba que estaba formada por corpúsculos que se movían en liña recta. Mediante esta teoría explicou a reflexión e a refracción da luz.!! Se non existe ningún rozamento, a compoñente da cantidade de movemento da partícula paralela á superficie non se ve modificada polo choque, pero a compoñente perpendicular á parede invértese (admitimos que a masa da superficie é moito maior cá da partícula e que a colisión é elástica). Así pois, o ángulo de reflexión é igual ao de incidencia.!! Para a refracción no caso dunha superficie aire - vidro, aire - auga, Newton supoñía que as partículas luminosas eran fortemente atraídas polo vidro ou a auga, de modo que, cando se aproximaban á superficie, recibían un impulso momentáneo que facía aumentar a compoñente da cantidade de movemento perpendicular á superficie. Así, a dirección da cantidade de movemento das partículas luminosas variaba e o feixe luminoso era obrigado a desviarse cara á normal da superficie.!! Explicaba a difracción producida por unha fenda como a dispersión das partículas nos bordes da fenda.!! Os defensores principais da teoría ondulatoria da propagación da luz foron Huygens e Hooke. Huygens demostrou a reflexión e a refracción por medio desta teoría. Newton recoñeceu as virtudes da teoría ondulatoria, en particular porque explicaba as cores formadas polas láminas delgadas; porén, rexeitou a teoría ondulatoria debido á propagación da luz en liña recta, de observación común.!!debido á gran reputación de Newton, está teoría foi rexeitada durante máis dun século.!!en 1801, Thomas Young reavivou a teoría ondulatoria, ao explicar o fenómeno de interferencias mediante esta teoría. Pero o gran revulsivo a esta teoría deullo Fresnel, que realizou un gran número de estudos sobre interferencias e difraccións, e deulle á teoría ondulatoria unha base matemática. Demostrou que la propagación rectilínea da luz era debida á súa pequena lonxitude de onda.! En 1860 Maxwell publicou a súa teoría electromagnética, na que se demostraba que a luz era unha onda, e isto provocou que quedase en desuso a teoría corpuscular.! En 1887, Hertz descubriu o efecto fotoeléctrico, que só se pode demostrar a través da teoría corpuscular. En 1905 Einstein unifica as dúas teorías ao darlle carácter dual. 2.- Óptica xeométrica!! É a parte da óptica que trata, a partir de representacións xeométricas, dos cambios de dirección que experimentan os raios luminosos nos distintos fenómenos de reflexión e refracción.!! A óptica xeométrica parte dos seguintes supostos:!! - Raio é a traxectoria seguida pola enerxía radiante na súa propagación.!! - A luz propágase en liña recta nos medios homoxéneos e isótropos. 2

3 !! - Os raios luminosos son reversibles; o camiño seguido por un raio é independente de que se produza nun determinado sentido ou noutro.!!! - Índice de refracción: n = c/v, é o cociente entre a velocidade da luz no baleiro e a velocidade da luz no medio. Para distintas frecuencias, o índice de refracción toma distinto valor.! Principio de Fermat. Camiño óptico! Consideremos un raio de luz que se propaga nun medio material, con índice de refracción n, entre os puntos P e Q. Nun desprazamento infinitesimal ds cúmprese que v = ds/dt, onde v é a velocidade da luz nese medio. Posto que n = c/v, temos que c/n = ds/dt e, por tanto, dt = n/c ds. O tempo total que tarda a luz en percorrer o camiño S desde P ata Q será: # t= c 1 n ds P Q! Defínese camiño óptico como L = # P Q n ds!! Se o medio é homoxéneo desde o punto de vista óptico, é dicir, se a velocidade da luz e con ela o índice de refracción, é igual en calquera punto; entón pode extraerse n fóra da integral e o camiño óptico é L = n S!! O Principio de Fermat establece que a luz se propaga dun punto a outro seguindo a traxectoria para a cal o tempo que tarda é mínimo. Posto que o tempo que tarda a luz en ir desde un punto a outro está relacionado co camiño óptico que siga, o Principio de Fermat tamén pode enunciarse como segue: A luz propágase entre dous puntos pola traxectoria cuxo camiño óptico sexa mínimo. Nos medios homoxéneos a condición de camiño óptico mínimo redúcese a que a súa lonxitude xeométrica sexa mínima, isto é, unha recta.! Reflexión e refracción. Leis de Snell!! Reflexión: O raio incidente ao chegar á superficie de separación entre dous medios é devolto ao primeiro, dando lugar ao raio reflectido. As leis de reflexión son:!!! - O raio incidente, o raio reflectido e a normal á superficie de separación están no mesmo plano.!! - O ángulo incidente é igual ao ángulo reflectido.!! Refracción: É o cambio na dirección de propagación que experimenta un raio incidente ao pasar dun medio a outro con distinto índice de refracción. As leis de refracción son:!! - O raio incidente, o refractado e a normal están no mesmo plano!! - n sen i = n sen r!!! Existe unha determinada situación na que non hai raio refractado, xa que este se propaga pola superficie de separación; neste caso, o ángulo de refracción vale 90º. Esta situación denomínase reflexión total e o ángulo incidente denomínase ángulo límite. 3

