Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Código: 25 SETEMBRO 2013 PAU FÍSICA OPCIÓN A OPCIÓN B"

Transcript

1 PAU Código: 25 SETEMBRO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución ás cuestións. As respostas deben ser razoadas. Pódese usar calculadora sempre que non sexa programable nin memorice texto. O alumno elixirá unha das dúas opcións. OPCIÓN A C.1.- A ecuación dunha onda transversal de amplitude 4 cm e frecuencia 20 Hz que se propaga no sentido negativo do eixo X cunha velocidade de 20 m s ¹ é: A) y(x, t) = 4 10 ² cos π (40 t + 2 x) m. B) y(x, t) = 4 10 ² cos π (40 t 2 x) m. C) y(x, t) = 4 10 ² cos 2 π (40 t + 2 x) m. C.2.- Un espello cóncavo ten 80 cm de radio de curvatura. A distancia do obxecto ao espello para que a súa imaxe sexa dereita e 4 veces maior é: A) 50 cm. B) 30 cm. C) 60 cm. C.3.- Unha radiación monocromática, de lonxitude de onda 300 nm, incide sobre cesio. Se a lonxitude de onda limiar do cesio é 622 nm, o potencial de freado é: A) 12,5 V. B) 2,15 V. C) 125 V. (Datos: 1 nm = 10⁹ m; h = 6,63 10 ³⁴ J s; c = 3 10⁸ m s ¹; qₑ = -1,6 10 ¹⁹ C) C.4.- Se temos un resorte de constante elástica coñecida, como podemos determinar o valor dunha masa descoñecida? Describe as experiencias que debemos realizar. P.1.- Deséxase poñer un satélite de masa 10³ kg en órbita arredor da Terra e a unha altura dúas veces o raio terrestre. Calcula: a) A enerxía que hai que comunicarlle desde a superficie da Terra. b) A forza centrípeta necesaria para que describa a órbita. c) O período do satélite na devandita órbita. (Datos: R T = 6370 km; g₀ = 9,8 m s ²) P.2.- Acelérase unha partícula alfa mediante unha diferenza de potencial de 1 kv, penetrando a continuación, perpendicularmente ás liñas de indución, nun campo magnético de 0,2 T. Acha: a) O raio da traxectoria descrita pola partícula. b) O traballo realizado pola forza magnética. c) O módulo, dirección e sentido dun campo eléctrico necesario para que a partícula alfa non experimente desviación algunha ao seu paso pola rexión na que existen os campos eléctrico e magnético. (Datos: m α = 6,68 10 ²⁷ kg; q α = 3,2 10 ¹⁹ C) OPCIÓN B C.1.- A actividade no instante inicial de medio mol dunha sustancia radioactiva cuxo período de semidesintegración é de 1 día, é: A) 2,41 10¹⁸ Bq. B) 3,01 10²³ Bq. C) 0,5 Bq. (Dato: N A = 6,022 10²³ mol ¹) C.2.- A lonxitude de onda asociada a un electrón de 100 ev de enerxía cinética é: A) 2,3 10 ⁵ m. B) 1,2 10 ¹⁰ m. C) 10 ⁷ m. (Datos: mₑ = 9,1 10 ³¹ kg, h = 6,63 10 ³⁴ J s; qₑ = -1,6 10 ¹⁹ C) C.3.- As liñas de indución do campo magnético son: A) Sempre pechadas. B) Abertas ou pechadas, xa que dependen do axente creador do campo magnético. C) Sempre abertas, por semellanza co campo eléctrico. C.4.- Se na práctica de óptica xeométrica a lente converxente ten unha distancia focal imaxe de +10 cm, a que distancias da lente podes situar o obxecto para obter imaxes sobre a pantalla, se se cumpre que s + s = 80 cm? Debuxa a marcha dos raios. P.1.- Tres cargas eléctricas puntuais de 10 ⁶ C atópanse situadas nos vértices dun cadrado de 1 m de lado. Calcula: a) A intensidade do campo e o potencial electrostático no vértice libre. b) Módulo, dirección e sentido da forza do campo electrostático sobre unha carga de ⁶ C situada en devandito vértice. c) O traballo realizado pola forza do campo para trasladar dita caga desde o vértice ao centro do cadrado. Interpreta o signo do resultado. (Dato: K = 9 10⁹ N m² C ²) P.2.- Unha bóla colgada dun fío de 2 m de lonxitude desvíase da vertical un ángulo de 4, sóltase e obsérvanse as súas oscilacións. Acha: a) A ecuación do movemento harmónico simple. b) A velocidade máxima da bóla cando pasa pola posición de equilibrio. c) Comproba o resultado obtido no apartado anterior, utilizando a ecuación da conservación da enerxía mecánica.

2 Solucións OPCIÓN A 1. C.1.- A ecuación dunha onda transversal de amplitude 4 cm e frecuencia 20 Hz que se propaga no sentido negativo do eixo X cunha velocidade de 20 m s ¹ é: A) y(x, t) = 4 10 ² cos π (40 t + 2 x) m. B) y(x, t) = 4 10 ² cos π (40 t 2 x) m. C) y(x, t) = 4 10 ² cos 2 π (40 t + 2 x) m. Solución: A A ecuación dunha onda harmónica unidimensional pode escribirse como: y = A sen(ω t ± k x) Na que y é a elongación do punto que oscila (separación da posición de equilibrio) A é a amplitude (elongación máxima) ω é a frecuencia angular que está relacionada coa frecuencia f por ω = 2 π f. t é o tempo k é o número de onda, a cantidade de ondas que entran nunha lonxitude de 2 π metros. Está relacionada coa lonxitude de onda λ por k = 2 π / λ x é a distancia do punto ao foco emisor. O signo ± entre ω t e k x é negativo se a onda propágase en sentido positivo do eixe X, e positivo se o fai en sentido contrario. Como di que se propaga en sentido negativo do eixe X podemos descartar a opción B. A frecuencia angular ω da ecuación da opción A é ω₁ = π 40 [rad/s], que corresponde a unha frecuencia de 20 Hz. f 1 = ω 2 π π [ rad/s] =40 =20 s 1 2π [rad] 2. C.2.- Un espello cóncavo ten 80 cm de radio de curvatura. A distancia do obxecto ao espello para que a súa imaxe sexa dereita e 4 veces maior é: A) 50 cm. B) 30 cm. C) 60 cm. Datos (convenio de signos DIN) Cifras signifcativas: 3 Radio de curvatura R = -80,0 cm = -0,800 m Aumento lateral A L = 4,00 Posición do obxecto s Distancia focal do espello f Posición da imaxe sʹ Tamaño do obxecto y Tamaño da imaxe yʹ Relación entre a posición da imaxe e a do obxecto nos espellos 1 sʹ + 1 s = 1 f Aumento lateral nos espellos A L = yʹ y s Solución: B A distancia focal do espello é a metade do radio de curvatura. Como o espello é cóncavo o foco atópase á esquerda, e, polo convenio de signos, a distancia focal é negativa