4 ! n sen il = n, sen il= n /n, como o seno é menor que 1, implica que o índice de refracción n ten que ser menor que n, pois a luz viaxa dun medio con maior índice a outro con menor índice de refracción.! Laminas plano-paralelas O ángulo con que incide o raio que sobre a lamina é o mesmo co que sae o raio da lamina. A desviacion lateral que sofre o raio incidente é d!! Prisma óptico A desviación que sofre o raio incidente co raio emerxente do prisma é d! Dispersión de la luz La dispersión es la separación de la luz blanca en los distintos colores, debido a que la velocidad de la luz en un medio cualquiera varía con la longitud de onda (el índice de refracción de un medio y por tanto la velocidad de la luz en el mismo depende de la longitud de onda. Cada color tiene una longitud de onda distinta). Así, para un mismo ángulo de incidencia, la luz se refracta con ángulos distintos para diferentes colores. 4

5 Para ver un arco iris el observador tiene que estar localizado entre el sol y una lluvia uniforme, para ello tienen que caer a una velocidad constante(peso y rozamiento por viscosidad). Cuando se cumple que la velocidad de las gotas es uniforme, la gota adquiere un volumen máximo con la mínima superficie. Sólo en estas condiciones es posible la dispersión luminosa dentro de la gota y por tanto el arco iris. Por lo tanto, la lluvia no debe ser torrencial, ni estar afectada por el viento. 3.- Criterios de signos I. A luz viaxa sempre de esquerda a dereita. II. Os elementos que fan referencia á imaxe son designadas coas mesmas letras que no obxecto, pero con primas. Os puntos represéntanse con letras maiúsculas, os segmentos con letras minúsculas e os ángulos con letras gregas. III. As distancias toman a súa orixe na superficie óptica de xeito que para os puntos situados á súa esquerda, as distancias son negativas e para os situados á súa dereita, as distancias son positivas. Para os radios de curvatura, emprégase o mesmo criterio: se o centro de curvatura está á dereita, o radio é positivo e se está á esquerda o radio é negativo. IV. Os ángulos de incidencia e refracción considéranse positivos se ao levar, por xiro, o raio a coincidir coa normal polo camiño angular máis curto, vaise en sentido horario, e negativos en caso contrario. V. Os ángulos formados co eixe considéranse positivos se ao levar, por xiro, o raio a coincidir co eixe polo camiño angular máis curto, vaise en sentido antihorario, e negativos en caso contrario. VI. As distancias perpendiculares ao eixe considéranse positivas cara a arriba! e negativas cara a abaixo. 5

6 4.- Sistemas ópticos!!! Un sistema óptico é un conxunto de superficies que separan medios con distintos índices de refracción! Dioptrio esférico!! O dioptro esférico é una superficie esférica que separa dous medios de índices de refracción n e n! A lei de refracción para o raio incidente á a seguinte: n senf = nl senfl e se os ángulos son pequenos (zona paraxial), podemos substituír o seno do ángulo polo ángulo: n f = nl f l Dos triángulos OIC e O IC da figura deducimos que: -v + z f = 180; f = z - v f l + v l z = 180; f l = z - vl Substituíndo estas dúas ecuacións na ecuación de refracción, obtemos n(z - v) = n l (z - v l) Na zona paraxial, a distancia VI pódese desprezar, polo que: φ = h r ;σ = h s ;σ = h s substituindo estas expresións na ecuación anterior que é a ecuación de Gauss do dioptro esférico.!!,! n h r h s = n h r h s, expresión que se pode escribir da forma n n l nl - n - s + sl = r 6

7 ! Se o punto O está no infinito, a imaxe O fórmase nun punto particular, denominado foco imaxe F situado a una distancia f, distancia focal imaxe. Se na ecuación do dioptro facemos s= inf, entonces s = f n r f = n - n! Analogamente, para un punto obxecto O cuxa imaxe estea no infinito, obtemos a distancia focal obxecto, n r f =- n - n! O tamaño da imaxe vén dado polo aumento lateral, definido por: y n s y = n s! Dioptrio plano! O dioptro plano é aquel no que a superficie de separación entre dous medios é un plano. A ecuación obtense da do dioptro esférico facendo o radio infinito, de xeito que queda da seguinte forma n n n n - s + = 0, s s = s! Espello esférico!! Se se trata dunha superficie esférica reflectinte, podemos deducir as ecuacións correspondentes só con facer n = -n, pois nun espello, a luz sempre viaxa no mesmo medio, pero en sentido contrario despois da reflexión.! Así pois, para unha superficie esférica reflectinte, a ecuación de Gauss é a seguinte: 1 s + 1 s = 2 r e o valor da focal é: f = f = r/2, no espello esférico só hai un foco. 1 s + 1 s = 1 f Para obter o tamaño da imaxe, calculamos o aumento lateral β, cuxa expresión é β = y y = s s! Espello plano! A ecuación obtense a partir da do espello esférico facendo que o radio teña un valor de 1 1 s + = 0, s 1 s =-, s =-s s 1 a imaxe fórmase á mesma distancia á que se atopa o obxecto 7

8 5.- Formación de imaxes Dioptrio esférico Espello esférico!! a) Cóncavo A imaxe é invertida!!! 1.- Obxecto antes do centro da esfera. A imaxe é real, invertida e de menor tamaño 2.- Obxecto entre o centro e o foco A imaxe é real, invertida e de maior tamaño 8

9 !!! 3.- Obxecto no foco A imaxe fórmase no infinito 4.- Obxecto entre o foco e o espello! b) Convexo A imaxe é virtual, dereita e de maior tamaño!!!!!!!!!!!!!!!!!!!!!!!! A imaxe é virtual, dereita e de menor tamaño 9

10 6.- Lentes delgadas! Una lente delgada non é máis ca a asociación de duas superficies esféricas separadas por unha distancia d = 0! Supoñamos un raio que incide na lente procedente dun punto axial O. A imaxe dada pola primeira superficie, O, estará situada a unha distancia s 1 dela e a s 2 da segunda cara da lente.! Se aplicamos a ecuación do dioptro a estas dúas superficies, obtemos: Y s1 s 1 s 2 Y1 =Y2 Y 1 + n s 1 s 1 n + 1 s 2 s 2 = n 1 r 1 = 1 n r 2 s2 Sumando estas duas ecuacións 1 + n n + 1 = n n s 1 s 1 s 2 s 2 r 1 r = ( n 1) 1 s 1 s 2 r 1 r 2 + n 1 1 s 2 s 1 Se a lente é delgada, d=0 e s 2 = s 1 e a expresión anterior queda: ( ) 1 1 s + 1 s = n 1 1 r 1 r 2 Se o obxecto ten a imaxe no infinito, o obxecto se atopa no foco obxecto a unha distancia chamada distancia focal obxecto f. 1 f = n 1 ( ) 1 1 r 1 r 2 Se o obxecto esta no infinito, a imaxe se atopa no foco imaxe a unha distancia chamada distancia focal imaxe f. 1 f = n 1 ( ) 1 1 r 1 r 2 A distancia focal imaxe ten o mesmo valor que a distancia focal obxecto pero cambiada de signo.! A ecuación da lente queda: 1 s + 1 s = 1 f 10