3 O aumento lateral en espellos é Substitúense f, sʹ na ecuación dos espellos f = R / 2 = -0,400 m A L = sʹ s =4,00 sʹ = -4,00 s 1 4,00 s + 1 s = 1 0,400 [ m] Multiplicando ambos os lados por (-4,00 s) queda unha ecuación sinxela A solución é: 1 4,00 = 10 s s = -0,300 m 3. C.3.- Unha radiación monocromática, de lonxitude de onda 300 nm, incide sobre cesio. Se a lonxitude de onda limiar do cesio é 622 nm, o potencial de freado é: A) 12,5 V B) 2,15 V C) 125 V Datos: 1 nm = 10⁹ m; h = 6,63 10 ³⁴ J s; c = 3 10⁸ m s ¹; qₑ = -1,6 10 ¹⁹ C Datos Cifras signifcativas: 3 Lonxitude de onda da radiación λ = 300 nm = 3,00 10 ⁷ m Lonxitude de onda limiar do cesio λ₀ = 622 nm = 6,22 10 ⁷ m Constante de Planck h = 6,62 10 ³⁴ J s Velocidade da luz no baleiro c = 3,00 10⁸ m/s Carga do electrón e = -1,60 10 ¹⁹ C Potencial de freado V Frecuencia limiar f₀ Ecuación de Planck (enerxía dun fotón) E = h f Ecuación de Einstein do efecto fotoeléctrico E = Wₑ + E Relación entre a frecuencia dunha onda luminosa e a lonxitude de onda f = c / λ Relación entre a enerxía cinética dos electróns e o potencial de freado E = e V Solución: B Cando a luz interacciona co metal da célula fotoeléctrica faino coma se fose un chorro de partículas chamadas fotóns (paquetes de enerxía). Cada fotón choca cun electrón e transmítelle toda a súa enerxía. Para que ocorra efecto fotoeléctrico, os electróns emitidos deben ter enerxía sufciente para chegar ao anticátodo, o que ocorre cando a enerxía do fotón é maior que o traballo de extracción, que é unha característica do metal. A ecuación de Einstein do efecto fotoeléctrico pode escribirse: E = Wₑ + E Na ecuación, E representa a enerxía do fotón incidente, Wₑ o traballo de extracción do metal e E a enerxía cinética máxima dos electróns (fotoelectróns) emitidos. A enerxía que leva un fotón de frecuencia f é: E = h f En esta ecuación, h é a constante de Planck e ten un valor moi pequeno: h = 6,63 10 ³⁴ J s

4 Partindo da ecuación de Einstein e substituíndo nela as de Planck e a relación entre lonxitude de onda e frecuencia, queda E c =E f W e =h f h f 0 = h c λ h c λ 0 =h c( 1 λ 1 λ 0) E c =6, [ J s] 3, [ m s ]( 1 1 3, [ m] 1 6,22 10 [m]) =3, J Usando a relación entre a enerxía cinética dos electróns e o potencial de freado E = e V V = E c e =3, [ J] 1, [C] =2,14 V 4. C.4.- Se temos un resorte de constante elástica coñecida, como podemos determinar o valor dunha masa descoñecida? Describe as experiencias que debemos realizar. Solución: Colgaríase o resorte cun prato de balanza e anotaríase a posición do prato, medida cunha regra vertical: y₁ Sen mover a regra, colocaríase a masa no prato e mediríase e anotaríase a nova posición do prato: y₂ Calcularíase o alongamento y = y₂ y₁. Coñecido o valor da constante podería calcularse a forza de recuperación elástica pola ecuación de Hooke F = - k y Como no equilibrio estático entre a forza elástica e o peso do obxecto son iguais: A masa calcúlase despexándoa na ecuación anterior. k y = m g m= k Δ y g 5. P.1.- Deséxase poñer un satélite de masa 10³ kg en órbita arredor da Terra e a unha altura dúas veces o radio terrestre. Calcula: a) A enerxía que hai que comunicarlle desde a superficie da Terra. b) A forza centrípeta necesaria para que describa a órbita. c) O período do satélite na devandita órbita. Datos: R T = 6370 km; g₀ = 9,8 m/s² Rta.: a) E = 5,20 10¹⁰ J; b) F = 1,09 10³ N; c) T = 7 h 19 min Datos Cifras signifcativas: 3 Masa do satélite m = 10³ kg = 1,00 10³ kg Radio da Terra R = 6370 km = 6,37 10⁶ m Altura da órbita h = km = 1,27 10⁷ m Aceleración da gravidade na superfcie da Terran (en inglés) g₀ = 9,80 m/s² Enerxía que hai que comunicarlle desde a superfcie da Terra E Forza centrípeta necesaria para que describa a órbita F Período orbital do satélite T Masa da Terra M Constante da gravitación universal G Velocidade dun satélite a unha distancia r do centro dun astro de masa M v= G M r Velocidade nun movemento circular uniforme de raio r e período T v= 2π r T

5 Relación entre a masa, a gravidade e o raio dun astro G M = g₀ R² Enerxía cinética E = ½ m v² Enerxía potencial gravitacional (referida ao infnito) E p = G M m r Enerxía mecánica E = E + Eₚ Solución: a) A enerxía mecánica é a suma das enerxías cinética e potencial. A expresión da enerxía potencial é: E p = G M m r Ao non ter a masa da Terra substitúese G M por g₀ R². E p = G M m = g R2 0 m r r Suponse que na superfcie da Terra o satélite está en repouso ª, polo que só ten enerxía potencial, que vale: Eₚ(chan) = G M m R = g 0 R2 m = g R 0 R m= 9,80 [m /s 2 ] 6, [ m] 1, [kg]= 6, J O raio dunha órbita circular a unha altura dúas veces o raio terrestre é A enerxía potencial na órbita é: Eₚ(órbita) = G M m r r = R + h = R + 2 R = 3 R = 3 6,37 10⁶ [m] = 1,91 10⁷ m = g 0 R2 m 3 R = g 0 R m = E p s 3 = 6, J = 2, J 3 3 Para calcular a enerxía cinética na órbita necesitamos calcular a velocidade orbital. A velocidade dun satélite que xira a unha distancia r arredor do centro dun astro de masa M é: v= G M r Substitúese G M por g₀ R² na ecuación da velocidade, e queda v= = g 0 R 2 g 0 R 2 r 3 R = g 0 R 3 = 9,80 [ m/s2 ] 6, [m] =4, m/ s=4,56 km /s 3 Análise: Espérase que un satélite en órbita arredor da Terra teña unha velocidade duns poucos km/s. O resultado está de acordo con esta suposición. A enerxía cinética en órbita é: A enerxía mecánica en órbita valerá E (órbita) = m v² /2 = [1,00 10³ [kg] (4,56 10³ [m/s])²] / 2 = 1,04 10¹⁰ J E(órbita) = E (órbita) + Eₚ(órbita) = 1,04 10¹⁰ [J] + (-2,08 10¹⁰ [J]) = -1,04 10¹⁰ J Análise: A enerxía mecánica ten o valor oposto ao da enerxía cinética A enerxía que hai que comunicarlle ao satélite na superfcie da Terra é a diferenza entre a que terá en órbita e a que ten no chan: b) A forza centrípeta é: E = E(órbita) E(chan) = -1,04 10¹⁰ (-6,24 10¹⁰ J) = 5,20 10¹⁰ J ª Para un sistema de referencia no centro da Terra, calquera punto da superfcie ten velocidade debido á rotación terrestre. A velocidade dun punto da superfcie terrestre vale: v = ω R = 2 π R / T = 463 m/s. Para un obxecto de 1000 kg, a enerxía cinética sería E = ½ m v² = 1,07 10⁸ J moito menor que o valor absoluto da enerxía potencial (6,24 10¹⁰ J)