11 A inversa da distancia focal denomínase potencia e a súa unidade é a dioptría se a distancia focal está expresada en metros. O aumento lateral para a lente será o produto dos aumentos de cada unha das superficies. β = β s 1 1 β 2 = ns 2 ns 1 s 2 β = s posto que s 1 = s 2 s! Tipos de lentes: As lentes clasifícanse en converxentes e diverxentes Lente converxente: é máis grosa na súa parte central; clasifícanse en biconvexas(r 1 >0 e r 2 <0), planoconvexas(r 1 >0 e r 2 = inf ) e meniscoconvergente (r 1 >0, r 2 >0 e r 1 <r 2 ).!! Lente diverxente: é más grosa nos extremos; clasifícanse en bicóncavas(r 1 <0 e r 2 >0), planocóncavas(r 1 = inf e r 2 >0) e meniscodiverxente (r 1 >0, r 2 >0 e r 1 >r 2 ).! Formación de imaxes.! a) Converxentes! 1.- Obxecto situado a unha distancia maior que o dobre da distancia focal s F F s!!! A imaxe é real, invertida e de menor tamaño! 2.- Obxecto situado a unha distancia dobre da distancia focal.! s F F s!!!!! A imaxe é real, invertida e de igual tamaño. 11

12 !! 3.- Obxecto situado antes do foco. Y F F Y Imaxe real, invertida e de maior tamaño 4.- Obxecto situado entre o foco e a lente s F s F! b) Diverxentes Imaxe virtual, dereita e de maior tamaño s F s F Imaxe virtual, dereita e de menor tamaño! 7.- Aberraciones Los instrumentos ópticos causan en las imágenes defectos o aberraciones, que son consecuencia de las leyes de reflexión-refracción de la luz. Las aberraciones mas comunes son: aberración esférica y aberración cromática a) Aberración esférica: Todo lo estudiado hasta ahora estaba restringido a la óptica paraxial, pero no todos los rayos van próximos al eje óptico sobre todo si el tamaño del instrumento óptico es grande. Esta aberración es típica de espejos y lentes, en ellos los rayos paralelos se cortan en el foco, pero este punto es distinto en el caso de rayos paraxiales de los que no lo son. Los 12

13 rayos no paraxiales convergen en un punto mas cercano a la lente si esta es convergente, y mas alejado si es divergente. Para eliminar la aberración esférica se puede utilizar un diaframa que elimina los rayos no paraxiales o, en el caso de lentes usando una combinación del lentes divergente-convergente. b) Aberración cromática : Se origina porque la luz no es monocromática, los distintos colores tienen distintas longitudes de onda, distinto indice de refracción, por lo que no convergen todos los colores en un punto, el color azul converge antes que el color rojo. Este defecto se corrige usando una combinación de lentes. Los espejos no sufre aberración cromática porque no hay fenómeno de refracción 8.- Instrumentos ópticos 13

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10

Διαβάστε περισσότερα

Exercicios de Física 04. Óptica

Exercicios de Física 04. Óptica Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)

Διαβάστε περισσότερα

ÓPTICA- A LUZ Problemas PAAU

ÓPTICA- A LUZ Problemas PAAU ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

Tema 3. Espazos métricos. Topoloxía Xeral,

Tema 3. Espazos métricos. Topoloxía Xeral, Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores

Διαβάστε περισσότερα

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735

Διαβάστε περισσότερα

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O? EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: RECTAS E PLANOS

EXERCICIOS DE REFORZO: RECTAS E PLANOS EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA íica P.A.U. ÓPTICA ÓPTICA INTRODUCIÓN MÉTODO. En xeral: Debúxae un equema co raio. Compárae o reultado do cálculo co equema. 2. No problema de lente: Trázae un raio paralelo ao eixe óptico que ao chegar

Διαβάστε περισσότερα

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo. XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que

Διαβάστε περισσότερα

TRIGONOMETRIA. hipotenusa L 2. hipotenusa

TRIGONOMETRIA. hipotenusa L 2. hipotenusa TRIGONOMETRIA. Calcular las razones trigonométricas de 0º, º y 60º. Para calcular las razones trigonométricas de º, nos ayudamos de un triángulo rectángulo isósceles como el de la figura. cateto opuesto

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei

Διαβάστε περισσότερα

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior. ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta.