6 F =m a N =m v2 r =m g 0 R 3 3 R = m g 0 9 = 1, [ kg] 9,80 [m/s 2 ] =1, N 9 c) O período calcúlase a partir da expresión da velocidade no movemento circular uniforme: T = 2 π r v = 2 3,14 1, [m] =2, s=7 h 18 min 7, [m/s] 6. P.2.- Acelérase unha partícula alfa mediante unha diferenza de potencial de 1 kv, penetrando a continuación, perpendicularmente ás liñas de indución, nun campo magnético de 0,2 T. Acha: a) O radio da traxectoria descrita pola partícula. b) O traballo realizado pola forza magnética. c) El módulo, dirección e sentido dun campo eléctrico necesario para que a partícula alfa non experimente desviación algunha ao seu paso pola rexión na que existen os campos eléctrico e magnético. Datos: m α = 6,68 10 ²⁷ kg; q α = 3,2 10 ¹⁹ C Rta.: a) R = 3,2 cm; b) W B = 0; c) E = 6,2 10⁴ V/m Datos Cifras signifcativas: 3 Carga da partícula alfa q α = 3,2 10 ¹⁹ C Diferencia de potencial de aceleración V = 1,00 kv = 1,00 10³ V Masa da partícula alfa m α = 6,68 10 ²⁷ kg Intensidade do campo magnético B = 0,200 T Radio da traxectoria descrita pola partícula alfa R Traballo realizado pola forza magnética W B Vector campo eléctrico que anule o efecto do campo magnético E Vector da forza magnética sobre a partícula alfa F B Vector forza eléctrica sobre a partícula alfa F E Lei de Lorentz: forza magnética sobre unha carga q que se despraza no interior F dun campo magnético B cunha velocidade v B = q (v B) Aceleración normal (nun movemento circular de raio R) a N = v 2 R 2ª lei de Newton da Dinámica F = m a Velocidade nun movemento circular uniforme de raio R v= 2π R T Forza F E exercida por un campo electrostático E sobre unha carga q F E = q E Solución: a) Para calcular a velocidade da partícula alfa temos que ter en conta que ao acelerar a partícula alfa cunha diferenza de potencial (supomos que desde o repouso), este adquire unha enerxía cinética: W(eléctrico) = q ΔV = ΔE = ½ m v² ½ m v₀² Se parte do repouso, v₀ = 0. A velocidade fnal é: v= 2q α Δ V = 2 3, [C] 1, [ V] =3, m /s m α 6, [kg] Se só actúa a forza magnética:

7 F = F B A partícula alfa describe unha traxectoria circular con velocidade de valor constante, polo que a aceleración só ten compoñente normal a N, Despexando o raio R v F B =m a=m a N =m v2 F R Usando a expresión da lei de Lorentz (en módulos) para a forza magnética B q B v sen φ =m v 2 R R = m v q B sen φ = 6, [kg ] 3, [ m/s] 3, [C] 0,200[ T] sen90 =3, m=3,23 cm b) Como a traxectoria é circular, o desprazamento é, en todo momento, perpendicular á forza magnética, polo que o seu traballo é nulo. W B = F B s cos 90 = 0 X+ Z+ c) Tomando o sistema de referencia como o de fgura da dereita, cando só actúa a forza magnética a traxectoria da partícula alfa é unha circunferencia. Na fgura anterior debuxouse a partícula alfa movéndose inicialmente no sentido positivo do eixe Y e o campo magnético dirixido no sentido negativo do eixe Z. Cando actúa unha forza eléctrica que anula a magnética, B F B + F E = q (v B) + q E = 0 O campo eléctrico debe valer: E = (v B) = -(3,10 10⁵ j [m/s] 0,200 ( k) [T]) = 6,19 10⁴ i N/C O campo eléctrico está dirixido no sentido positivo do eixe X. En calquera sistema de referencia, a dirección do campo eléctrico debe ser perpendicular tanto á dirección do campo magnético como á dirección da velocidade. O sentido do campo eléctrico ten que ser igual que o da forza eléctrica e oposto ao da forza magnética. OPCIÓN B 1. C.1.- A actividade no instante inicial de medio mol dunha sustancia radioactiva cuxo período de semidesintegración é de 1 día, é: A) 2,41 10¹⁸ Bq. B) 3,01 10²³ Bq. C) 0,5 Bq. Dato: N A = 6,022 10²³ mol ¹ Solución: A A actividade radioactiva é o número de desintegracións por segundo e é proporcional á cantidade de isótopo radioactivo A = - d N / d t = λ N Sendo λ a constante de desintegración radioactiva. Integrando a ecuación anterior, atópase a relación entre λ e o período de semidesintegración T ½ Cando t = T ½, N = N₀ / 2 λ t N =N 0 e λ = ln(n 0 /N ) t F B Y+ v E F E

8 λ = ln 2 / T ½ λ = ln 2 0,693 = T 1/2 1 [día] 24 [ h/ día] 3600 [s/ h] =8, s 1 A = λ N = 8,02 10 ⁶ [s ¹] 0,500 [mol] 6,022 10²³ [mol ¹] = 2,42 10¹⁸ Bq 2. C.2.- A lonxitude de onda asociada a un electrón de 100 ev de enerxía cinética é: A) 2,3 10 ⁵ m B) 1,2 10 ¹⁰ m C) 10 ⁷ m Datos: mₑ = 9,1 10 ³¹ kg, h = 6,63 10 ³⁴ J s; qₑ = -1,6 10 ¹⁹ C Solución: B De Broglie propuxo que nalgúns casos o comportamento de certas partículas podería interpretarse como o de ondas cuxa lonxitude de onda asociada λ viría dada pola expresión: λ = h p = h m v Na ecuación, h é a constante de Planck, m a masa da partícula e v a súa velocidade. A enerxía cinética de 100 ev é: E = 100 1,6 10 ¹⁹ [C] 1 [V] = 1,6 10 ¹⁷ J Un electrón con esa enerxía cinética móvese a unha velocidade de: v= 2E c m = 2 1, [ J ] 9, [ kg] =5, m/s Substituíndo na ecuación de De Broglie, queda λ = h m v = 6, [ J s ] 9, [kg] 5, [m/ s] =1, m 3. C.3.- As liñas de indución do campo magnético son: A) Sempre pechadas. B) Abertas ou pechadas, xa que dependen do axente creador do campo magnético. C) Sempre abertas, por semellanza co campo eléctrico. Solución: A Se o campo magnético é producido por un imán, un solenoide ou unha espira, as fontes do campo magnético son os polos N do elemento mentres que os sumidoiros son os polos S. Pero como ambos os polos son inseparables, as liñas de campo son pechadas. (Se partimos un imán en dous, cada parte segue tendo dous polos. Non se poden conseguir por división monopolos magnéticos) Se o campo é producido por unha corrente rectilínea indefnida, as liñas de campo son circunferencias concéntricas arredor do fío. 4. C.4.- Se na práctica de óptica xeométrica a lente converxente ten unha distancia focal imaxe de +10 cm, a que distancias da lente podes situar o obxecto para obter imaxes sobre a pantalla, se se cumpre que s + s = 80 cm? Debuxa a marcha dos raios. Rta.: s₁ = -0,117 m, s₂ = -0,683 m