A proba constará de vinte cuestións tipo test. As cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Páxina 1 de 9 1. Formato da proba Formato proba constará de vinte cuestións tipo test. s cuestións tipo test teñen tres posibles respostas, das que soamente unha é correcta. Puntuación Puntuación: 0.5

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exercicios de Física 02a. Campo Eléctrico

Exercicios de Física 02a. Campo Eléctrico Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial

Διαβάστε περισσότερα

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson

1 La teoría de Jeans. t + (n v) = 0 (1) b) Navier-Stokes (conservación del impulso) c) Poisson 1 La teoría de Jeans El caso ás siple de evolución de fluctuaciones es el de un fluído no relativista. las ecuaciones básicas son: a conservación del núero de partículas n t + (n v = 0 (1 b Navier-Stokes

Διαβάστε περισσότερα

ln x, d) y = (3x 5 5x 2 + 7) 8 x

ln x, d) y = (3x 5 5x 2 + 7) 8 x EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)

Διαβάστε περισσότερα

Métodos Matemáticos en Física L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro APL)

Métodos Matemáticos en Física L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro APL) L4F. CONDICIONES de CONTORNO+Fuerzas Externas (Cap. 3, libro Condiciones de contorno. Fuerzas externas aplicadas sobre una cuerda. condición que nos describe un extremo libre en una cuerda tensa. Ecuación

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B ABAU Código: 25 MODELO DE EXAME FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119

SOLUCIONES DE LAS ACTIVIDADES Págs. 101 a 119 Página 0. a) b) π 4 π x 0 4 π π / 0 π / x 0º 0 x π π. 0 rad 0 π π rad 0 4 π 0 π rad 0 π 0 π / 4. rad 4º 4 π π 0 π / rad 0º π π 0 π / rad 0º π 4. De izquierda a derecha: 4 80 π rad π / rad 0 Página 0. tg

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo

Διαβάστε περισσότερα

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 204 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Proba de Avaliación do Bacharelato para o Acceso á Universidade Código: 23 XUÑO 2018 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado).

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016

Tema 1. Espazos topolóxicos. Topoloxía Xeral, 2016 Tema 1. Espazos topolóxicos Topoloxía Xeral, 2016 Topoloxía e Espazo topolóxico Índice Topoloxía e Espazo topolóxico Exemplos de topoloxías Conxuntos pechados Topoloxías definidas por conxuntos pechados:

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

Reflexión e refracción. Coeficientes de Fresnel

Reflexión e refracción. Coeficientes de Fresnel Tema 5 Reflexión e refracción Coeficientes de Fresnel 51 Introdución Cando a luz incide sobre a superficie de separación de dous medios transparentes de índice de refracción diferente, unha parte entra

Διαβάστε περισσότερα

PAU Xuño 2011 FÍSICA OPCIÓN A

PAU Xuño 2011 FÍSICA OPCIÓN A PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2006

PAAU (LOXSE) Xuño 2006 PAAU (LOXSE) Xuño 006 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

A LUZ. ÓPTICA XEOMÉTRICA

A LUZ. ÓPTICA XEOMÉTRICA A LUZ. ÓPTICA XEOMÉTRICA PROBLEMAS. Un espello esférico ten 0,80 m de radio. a) Se o espello é cóncavo, calcular a qué distancia hai que colocar un obxecto para obter unha imaxe real dúas veces maior que

Διαβάστε περισσότερα

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física Probas de acceso a ciclos formativos de grao superior Proba de Física Código CSPEB03 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións.