9 Datos (convenio de signos DIN) Cifras signifcativas: 3 Distancia focal da lente f ʹ = 10,0 cm = 0,100 m Distancia entre o obxecto e a súa imaxe d = 80,0 cm = 0,800 m Posición do obxecto s Tamaño do obxecto y Posición da imaxe sʹ Tamaño da imaxe yʹ Relación entre a posición da imaxe e a do obxecto nas lentes 1 sʹ 1 s = 1 fʹ Solución: Úsase a ecuación: s + sʹ = 0,800 m Tendo en conta que, polo criterio de signos, a distancia do obxecto á lente é negativa, s < 0, pero a distancia da imaxe, cando é real, é positiva sʹ > 0, queda Substituíndo f e sʹ na ecuación das lentes, queda 1 sʹ 1 s = 1 fʹ 1 s +0,800 [ m] 1 s = 1 0,100 [ m] 1 s +0,800 =1 s + 1 0,100 =s+0,100 0,100s 0,100 s = (s + 0,100) (s + 0,800) s² + 0,800 s + 0,08 0 = 0 s₁ = -0,117 m -s + sʹ = 0,800 m s₂ = -0,683 m O debuxo representa de forma aproximada a primeira solución. O s f F' s' I 5. P.1.- Tres cargas eléctricas puntuais de 10 ⁶ C atópanse situadas nos vértices dun cadrado de 1 m de lado. Calcula: a) A intensidade do campo e o potencial electrostático no vértice libre. b) Módulo, dirección e sentido da forza do campo electrostático sobre unha carga de ⁶ C situada en devandito vértice. c) O traballo realizado pola forza do campo para trasladar dita caga desde o vértice ao centro do cadrado. Interpreta o signo do resultado. Dato: K = 9 10⁹ N m² C ² Rta.: a) E = 1,72 10⁴ N/C, diagonal cara a fóra; V = 2,44 10⁴ V; b) F = 0,03404 N, diagonal cara ao centro; c) W E = 0,02706 Datos Cifras signifcativas: 3 Lado do cadrado l = 1,00 m Valor da carga situada no punto A(0, 0) m Q A = 1,00 10 ⁶ C Valor da carga situada no punto B(1,00, 0) m Q B = 1,00 10 ⁶ C Valor da carga situada no punto C(0, 1,00) m Q C = 1,00 10 ⁶ C Valor da carga situada no punto D(1,00, 1,00) m Q D = -2,00 10 ⁶ C Constante eléctrica K = 9,00 10⁹ N m² C ² Intensidade do campo electrostático no punto D E D

10 Datos Cifras signifcativas: 3 Potencial electrostático no punto D V D Traballo do campo ao levar a carga desde D ao centro do cadrado G W D G Distancia entre dous puntos A e B r AB Intensidade do campo electrostático nun punto creado por unha carga puntual Q situada a unha distancia r E=K Q r u 2 r Principio de superposición E A = E Ai Potencial electrostático nun punto creado por unha carga puntual Q situada V =K Q a unha distancia r r Potencial electrostático nun punto debido a varias cargas V = V Traballo que fai a forza do campo cando se move unha carga q desde un punto A até outro punto B W A B = q (V A V B ) Solución: a) Faise un debuxo das cargas e de cada un dos vectores campo e da suma vectorial que é o vector campo E resultante. As distancias BD e CD valen a lonxitude do lado: r BD = r CD = l = 1,00 m A distancia AD é a lonxitude da diagonal do cadrado r AD = r AD = (1,00 [ m]) 2 +(1,00 [m]) 2 =1,41 m Elíxese un sistema de referencia coa orixe en cada carga, tomando o eixe X horizontal, positivo cara á dereita e o eixe Y vertical, positivo cara arriba. O vector unitario u CD do punto D tomando como orixe o punto C é o vector i unitario do eixe X. A O vector unitario u BD do punto D tomando como orixe o punto B é o vector j unitario do eixe Y. O vector unitario u AD do punto D tomando como orixe o punto A é: u AD = r AD r AD =(1,00 i +1,00 j) [ m] =0,707 i +0,707 j 1,41 [ m] A intensidade de campo electrostático no punto D, debida á carga de 1 µc situada no punto A é: E A D =9, [ N m 2 C 2 ] 1, [ C] (1,41 [ m]) 2 (0,707 i +0,707 j)=(3, i +3, j) N/C A intensidade de campo electrostático no punto D, debida á carga de 1 µc situada no punto B é: E B D =9, [ N m 2 C 2 ] 1, [C] (1,00 [ m]) 2 j=9, j N/C Por analoxía, a intensidade de campo electrostático no punto D, debida á carga de 1 µc situada no punto C é: Aplicando o principio de superposición, E C D = 9,00 10³ i N/C E D = E D = E A D + E B D + E C D E D = (3,18 10³ i + 3,18 10³ j) [N/C] + (9,00 10³ j) [N/C] + (9,00 10³ i) [N/C] = (1,22 10⁴ i + 1,22 10⁴ j) N/C Análise: O vector intensidade de campo eléctrico resultado do cálculo é diagonal cara arriba e cara á dereita, coherente co debuxo que se fxo. O valor do campo é: E D = (1, [ N/C]) 2 +(1, [N/C]) 2 =1, N/C C E B D D B E A D E D E C D

11 Xeneralizando o resultado para calquera sistema de referencia, E D = 1,72 10⁴ N/C. O campo vai na dirección da diagonal, cara a fóra. Os potenciais electrostáticos no punto D debidos ás cargas en C e B son iguais e valen: V B D =V C D =9, [ N m 2 C 2 ] 1, [C] =9, V (1,00 [ m]) O potencial electrostático no punto D debido á carga en A vale: V A D =9, [ N m 2 C 2 ] 1, [C] =6, V (1,41 [ m]) O potencial electrostático nun punto debido á presenza de varias cargas, é a suma alxébrica dos potenciais debidos a cada carga. V D = V A D + V B D + V C D = 6,36 10³ [V] + 2 9,00 10³ [V] = 2,44 10⁴ V b) Como a intensidade do campo electrostático nun punto é a forza sobre a unidade de carga positiva colocada nese punto, podemos calcular a forza electrostática sobre a carga de -2 µc a partir do vector intensidade de campo electrostático: F = q E = -2,00 10 ⁶ [C] (1,22 10⁴ i + 1,22 10⁴ j) [N/C] = (-2,44 10 ² i 2,44 10 ² j) N Xeneralizando o resultado para calquera sistema de referencia, F = q E = 2,00 10 ⁶ [C] 1,72 10⁴ [N/C] = 3,44 10 ² N. A forza vai na dirección da diagonal, cara ao centro do cadrado, porque a carga é negativa. c) O traballo que fai a forza do campo cando se traslada a carga q = -2 µc desde o vértice D ao centro G do cadrado é W D G = q (V D V G ) Falta calcular o potencial electrostático no punto G situado no centro do cadrado de forma análoga a como se fxo antes. A distancia de cada vértice ao centro do cadrado é a metade da diagonal: r AG = r BG = r CG = 1,41 [m] / 2 = 0,707 m Os potenciais electrostáticos no punto G debidos ás cargas en A, B e C son iguais e valen: V A G =V B G =V C G =V =9, [N m 2 C 2 ] 1, [ C] (0,707 [ m]) =1, V O potencial electrostático en G é a suma alxébrica dos potenciais debidos a cada carga. O traballo da forza do campo é V G = V A G + V B G + V C G = 3 V = 3 1,27 10⁴ [V] = 3,82 10⁴ V W E = W D G = q (V D V G ) = -2,00 10 ⁶ [C] (2,44 10⁴ 3,82 10⁴) [V] = 2,76 10 ² J O traballo é positivo porque o sentido da forza (cara ao centro do cadrado) e o do desprazamento son iguais. 6. P.2.- Unha bóla colgada dun fío de 2 m de lonxitude desvíase da vertical un ángulo de 4, sóltase e obsérvanse as súas oscilacións. Acha: a) A ecuación do movemento harmónico simple. b) A velocidade máxima da bóla cando pasa pola posición de equilibrio. c) Comproba o resultado obtido no apartado anterior, utilizando a ecuación da conservación da enerxía mecánica. Rta.: a) s = 0,140 sen(2,21 t + 4,71) [m]; b) vₘ = 0,309 m/s Datos Cifras signifcativas: 3 Lonxitude do fío L = 2,00 m Amplitude angular (elongación angular máxima) θ₀ = 4,00 = 0,06908 rad

12 Datos Cifras signifcativas: 3 Aceleración da gravidade (non a dan pero sen ela non se pode resolver) g = 9,81 m/s² Elongación en función do tempo θ Velocidade máxima da bóla vₘ Pulsación (frecuencia angular) ω De movemento no M.H.S. θ = θ₀ sen(ω t + φ₀) s = A sen(ω t + φ₀) Período do péndulo Relación entre o arco s e o ángulo central θ nunha circunferencia de radio R Relación entre a frecuencia angular e a frecuencia e o período Solución: a) Tomando o movemento de péndulo como harmónico simple porque θ sen θ Calcúlase o período e a frecuencia angular A ecuación de movemento queda sen 0,06908 = 0, ,06908 T =2 π L g = 2π ω = 2 π T 2,00 [m ] 9,81 [m /s 2 ] =2,84 s 2π [rad] = =2,21 rad /s 2,84 [s] θ = 0,06908 sen(2,21 t + φ₀) [rad] Cando t = 0, θ = 0,06908 (está na posición de máxima elongación), 0,06908 = 0,06908 sen(ω 0 + φ₀) sen φ 0 =1{φ 0 = π 2 φ 0 = 3π 2 Tomando como positivo o sentido en que se mova ao principio, queda A elongación máxima ou amplitude: A ecuación de movemento quedaría θ = 0,06908 sen(2,21 t + 4,71) [rad] A = sₘ = θ₀ R = θ₀ L = 0,06908 [rad] 2,00 [m] = 0,140 m s = 0,140 sen(2,21 t + 4,71) [m] T =2 π L g s = θ R ω =2 π f = 2 π T b) A velocidade máxima cando pasa pola posición de equilibrio, calcúlase derivando a ecuación de movemento v= ds dt Alcanza un valor máximo cando o coseno da fase é 1. d {0,140sen(2,21 t +4,71)} = =0,309 cos(2,21 t +4,71) m/s dt vₘ = 0,309 m/s c) No punto máis alto, a altura vale: L θ L cosθ L h

13 hₘ = L L cos θ₀ = L (1 cos θ₀) = 2,00 [m] (1 cos 0,06908) = 4,87 10 ³ m Como a única forza non conservativa (a tensión do fío) non realiza traballo (porque o desprazamento é perpendicular sempre á dirección da forza), a enerxía mecánica consérvase. Entre a posición máis alta (punto 1) e a máis baixa (punto 2) (E + Eₚ)₁ =(E + Eₚ)₂ ½ m v₁² + m g h₁ = ½ m v₂² + m g h₂ ½ m 0² + m g h₁ = ½ m v₂² + m g 0 2 g h₁ = v₂² v 2 = 2 g h 1 = 2 9,81 [ m/ s 2 ] 4, [m ]=0,309 m /s Cuestións e problemas das Probas de Acceso á Universidade (P.A.U.) en Galicia. Respostas e composición de Alfonso J. Barbadillo Marán. Algúns cálculos fxéronse cunha folla de cálculo OpenOfce (ou LibreOfce) do mesmo autor. Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión CLC09 de Charles Lalanne-Cassou. A tradución ao/desde o galego realizouse coa axuda de traducindote, de Óscar Hermida López. Procurouse seguir as recomendacións do Centro Español de Metrología (CEM) O meu agradecemento a Hervilia Seco pola revisión deste documento.

PAU SETEMBRO 2013 FÍSICA

PAU SETEMBRO 2013 FÍSICA PAU SETEMBRO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCIÓN MÉTODO 1. En xeral: Debúxanse as forzas que actúan sobre o sistema. Calcúlase a resultante polo principio de superposición. Aplícase a 2ª lei

Διαβάστε περισσότερα

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 MODELO DE EXAME ABAU FÍSICA OPCIÓN A OPCIÓN B ABAU Código: 25 MODELO DE EXAME FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS INTRODUCIÓN MÉTODO 1. En xeral: a) Debúxanse as forzas que actúan sobre o sistema. b) Calcúlase cada forza. c) Calcúlase a resultante polo principio

Διαβάστε περισσότερα

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2014 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 204 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA

Tema: Enerxía 01/02/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Tema: Enerxía 01/0/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Nome: 1. Unha caixa de 150 kg descende dende o repouso por un plano inclinado por acción do seu peso. Se a compoñente tanxencial do peso é de 735

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B

Código: 25 PAU XUÑO 2014 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 SETEMBRO 2015 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Proba de Avaliación do Bacharelato para o Acceso á Universidade Código: 23 XUÑO 2018 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado).

Διαβάστε περισσότερα

PAU XUÑO 2012 FÍSICA

PAU XUÑO 2012 FÍSICA PAU XUÑO 2012 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU Xuño Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU Xuño 00 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Exercicios de Física 02a. Campo Eléctrico

Exercicios de Física 02a. Campo Eléctrico Exercicios de Física 02a. Campo Eléctrico Problemas 1. Dúas cargas eléctricas de 3 mc están situadas en A(4,0) e B( 4,0) (en metros). Caalcula: a) o campo eléctrico en C(0,5) e en D(0,0) b) o potencial

Διαβάστε περισσότερα

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior.

Ano 2018 FÍSICA. SOL:a...máx. 1,00 Un son grave ten baixa frecuencia, polo que a súa lonxitude de onda é maior. ABAU CONVOCAT ORIA DE SET EMBRO Ano 2018 CRIT ERIOS DE AVALI ACIÓN FÍSICA (Cód. 23) Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades ou con unidades incorrectas...

Διαβάστε περισσότερα

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B

PAU XUÑO Código: 25 FÍSICA OPCIÓN A OPCIÓN B PAU XUÑO 013 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO PROBLEMAS CAMPO ELECTROSTÁTICO 1. Dúas cargas eléctricas de 3 mc están situadas en A(4, 0) e B(-4, 0) (en metros). Calcula: a) O campo eléctrico en C(0,

Διαβάστε περισσότερα

PAU Xuño 2011 FÍSICA OPCIÓN A

PAU Xuño 2011 FÍSICA OPCIÓN A PAU Xuño 20 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos ( cada cuestión, teórica ou práctica). Problemas 6 puntos ( cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2002

PAAU (LOXSE) Xuño 2002 PAAU (LOXSE) Xuño 00 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

PAU XUÑO 2011 FÍSICA

PAU XUÑO 2011 FÍSICA PAU XUÑO 2011 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2009

PAAU (LOXSE) Setembro 2009 PAAU (LOXSE) Setembro 2009 Código: 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2006

PAAU (LOXSE) Setembro 2006 PAAU (LOXSE) Setembro 2006 Código: 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (,5 cada apartado). Cuestións 4 puntos ( cada cuestión, teórica

Διαβάστε περισσότερα

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso

PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso PROBA DE AVALIACIÓN DO BACHARELATO PARA O ACCESO Á UNIVERSIDADE (ABAU) CONVOCATORIA DE XUÑO Curso 2017-2018 Elixir e desenvolver unha das dúas opcións. As solución numéricas non acompañadas de unidades

Διαβάστε περισσότερα

FISICA 2º BAC 27/01/2007

FISICA 2º BAC 27/01/2007 POBLEMAS 1.- Un corpo de 10 g de masa desprázase cun movemento harmónico simple de 80 Hz de frecuencia e de 1 m de amplitude. Acha: a) A enerxía potencial cando a elongación é igual a 70 cm. b) O módulo

Διαβάστε περισσότερα

FÍSICA. = 4π 10-7 (S.I.)).

FÍSICA. = 4π 10-7 (S.I.)). 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas, 6 puntos (1 cada apartado). Cuestións, 4 puntos

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10¹⁴ Hz incide cun ángulo de incidencia de 30 sobre unha lámina de vidro de caras plano-paralelas de espesor 10

Διαβάστε περισσότερα

24/10/06 MOVEMENTO HARMÓNICO SIMPLE

24/10/06 MOVEMENTO HARMÓNICO SIMPLE NOME: CALIFICACIÓN PROBLEMAS (6 puntos) 24/10/06 MOVEMENTO HARMÓNICO SIMPLE 1. Dun resorte elástico de constante k= 500 Nm -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

FÍSICA. = 9, kg) = -1, C; m e

FÍSICA. = 9, kg) = -1, C; m e 22 FÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestións 4 puntos (1

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA Física P.A.U. ÓPTICA 1 ÓPTICA PROBLEMAS DIOPTRIO PLANO 1. Un raio de luz de frecuencia 5 10 14 Hz incide, cun ángulo de incidencia de 30, sobre unha lámina de vidro de caras plano-paralelas de espesor

Διαβάστε περισσότερα

PAAU (LOXSE) Xuño 2006

PAAU (LOXSE) Xuño 2006 PAAU (LOXSE) Xuño 006 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica).