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso 2017-2018 Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades

Διαβάστε περισσότερα

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

Procedementos operatorios de unións non soldadas

Procedementos operatorios de unións non soldadas Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

PÁGINA 106 PÁGINA a) sen 30 = 1/2 b) cos 120 = 1/2. c) tg 135 = 1 d) cos 45 = PÁGINA 109

PÁGINA 106 PÁGINA a) sen 30 = 1/2 b) cos 120 = 1/2. c) tg 135 = 1 d) cos 45 = PÁGINA 109 PÁGINA 0. La altura del árbol es de 8,5 cm.. BC m. CA 70 m. a) x b) y PÁGINA 0. tg a 0, Con calculadora: sß 0,9 t{ ««}. cos a 0, Con calculadora: st,8 { \ \ } PÁGINA 05. cos a 0,78 tg a 0,79. sen a 0,5

Διαβάστε περισσότερα

A circunferencia e o círculo

A circunferencia e o círculo 10 A circunferencia e o círculo Obxectivos Nesta quincena aprenderás a: Identificar os diferentes elementos presentes na circunferencia e o círculo. Coñecer as posicións relativas de puntos, rectas e circunferencias.

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2002

PAAU (LOXSE) Xuño 2002 PAAU (LOXSE) Xuño 00 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

24/10/06 MOVEMENTO HARMÓNICO SIMPLE

24/10/06 MOVEMENTO HARMÓNICO SIMPLE NOME: CALIFICACIÓN PROBLEMAS (6 puntos) 24/10/06 MOVEMENTO HARMÓNICO SIMPLE 1. Dun resorte elástico de constante k= 500 Nm -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =

Διαβάστε περισσότερα

Física e Química 4º ESO

Física e Química 4º ESO Física e Química 4º ESO DEPARTAMENTO DE FÍSICA E QUÍMICA Física: Temas 1 ao 6. 01/03/07 Nome: Cuestións 1. Un móbil ten unha aceleración de -2 m/s 2. Explica o que significa isto. 2. No medio dunha tormenta

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

DINAMICA DE TRASLACION

DINAMICA DE TRASLACION DINAMICA DE TRASLACION 1.-CINEMATICA ELEMENTOS DO MOVEMENTO: Móvil, Sistema de Referencia e Traxectoria MAGNITUDES CINEMATICAS: - Vector de Posición: r= xi + yj + zk - Vector desplazamento: r= xi + yj

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular.

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular. EXAMEN 1ª AVALIACION FISICA 2º BACHARELATO PROBLEMAS 1. Unha pelota de 2 kg de masa esbara polo tellado que forma un ángulo de 30º coa horizontal e, cando chega ó extremo, queda en libertade cunha velocidade

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio.

Tema 6 Ondas Estudio cualitativo de interferencias, difracción, absorción e polarización. 6-1 Movemento ondulatorio. Tema 6 Ondas 6-1 Movemento ondulatorio. Clases de ondas 6- Ondas harmónicas. Ecuación de ondas unidimensional 6-3 Enerxía e intensidade das ondas harmónicas 6-4 Principio de Huygens: reflexión e refracción

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 10 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 17-18 http://ciug.gal/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2017. Un astronauta está no interior

Διαβάστε περισσότερα

Interferencia por división da fronte

Interferencia por división da fronte Tema 9 Interferencia por división da fronte No tema anterior vimos que para lograr interferencia debemos superpoñer luz procedente dunha única fonte de luz pero que recorreu camiños diferentes. Unha forma

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2006

PAAU (LOXSE) Setembro 2006 PAAU (LOXSE) Setembro 2006 Código: 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (,5 cada apartado). Cuestións 4 puntos ( cada cuestión, teórica

Διαβάστε περισσότερα

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

Tema 3.5 Fundamentos da difracción

Tema 3.5 Fundamentos da difracción Tema 3.5 Fundamentos da difracción 3.5.1. Introducción Ademáis da interferencia, existe outro conxunto de fenómenos que non son explicables mediante a óptica xeométrica. Cando a luz atravesa pequenas aberturas

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

Lógica Proposicional. Justificación de la validez del razonamiento?