Διαβάστε περισσότερα

PAU SETEMBRO 2014 FÍSICA

PAU SETEMBRO 2014 FÍSICA PAU SETEMBRO 014 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. A luz do Sol tarda 5 10² s en chegar á Terra e 2,6 10³ s en chegar a Xúpiter. a) O período de Xúpiter orbitando arredor do Sol. b) A velocidade orbital

Διαβάστε περισσότερα

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ).

FÍSICA OPCIÓN 1. ; calcula: a) o período de rotación do satélite, b) o peso do satélite na órbita. (Datos R T. = 9,80 m/s 2 ). 22 Elixir e desenrolar unha das dúas opcións propostas. FÍSICA Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

PAU Setembro 2010 FÍSICA

PAU Setembro 2010 FÍSICA PAU Setembro 010 Código: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado). Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 8 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 15-16 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) CUESTIÓN.- Un satélite artificial de masa m que

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 9 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 16-17 http://ciug.cesga.es/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2016. A nave espacial Discovery,

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA

PAU XUÑO 2016 FÍSICA PAU XUÑO 2016 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

EJERCICIOS DE VIBRACIONES Y ONDAS

EJERCICIOS DE VIBRACIONES Y ONDAS EJERCICIOS DE VIBRACIONES Y ONDAS 1.- Cando un movemento ondulatorio se atopa na súa propagación cunha fenda de dimensións pequenas comparables as da súa lonxitude de onda prodúcese: a) polarización; b)

Διαβάστε περισσότερα

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. O período de rotación da Terra arredor del Sol é un año e o radio da órbita é 1,5 10 11 m. Se Xúpiter ten un período de aproximadamente 12

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2018 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO

EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO Física Exercicios de Selectividade Páxina 1 / 10 EXERCICIOS DE SELECTIVIDADE DE FÍSICA CURSO 17-18 http://ciug.gal/exames.php TEMA 1. GRAVITACIÓN. 1) PROBLEMA. Xuño 2017. Un astronauta está no interior

Διαβάστε περισσότερα

PAAU (LOXSE) Setembro 2004

PAAU (LOXSE) Setembro 2004 PAAU (LOXSE) Setembro 004 Código: FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou

Διαβάστε περισσότερα

PAU XUÑO 2015 FÍSICA

PAU XUÑO 2015 FÍSICA PAU XUÑO 2015 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica) Problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

ÓPTICA- A LUZ Problemas PAAU

ÓPTICA- A LUZ Problemas PAAU ÓPTICA- A LUZ Problemas PAAU XUÑO-96 CUESTION 2. opa Disponse de luz monocromática capaz de extraer electróns dun metal. A medida que medra a lonxitude de onda da luz incidente, a) os electróns emitidos

Διαβάστε περισσότερα

PAU XUÑO 2014 FÍSICA

PAU XUÑO 2014 FÍSICA PAU XUÑO 2014 Código: 25 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica), problemas 6 puntos (1 cada apartado) Non se valorará a simple anotación dun ítem como solución

Διαβάστε περισσότερα

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS

Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS Física P.A.U. VIBRACIÓNS E ONDAS 1 VIBRACIÓNS E ONDAS PROBLEMAS M.H.S.. 1. Dun resorte elástico de constante k = 500 N m -1 colga unha masa puntual de 5 kg. Estando o conxunto en equilibrio, desprázase

Διαβάστε περισσότερα

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema)

Exame tipo. C. Problemas (Valoración: 5 puntos, 2,5 puntos cada problema) Exame tipo A. Proba obxectiva (Valoración: 3 puntos) 1. - Un disco de 10 cm de raio xira cunha velocidade angular de 45 revolucións por minuto. A velocidade lineal dos puntos da periferia do disco será:

Διαβάστε περισσότερα

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O?

EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS. 3. Cal é o vector de posición da orixe de coordenadas O? Cales son as coordenadas do punto O? EXERCICIOS AUTOAVALIABLES: RECTAS E PLANOS Representa en R os puntos S(2, 2, 2) e T(,, ) 2 Debuxa os puntos M (, 0, 0), M 2 (0,, 0) e M (0, 0, ) e logo traza o vector OM sendo M(,, ) Cal é o vector de

Διαβάστε περισσότερα

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA

INTERACCIÓNS GRAVITATORIA E ELECTROSTÁTICA INTEACCIÓNS GAVITATOIA E ELECTOSTÁTICA AS LEIS DE KEPLE O astrónomo e matemático Johannes Kepler (1571 1630) enunciou tres leis que describen o movemento planetario a partir do estudo dunha gran cantidade

Διαβάστε περισσότερα

Exercicios de Física 02b. Magnetismo

Exercicios de Física 02b. Magnetismo Exercicios de Física 02b. Magnetismo Problemas 1. Determinar el radio de la órbita descrita por un protón que penetra perpendicularmente a un campo magnético uniforme de 10-2 T, después de haber sido acelerado

Διαβάστε περισσότερα

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A

FÍSICA. 2.- Cando se bombardea nitróxeno 14 7 N con partículas alfa xérase o isótopo 17 8O e outras partículas. A 22 FÍSICA Elixir e desenvolver unha das dúas opcións propostas. Puntuación máxima: Problemas 6 puntos (1,5 cada apartado). Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Non se valorará a simple

Διαβάστε περισσότερα

Problemas y cuestiones de electromagnetismo

Problemas y cuestiones de electromagnetismo Problemas y cuestiones de electromagnetismo 1.- Dúas cargas eléctricas puntuais de 2 e -2 µc cada unha están situadas respectivamente en (2,0) e en (-2,0) (en metros). Calcule: a) campo eléctrico en (0,0)

Διαβάστε περισσότερα

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B

FÍSICA. ) xiran arredor da Terra con órbitas estables de diferente raio sendo r A. > m B ÍSICA Elixir e desenvolver un problema e/ou cuestión de cada un dos bloques. O bloque de prácticas só ten unha opción. Puntuación máxima: Problemas 6 puntos ( cada apartado). Cuestións 4 puntos ( cada

Διαβάστε περισσότερα

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA

Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 FÍSICA Proba de Avaliación do Bacharelato para o Acceso á Universidade XUÑO 2017 Código: 23 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teórica ou práctica). Problemas 6 puntos (1 cada apartado)

Διαβάστε περισσότερα

EXERCICIOS DE REFORZO: RECTAS E PLANOS

EXERCICIOS DE REFORZO: RECTAS E PLANOS EXERCICIOS DE REFORZO RECTAS E PLANOS Dada a recta r z a) Determna a ecuacón mplícta do plano π que pasa polo punto P(,, ) e é perpendcular a r Calcula o punto de nterseccón de r a π b) Calcula o punto

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

ELECTROMAGNETISMO Problemas PAAU

ELECTROMAGNETISMO Problemas PAAU ELECTROMAGNETISMO Problemas PAAU XUÑO-96 PROBLEMA 2. op B Dadas as cargas puntuais q 1 = 80 µc, q 2 = -80 µc y q 3 = 40 µc situadas nos puntos A (-2,0), B(2,0) y C(0,2) respectivamente (coordenadas en

Διαβάστε περισσότερα

Física e Química 4º ESO

Física e Química 4º ESO Física e Química 4º ESO DEPARTAMENTO DE FÍSICA E QUÍMICA Física: Temas 1 ao 6. 01/03/07 Nome: Cuestións 1. Un móbil ten unha aceleración de -2 m/s 2. Explica o que significa isto. 2. No medio dunha tormenta

Διαβάστε περισσότερα

PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN

PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN PROBLEMAS E CUESTIÓNS DE GRAVITACIÓN "O que sabemos é unha pinga de auga, o que ignoramos é o océano." Isaac Newton 1. Un globo aerostático está cheo de gas Helio cun volume de gas de 5000 m 3. O peso

Διαβάστε περισσότερα

Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 SETEMBRO 2012 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 SETEMBRO 2012 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución

Διαβάστε περισσότερα

PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 SETEMBRO 2012 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 5 SETEMBRO 01 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución

Διαβάστε περισσότερα

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4

CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 CUESTIÓNS DE SELECTIVIDADE RELACIONADOS CO TEMA 4 2013 C.2. Se se desexa obter unha imaxe virtual, dereita e menor que o obxecto, úsase: a) un espello convexo; b)unha lente converxente; c) un espello cóncavo.

Διαβάστε περισσότερα

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física

Probas de acceso a ciclos formativos de grao superior CSPEB03. Código. Proba de. Física Probas de acceso a ciclos formativos de grao superior Proba de Física Código CSPEB03 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións.

Διαβάστε περισσότερα

Exercicios de Física 01. Gravitación

Exercicios de Física 01. Gravitación Exercicios de Física 01. Gravitación Problemas 1. A lúa ten unha masa aproximada de 6,7 10 22 kg e o seu raio é de 1,6 10 6 m. Achar: a) A distancia que recorrerá en 5 s un corpo que cae libremente na

Διαβάστε περισσότερα

Exercicios de Física 04. Óptica

Exercicios de Física 04. Óptica Exercicios de Física 04. Óptica Problemas 1. Unha lente converxente ten unha distancia focal de 50 cm. Calcula a posición do obxecto para que a imaxe sexa: a) real e tres veces maior que o obxecto, b)

Διαβάστε περισσότερα

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación:

a) Ao ceibar o resorte describe un MHS, polo tanto correspóndelle unha ecuación para a elongación: VIBRACIÓNS E ONDAS PROBLEMAS 1. Un sistema cun resorte estirado 0,03 m sóltase en t=0 deixándoo oscilar libremente, co resultado dunha oscilación cada 0, s. Calcula: a) A velocidade do extremo libre ó

Διαβάστε περισσότερα

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo.

XEOMETRÍA NO ESPAZO. - Se dun vector se coñecen a orixe, o módulo, a dirección e o sentido, este está perfectamente determinado no espazo. XEOMETRÍA NO ESPAZO Vectores fixos Dos puntos do espazo, A e B, determinan o vector fixo AB, sendo o punto A a orixe e o punto B o extremo, é dicir, un vector no espazo é calquera segmento orientado que

Διαβάστε περισσότερα

Exercicios de Física 03a. Vibracións

Exercicios de Física 03a. Vibracións Exercicios de Física 03a. Vibracións Problemas 1. No sistema da figura, un corpo de 2 kg móvese a 3 m/s sobre un plano horizontal. a) Determina a velocidade do corpo ó comprimirse 10 cm o resorte. b) Cal

Διαβάστε περισσότερα

PAU XUÑO 2010 MATEMÁTICAS II

PAU XUÑO 2010 MATEMÁTICAS II PAU XUÑO 010 MATEMÁTICAS II Código: 6 (O alumno/a deber responder só aos eercicios dunha das opcións. Punuación máima dos eercicios de cada opción: eercicio 1= 3 punos, eercicio = 3 punos, eercicio 3 =

Διαβάστε περισσότερα

Código: 25 XUÑO 2016 PAU FÍSICA OPCIÓN A OPCIÓN B

Código: 25 XUÑO 2016 PAU FÍSICA OPCIÓN A OPCIÓN B PAU Código: 5 XUÑO 016 FÍSICA Puntuación máxima: Cuestiones 4 puntos (1 cada cuestión, teórica o práctica). Problemas 6 puntos (1 cada apartado). No se valorará la simple anotación de un ítem cómo solución

Διαβάστε περισσότερα

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted

Tema 4 Magnetismo. 4-5 Lei de Ampere. Campo magnético creado por un solenoide. 4-1 Magnetismo. Experiencia de Oersted Tema 4 Magnetismo 4-1 Magnetismo. Experiencia de Oersted 4-2 Lei de Lorentz. Definición de B. Movemento dunha carga nun campo magnético. 4-3 Forza exercida sobre unha corrente rectilínea 4-4 Lei de Biot

Διαβάστε περισσότερα

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular.

1. Un saltador de trampolín, mentras realiza o seu salto manten constante: A/ O momento de inercia. B/ A velocidad angular. C/ O momento angular. EXAMEN 1ª AVALIACION FISICA 2º BACHARELATO PROBLEMAS 1. Unha pelota de 2 kg de masa esbara polo tellado que forma un ángulo de 30º coa horizontal e, cando chega ó extremo, queda en libertade cunha velocidade

Διαβάστε περισσότερα

Física e química 4º ESO. As forzas 01/12/09 Nome:

Física e química 4º ESO. As forzas 01/12/09 Nome: DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Física e química 4º ESO As forzas 01/12/09 Nome: [6 Ptos.] 1. Sobre un corpo actúan tres forzas: unha de intensidade 20 N cara o norte, outra de 40 N cara o nordeste

Διαβάστε περισσότερα

Exercicios de Física 03b. Ondas

Exercicios de Física 03b. Ondas Exercicios de Física 03b. Ondas Problemas 1. Unha onda unidimensional propágase segundo a ecuación: y = 2 cos 2π (t/4 x/1,6) onde as distancias se miden en metros e o tempo en segundos. Determina: a) A

Διαβάστε περισσότερα

Procedementos operatorios de unións non soldadas

Procedementos operatorios de unións non soldadas Procedementos operatorios de unións non soldadas Técnicas de montaxe de instalacións Ciclo medio de montaxe e mantemento de instalacións frigoríficas 1 de 28 Técnicas de roscado Unha rosca é unha hélice

Διαβάστε περισσότερα

Física P.A.U. ÓPTICA 1 ÓPTICA

Física P.A.U. ÓPTICA 1 ÓPTICA íica P.A.U. ÓPTICA ÓPTICA INTRODUCIÓN MÉTODO. En xeral: Debúxae un equema co raio. Compárae o reultado do cálculo co equema. 2. No problema de lente: Trázae un raio paralelo ao eixe óptico que ao chegar

Διαβάστε περισσότερα

ln x, d) y = (3x 5 5x 2 + 7) 8 x

ln x, d) y = (3x 5 5x 2 + 7) 8 x EXERCICIOS AUTOAVALIABLES: CÁLCULO DIFERENCIAL. Deriva: a) y 7 6 + 5, b) y e, c) y e) y 7 ( 5 ), f) y ln, d) y ( 5 5 + 7) 8 n e ln, g) y, h) y n. Usando a derivada da función inversa, demostra que: a)

Διαβάστε περισσότερα

Resorte: estudio estático e dinámico.