Lógica Proposicional. Justificación de la validez del razonamiento? Proposicional educción Natural Proposicional - 1 Justificación de la validez del razonamiento? os maneras diferentes de justificar Justificar que la veracidad de las hipótesis implica la veracidad de la

Διαβάστε περισσότερα

Lógica Proposicional

Lógica Proposicional Proposicional educción Natural Proposicional - 1 Justificación de la validez del razonamiento os maneras diferentes de justificar Justificar que la veracidad de las hipótesis implica la veracidad de la

Διαβάστε περισσότερα

Ámbito científico tecnolóxico. Movementos e forzas. Unidade didáctica 5. Módulo 3. Educación a distancia semipresencial

Ámbito científico tecnolóxico. Movementos e forzas. Unidade didáctica 5. Módulo 3. Educación a distancia semipresencial Educación secundaria para persoas adultas Ámbito científico tecnolóxico Educación a distancia semipresencial Módulo 3 Unidade didáctica 5 Movementos e forzas Índice 1. Introdución... 3 1.1 Descrición da

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

1. O ESPAZO VECTORIAL DOS VECTORES LIBRES 1.1. DEFINICIÓN DE VECTOR LIBRE

1. O ESPAZO VECTORIAL DOS VECTORES LIBRES 1.1. DEFINICIÓN DE VECTOR LIBRE O ESPAZO VECTORIAL DOS VECTORES LIBRES DEFINICIÓN DE VECTOR LIBRE MATEMÁTICA II 06 Exames e Textos de Matemática de Pepe Sacau ten unha licenza Creative Commons Atribución Compartir igual 40 Internacional

Διαβάστε περισσότερα

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro

Corpos xeométricos. Obxectivos. Antes de empezar. 1. Poliedros... páx. 4 Definición Elementos dun poliedro 9 Corpos xeométricos Obxectivos Nesta quincena aprenderás a: Identificar que é un poliedro. Determinar os elementos dun poliedro: Caras, arestas e vértices. Clasificar os poliedros. Especificar cando un

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 1 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) Opción 1. Dada a matriz a) Calcula os valores do parámetro m para os

Διαβάστε περισσότερα

Sistemas e Inecuacións

Sistemas e Inecuacións Sistemas e Inecuacións 1. Introdución 2. Sistemas lineais 2.1 Resolución gráfica 2.2 Resolución alxébrica 3. Método de Gauss 4. Sistemas de ecuacións non lineais 5. Inecuacións 5.1 Inecuacións de 1º e

Διαβάστε περισσότερα

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos

VIII. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Ángulos, perpendicularidade de rectas e planos VIII. ESPZO EULÍDEO TRIDIMENSIONL: Áglos perpediclaridade de rectas e plaos.- Áglo qe forma dúas rectas O áglo de dúas rectas qe se corta se defie como o meor dos áglos qe forma o plao qe determia. O áglo

Διαβάστε περισσότερα

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA

TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO A 1. PUNTO E RECTA TRAZADOS XEOMÉTRICOS FUNDAMENTAIS NO PLANO 1. Punto e recta 2. Lugares xeométricos 3. Ángulos 4. Trazado de paralelas e perpendiculares con escuadro e cartabón 5. Operacións elementais 6. Trazado de ángulos

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

NÚMEROS COMPLEXOS. Páxina 147 REFLEXIONA E RESOLVE. Extraer fóra da raíz. Potencias de. Como se manexa k 1? Saca fóra da raíz:

NÚMEROS COMPLEXOS. Páxina 147 REFLEXIONA E RESOLVE. Extraer fóra da raíz. Potencias de. Como se manexa k 1? Saca fóra da raíz: NÚMEROS COMPLEXOS Páxina 7 REFLEXIONA E RESOLVE Extraer fóra da raíz Saca fóra da raíz: a) b) 00 a) b) 00 0 Potencias de Calcula as sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a) ( ) ( ) (

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital

Διαβάστε περισσότερα