Resorte: estudio estático e dinámico. ESTUDIO DO RESORTE (MÉTODOS ESTÁTICO E DINÁMICO ) 1 Resorte: estudio estático e dinámico. 1. INTRODUCCIÓN TEÓRICA. (No libro).. OBXECTIVOS. (No libro). 3. MATERIAL. (No libro). 4. PROCEDEMENTO. A. MÉTODO

Διαβάστε περισσότερα

PAU XUÑO 2010 FÍSICA

PAU XUÑO 2010 FÍSICA PAU XUÑO 1 Cóigo: 5 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 caa cuestión, teórica ou practica) Problemas 6 puntos (1 caa apartao) Non se valorará a simple anotación un ítem como solución ás cuestións;

Διαβάστε περισσότερα

PAU XUÑO 2016 FÍSICA OPCIÓN A

PAU XUÑO 2016 FÍSICA OPCIÓN A PAU Código: 25 XUÑO 2016 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás

Διαβάστε περισσότερα

FISICA 2º BACH. CURSO 99-00

FISICA 2º BACH. CURSO 99-00 26/11/99 1. Unha polea de 5 cm de radio leva enrolada unha corda da cal pende un corpo de 20 g, sendo o momento da inercia da polea 2.10-5 kg.m -2. Calcular: a) a aceleración do corpo; b) a enería cinética

Διαβάστε περισσότερα

ENERXÍA, TRABALLO E POTENCIA

ENERXÍA, TRABALLO E POTENCIA NRXÍA, TRABALLO POTNCIA NRXÍA Pódese definir enerxía coo a capacidade que ten un corpo para realizar transforacións nel eso ou noutros corpos. A unidade de enerxía no SI é o Joule (J) pero é frecuente

Διαβάστε περισσότερα

1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3

1.- Evolución das ideas acerca da natureza da luz! Óptica xeométrica! Principio de Fermat. Camiño óptico! 3 1.- Evolución das ideas acerca da natureza da luz! 2 2.- Óptica xeométrica! 2 2.1.- Principio de Fermat. Camiño óptico! 3 2.2.- Reflexión e refracción. Leis de Snell! 3 2.3.- Laminas plano-paralelas! 4

Διαβάστε περισσότερα

Materiais e instrumentos que se poden empregar durante a proba

Materiais e instrumentos que se poden empregar durante a proba 1. Formato da proba A proba consta de cinco problemas e nove cuestións, distribuídas así: Problema 1: dúas cuestións. Problema 2: tres cuestións. Problema 3: dúas cuestións Problema 4: dúas cuestión. Problema

Διαβάστε περισσότερα

Tema 3. Espazos métricos. Topoloxía Xeral,

Tema 3. Espazos métricos. Topoloxía Xeral, Tema 3. Espazos métricos Topoloxía Xeral, 2017-18 Índice Métricas en R n Métricas no espazo de funcións Bólas e relacións métricas Definición Unha métrica nun conxunto M é unha aplicación d con valores

Διαβάστε περισσότερα

PAU. Código: 25 XUÑO 2013 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 XUÑO 2013 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 2013 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás

Διαβάστε περισσότερα

PAU XUÑO 2012 MATEMÁTICAS II

PAU XUÑO 2012 MATEMÁTICAS II PAU Código: 6 XUÑO 01 MATEMÁTICAS II (Responder só aos exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio = 3 puntos, exercicio 3= puntos, exercicio

Διαβάστε περισσότερα

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes

IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes IX. ESPAZO EUCLÍDEO TRIDIMENSIONAL: Aplicacións ao cálculo de distancias, áreas e volumes 1.- Distancia entre dous puntos Se A e B son dous puntos do espazo, defínese a distancia entre A e B como o módulo

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 1 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) Opción 1. Dada a matriz a) Calcula os valores do parámetro m para os

Διαβάστε περισσότερα

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración.

b) Segundo os datos do problema, en tres anos queda a metade de átomos, logo ese é o tempo de semidesintegración. FÍSICA MODERNA FÍSICA NUCLEAR. PROBLEMAS 1. Un detector de radioactividade mide unha velocidade de desintegración de 15 núcleos min -1. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a)

Διαβάστε περισσότερα

PAU XUÑO 2011 MATEMÁTICAS II

PAU XUÑO 2011 MATEMÁTICAS II PAU XUÑO 2011 MATEMÁTICAS II Código: 26 (O alumno/a debe responder só os exercicios dunha das opcións. Puntuación máxima dos exercicios de cada opción: exercicio 1= 3 puntos, exercicio 2= 3 puntos, exercicio

Διαβάστε περισσότερα

PAU. Código: 25 XUÑO 2015 FÍSICA OPCIÓN A OPCIÓN B

PAU. Código: 25 XUÑO 2015 FÍSICA OPCIÓN A OPCIÓN B PAU Código: 25 XUÑO 2015 FÍSICA Puntuación máxima: Cuestións 4 puntos (1 cada cuestión, teóica ou páctica). Poblemas 6 puntos (1 cada apatado). Non se valoaá a simple anotación dun ítem como solución ás

Διαβάστε περισσότερα

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos)

MATEMÁTICAS. (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 puntos) 21 MATEMÁTICAS (Responder soamente a unha das opcións de cada bloque temático). BLOQUE 1 (ÁLXEBRA LINEAL) (Puntuación máxima 3 Dada a matriz a) Calcula os valores do parámetro m para os que A ten inversa.

Διαβάστε περισσότερα

EXERCICIOS DE ÁLXEBRA. PAU GALICIA

EXERCICIOS DE ÁLXEBRA. PAU GALICIA Maemáicas II EXERCICIOS DE ÁLXEBRA PAU GALICIA a) (Xuño ) Propiedades do produo de marices (só enuncialas) b) (Xuño ) Sexan M e N M + I, onde I denoa a mariz idenidade de orde n, calcule N e M 3 Son M

Διαβάστε περισσότερα

Física cuántica. Relatividade especial

Física cuántica. Relatividade especial Tema 8 Física cuántica. Relatividade especial Evolución das ideas acerca da natureza da luz Experimento de Young (da dobre fenda Dualidade onda-corpúsculo Principio de indeterminación de Heisemberg Efecto

Διαβάστε περισσότερα

LUGARES XEOMÉTRICOS. CÓNICAS

LUGARES XEOMÉTRICOS. CÓNICAS LUGARES XEOMÉTRICOS. CÓNICAS Páxina REFLEXIONA E RESOLVE Cónicas abertas: parábolas e hipérboles Completa a seguinte táboa, na que a é o ángulo que forman as xeratrices co eixe, e, da cónica e b o ángulo

Διαβάστε περισσότερα

MECÁNICA. = 1 m/s, calcular a velocidade angular da roda, e a velocidade do punto B.

MECÁNICA. = 1 m/s, calcular a velocidade angular da roda, e a velocidade do punto B. 37 MEÁNI (,5 puntos cada problema; escollerá a opción ou ; non é necesario escoller a mesma opción en tódolos problemas). PRLEM 1 PIÓN.- alcular a tensión das cordas,, e da figura, sabendo que o peso do

Διαβάστε περισσότερα

RADIACTIVIDADE. PROBLEMAS

RADIACTIVIDADE. PROBLEMAS RADIACTIVIDADE. PROBLEMAS 1. Un detector de radiactividade mide unha velocidade de desintegración de 15 núcleos/minuto. Sabemos que o tempo de semidesintegración é de 0 min. Calcula: a) A constante de

Διαβάστε περισσότερα

DINAMICA DE TRASLACION

DINAMICA DE TRASLACION DINAMICA DE TRASLACION 1.-CINEMATICA ELEMENTOS DO MOVEMENTO: Móvil, Sistema de Referencia e Traxectoria MAGNITUDES CINEMATICAS: - Vector de Posición: r= xi + yj + zk - Vector desplazamento: r= xi + yj

Διαβάστε περισσότερα

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::...

Eletromagnetismo. Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística. ...:: Solução ::... Eletromagnetismo Johny Carvalho Silva Universidade Federal do Rio Grande Instituto de Matemática, Física e Estatística Lista -.1 - Mostrar que a seguinte medida é invariante d 3 p p 0 onde: p 0 p + m (1)

Διαβάστε περισσότερα